JPH04304330A - Solvent extracting method - Google Patents
Solvent extracting methodInfo
- Publication number
- JPH04304330A JPH04304330A JP8925691A JP8925691A JPH04304330A JP H04304330 A JPH04304330 A JP H04304330A JP 8925691 A JP8925691 A JP 8925691A JP 8925691 A JP8925691 A JP 8925691A JP H04304330 A JPH04304330 A JP H04304330A
- Authority
- JP
- Japan
- Prior art keywords
- extraction
- hydrochloric acid
- stage
- cobalt
- solution containing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000002904 solvent Substances 0.000 title abstract 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 100
- 238000000605 extraction Methods 0.000 claims abstract description 82
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 54
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 28
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 25
- 239000010941 cobalt Substances 0.000 claims abstract description 25
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 25
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000000638 solvent extraction Methods 0.000 claims abstract description 9
- 238000005201 scrubbing Methods 0.000 claims abstract description 6
- OAOABCKPVCUNKO-UHFFFAOYSA-N 8-methyl Nonanoic acid Chemical compound CC(C)CCCCCCC(O)=O OAOABCKPVCUNKO-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000011368 organic material Substances 0.000 abstract description 11
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 abstract description 9
- 235000011114 ammonium hydroxide Nutrition 0.000 abstract description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 230000003247 decreasing effect Effects 0.000 abstract description 4
- 239000000243 solution Substances 0.000 abstract 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 abstract 1
- 239000011259 mixed solution Substances 0.000 abstract 1
- 239000008346 aqueous phase Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- -1 chlorine ions Chemical class 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 206010017577 Gait disturbance Diseases 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】有価金属を溶媒抽出法で分離回収
するに際して、抽出、逆抽出時のpH調整に使用する酸
やアルカリの使用量の削減に関する。[Industrial Application Field] This invention relates to reducing the amount of acids and alkalis used for pH adjustment during extraction and back-extraction when separating and recovering valuable metals by solvent extraction.
【0002】0002
【従来の技術】ニッケル、コバルト混合硫化物よりニッ
ケルとコバルトとを回収するに際し、該混合硫化物を還
元溶解し、ニッケルとコバルトとを含む硫酸溶液を得、
該硫酸溶液よりニッケルとコバルトとを抽出し、塩酸溶
液に逆抽し、ニッケルとコバルトとを含む塩酸溶液を得
、ニッケルとコバルトとを分離し、それぞれよりニッケ
ルとコバルトとを回収する方法がある。この工程の中で
硫酸溶液を溶媒抽出を用いて塩酸溶液とするのは、安価
な抽出試薬で分離の難しいニッケルとコバルトとの抽出
分離を可能とするするためであり、この工程の特徴の一
つとなっている。[Prior Art] When recovering nickel and cobalt from a nickel and cobalt mixed sulfide, the mixed sulfide is reduced and dissolved to obtain a sulfuric acid solution containing nickel and cobalt.
There is a method of extracting nickel and cobalt from the sulfuric acid solution, back-extracting it into a hydrochloric acid solution, obtaining a hydrochloric acid solution containing nickel and cobalt, separating nickel and cobalt, and recovering nickel and cobalt from each. . The purpose of converting the sulfuric acid solution into a hydrochloric acid solution using solvent extraction in this process is to enable extraction and separation of nickel and cobalt, which are difficult to separate, using an inexpensive extraction reagent, and is one of the characteristics of this process. It is one.
【0003】ニッケルとコバルトとを含有する硫酸塩溶
液より溶媒抽出を用いてニッケルやコバルトを含む塩酸
溶液とするに際し、有機抽出剤として、金属イオンと交
換可能な水素原子を有するバーサチック・アシッド(V
A)を用い、希釈剤としてケロシンを用いる方法がある
。これは図2に示されるようなフローシートに従うもの
であり、三段の抽出工程と三段の逆抽出工程とからなる
ものである。図中、実線は水相の流れを示し、破線は有
機相の流れを示す。このフローシートに従う操業方法は
以下のようになる。When obtaining a hydrochloric acid solution containing nickel and cobalt by solvent extraction from a sulfate solution containing nickel and cobalt, versatile acid (V
There is a method using A) and using kerosene as a diluent. This follows a flow sheet as shown in FIG. 2, and consists of a three-stage extraction process and a three-stage back extraction process. In the figure, solid lines indicate the flow of the aqueous phase, and broken lines indicate the flow of the organic phase. The operating method according to this flow sheet is as follows.
【0004】40〜50g/lのNiと11〜15g/
lのCoを含む硫酸溶液が抽出1段に供給され、抽出2
段、抽出3段と流れて行く、一方、逆抽後の有機は抽出
有機として抽出3段に供給され、抽出2段、抽出1段と
流れて行く。抽出1段、抽出2段では、ニッケルやコバ
ルトの抽出にともないpHが酸性側に移行し、抽出率を
低下させるため、アンモニア水をもちいて抽出一段のp
Hを6.7〜7.0に維持し、抽出二段のpHを6.9
〜7.3に維持する。[0004] 40-50g/l of Ni and 11-15g/l
A sulfuric acid solution containing 1 of Co is supplied to extraction stage 1, and extraction stage 2
On the other hand, the organic material after back extraction is supplied as extracted organic to the extraction stage 3, and then flows through the extraction stage 2 and the extraction stage 1. In the first and second extraction stages, the pH shifts to the acidic side as nickel and cobalt are extracted, reducing the extraction rate, so ammonia water is used to increase the pH of the first extraction stage.
Maintain H at 6.7-7.0 and pH of the second extraction stage at 6.9.
Maintain at ~7.3.
【0005】抽出1段より流出した抽出有機は逆抽3段
に供給される。逆抽段は抽出有機中のニッケルとコバル
トとを塩酸溶液で逆抽するが、使用する塩酸量の90%
を逆抽1段に添加し、10%を逆抽2段で添加する。[0005] The extracted organic material flowing out from the first extraction stage is supplied to the third reverse extraction stage. The back extraction stage back-extracts nickel and cobalt in the extracted organic material with a hydrochloric acid solution, but 90% of the amount of hydrochloric acid used is
is added to the first stage of back drawing, and 10% is added to the second stage of back drawing.
【0006】又、各抽出装置として、通常ミキサーセト
ラーが使用されている。そして、抽出段のO/Aは2前
後とされ、逆抽段のO/Aは10〜12とされるのが一
般的である。通常、抽出有機はVAを370〜400g
/lの割合で含むケロシン溶液であり、逆抽段で使用す
る塩酸は25%の塩酸を用いている。[0006] Also, a mixer-settler is usually used as each extraction device. The O/A of the extraction stage is generally around 2, and the O/A of the reverse extraction stage is generally 10 to 12. Usually extracted organics contain 370-400g of VA.
This is a kerosene solution containing at a ratio of 25% hydrochloric acid.
【0007】このようにして上記操業を行うが、逆抽後
の有機には塩酸が塩素イオンとして1g/l程度含まれ
ている。この塩酸は抽出工程で水相に移行し、抽残液の
組成分としてとして排出されるため、ロスとなるばかり
か、抽出工程でのpH調整用のアンモニア水の消費量を
増加させることになり、コスト低減の足かせとなってい
る。Although the above operation is carried out in this manner, the organic material after back extraction contains about 1 g/l of hydrochloric acid as chlorine ions. This hydrochloric acid transfers to the aqueous phase during the extraction process and is discharged as a component of the raffinate, which not only results in loss but also increases the amount of ammonia water consumed for pH adjustment in the extraction process. , which is a stumbling block to cost reduction.
【0008】[0008]
【発明が解決しようとする課題】本発明は、ニッケルと
コバルトとを含む混合硫酸溶液より溶媒抽出によりニッ
ケルとコバルトを含む混合塩化物溶液を製造するに際し
、逆抽後の有機中の塩酸濃度を減少させることにより混
合塩化物溶液の製造コストの低減を可能とさせる溶媒抽
出法の提供にある。[Problems to be Solved by the Invention] The present invention aims to reduce the concentration of hydrochloric acid in organic matter after back extraction when producing a mixed chloride solution containing nickel and cobalt by solvent extraction from a mixed sulfuric acid solution containing nickel and cobalt. An object of the present invention is to provide a solvent extraction method that makes it possible to reduce the production cost of mixed chloride solutions by reducing the cost.
【0009】[0009]
【課題を解決するための手段】上記課題を解決する本発
明の方法は、バーサチック・アシドを抽出剤として用い
、少なくとも3段の抽出工程と、少なくとも3段の逆抽
工程からなる向流抽出、逆抽出工程によりニッケルとコ
バルトとを含む硫酸溶液よりニッケルとコバルトとを含
む塩酸溶液を得る方法において、逆抽出の最終段を水に
よるスクラビング槽として用い、最終段の前段以前に所
定量の塩酸を添加するものであり、好ましくは、逆抽の
最終段でA/O=0.016〜0.027として50〜
55℃の温水を添加し、スクラビングを行い、最終段の
前段で塩酸を塩酸/O=0.06〜0.1の割合で添加
するものであり、用いる塩酸は320〜370g/lと
することが好ましい。[Means for Solving the Problems] The method of the present invention for solving the above problems uses a counter-current extraction comprising at least three extraction steps and at least three back extraction steps using versatic acid as an extractant. In a method of obtaining a hydrochloric acid solution containing nickel and cobalt from a sulfuric acid solution containing nickel and cobalt by a back extraction process, the final stage of back extraction is used as a water scrubbing tank, and a predetermined amount of hydrochloric acid is added before the final stage. It is preferably added at the final stage of reverse drawing with A/O = 0.016 to 0.027 and 50 to
Hot water of 55°C is added, scrubbing is performed, and hydrochloric acid is added at a ratio of hydrochloric acid/O = 0.06 to 0.1 in the previous stage of the final stage, and the hydrochloric acid used should be 320 to 370 g/l. is preferred.
【0010】0010
【作用】本発明において、最終段で50〜55℃の温水
によりスクラビングを行うのは、これにより逆抽有機中
の塩酸を洗いだし、また逆抽有機中に混入している水相
中の塩酸濃度を希釈することにより抽出段に持ち込まれ
る塩素イオンの量を低減しようとするものである。温水
の温度を50〜55℃とするのは、温度の低下により逆
抽有機の粘度が低下し、洗浄効果が低下するのを防止し
、且つ温度の上がりすぎによる希釈剤の揮散を防止する
ためである。最適温度は用いる希釈剤と抽出剤の濃度に
より異なるため予め求めておくことが好ましい。[Function] In the present invention, scrubbing with hot water at 50 to 55°C in the final stage is used to wash out the hydrochloric acid in the back-extracted organic material, and also to wash out the hydrochloric acid in the aqueous phase mixed in the back-extracted organic material. The purpose is to reduce the amount of chlorine ions brought into the extraction stage by diluting the concentration. The reason why the temperature of the hot water is set at 50 to 55°C is to prevent the viscosity of the back extraction unit from decreasing due to a decrease in temperature and the cleaning effect from decreasing, and also to prevent the diluent from volatilizing due to an excessive rise in temperature. It is. Since the optimal temperature varies depending on the concentration of the diluent and extractant used, it is preferable to determine it in advance.
【0011】最終段でのA/Oを0.016〜0.02
7とするのは、水相と有機相との相分離性を良好に維持
しつつ、可能な限りNiとCoのロスを防止し、有機中
の塩素イオンを低減するためである。すなわち、A/O
が0.016未満の場合には充分な洗浄効果が得られず
、0.027を越えると、pHの変動が大きくなり、層
分離性が悪化し、結果として洗浄不十分となるからであ
る。[0011] A/O at the final stage is 0.016 to 0.02.
The reason why it is set to 7 is to prevent loss of Ni and Co as much as possible while maintaining good phase separation between the aqueous phase and the organic phase, and to reduce chlorine ions in the organic. That is, A/O
If it is less than 0.016, a sufficient cleaning effect will not be obtained, and if it exceeds 0.027, pH fluctuation will increase, layer separation will deteriorate, and as a result, cleaning will be insufficient.
【0012】最終段前段以前で塩酸を添加するのは、こ
こで抽出有機中のニッケルとコバルトを完全に逆抽する
ためである。ここで、添加する塩酸/Oは小さすぎると
逆抽出が不十分となり、大きすぎると過剰の塩酸が必要
とされ、経済性を損なうことなる。このため塩酸/Oは
0.06〜0.1とする。用いる塩酸の濃度は逆抽段の
段数により異なるが、逆抽段を3段としたときには、逆
抽2段で必要な塩酸量を全量添加しなければならない。
この場合、処理される抽出有機中のニッケルとコバルト
との濃度により異なるが、ニッケルとコバルトとの抽出
有機中の濃度範囲が15〜20g/lであれば、塩酸濃
度を320〜370g/lとすることで足りる。The reason why hydrochloric acid is added before the final stage is to completely back-extract nickel and cobalt from the extracted organic matter. Here, if the amount of hydrochloric acid/O to be added is too small, back extraction will be insufficient, and if it is too large, an excess of hydrochloric acid will be required, which will impair economic efficiency. For this reason, hydrochloric acid/O is set to 0.06 to 0.1. The concentration of hydrochloric acid used varies depending on the number of reverse extraction stages, but when three reverse extraction stages are used, the entire amount of hydrochloric acid required for two reverse extraction stages must be added. In this case, although it depends on the concentration of nickel and cobalt in the extracted organic material to be treated, if the concentration range of nickel and cobalt in the extracted organic material is 15 to 20 g/l, the hydrochloric acid concentration is set to 320 to 370 g/l. It is enough to do that.
【0013】[0013]
【実施例】以下実施例に基づき本発明をさらに説明する
。EXAMPLES The present invention will be further explained based on the following examples.
【0014】(実施例1)図1のフローシートに示した
3m3のミキサー部と10m3のセトラー部からなる6
基のミキサーセトラーを用いて構成された抽出3段、逆
抽3段からなる抽出工程を用いて以下の条件で20日間
の試験操業を行った。(Example 1) A 6-unit system consisting of a 3 m3 mixer section and a 10 m3 settler section shown in the flow sheet of FIG.
A test operation was conducted for 20 days under the following conditions using an extraction process consisting of three stages of extraction and three stages of reverse extraction, which was constructed using a basic mixer-settler.
【0015】
(抽出始液の組成) (単位 g/l
) Ni Co Ca M
g NH3 Na SiO2
Zn 40〜50 11〜15 0.07〜
0.1 0.03 0.1〜0.7 20〜25
0.05〜0.1 0.01 NO3
0.05〜0.1(Composition of extraction starting liquid) (Unit: g/l
) Ni Co Ca M
g NH3 Na SiO2
Zn 40~50 11~15 0.07~
0.1 0.03 0.1~0.7 20~25
0.05~0.1 0.01 NO3 0.05~0.1
【0016】(抽出有機の組成)
抽出剤 VA 380g/l希釈剤
ケロシン(Composition of extracted organic material) Extractant VA 380g/l Diluent
kerosene
【0017】(抽出条件)
抽出段のO/A 2
抽出始液の給液量 110 l/min抽出有機の
給液量 220 l/min抽出1段のpH
6.7〜7.0抽出2段のpH 6.9〜7.
3用いたアンモニア水の濃度 18〜1
9%(Extraction conditions) O/A of extraction stage 2 Amount of extraction starting liquid supplied 110 l/min Amount of extracted organic liquid supplied 220 l/min pH of 1st extraction stage
6.7-7.0 pH of 2nd stage extraction 6.9-7.
3 Concentration of ammonia water used 18-1
9%
【0018】(逆抽条件)
逆抽有機の給液量 320 l/min逆抽1段の
温水添加量 0,3,5,7 l/min逆抽2段
の塩酸量 350g/l塩酸溶液を水相の比重が
1.3〜1.4となるように添加する。
温水温度 50〜55℃(Back extraction conditions) Amount of liquid supplied to the back extraction unit: 320 l/min Amount of hot water added in the first stage of back extraction: 0,3,5,7 l/min Amount of hydrochloric acid in the second stage of back extraction: 350 g/l hydrochloric acid solution Add so that the specific gravity of the aqueous phase is 1.3 to 1.4. Hot water temperature 50-55℃
【0019
】この試験操業は温水添加量の影響を求めるために行っ
たものであり、用いた抽出始液と抽出有機の総量はそれ
ぞれ2807.7m3、7776.0m3であり、得ら
れた逆抽液の量は833.4m3であり、消費されたア
ンモニア水の総量を表1に示した。0019
] This test operation was conducted to determine the effect of the amount of hot water added, and the total amount of extraction starting liquid and extracted organic material used was 2807.7 m3 and 7776.0 m3, respectively, and the amount of the obtained back extraction liquid was was 833.4 m3, and the total amount of ammonia water consumed is shown in Table 1.
【0020】[0020]
【0021】得られた結果として、表2に逆抽有機中の
塩素イオン濃度とNi+Co濃度、抽出終液中のNi+
Co濃度と、35%塩酸のロス量と、逆抽2段における
塩酸/有機の比と、逆抽1段での温水/有機の比とを示
した。なお、35%塩酸のロス量とは、処理抽出始液中
のNi+Co量に対する35%塩酸のロス量であり、以
下の式で求めた。
(抽出終液中Cl量−抽出始液中Cl量)/(抽出
始液中Ni+Co量) ÷35%×36
.5÷35.5Table 2 shows the chloride ion concentration and Ni+Co concentration in the back extractor, and the Ni+ Co concentration in the final extraction solution.
The Co concentration, the loss amount of 35% hydrochloric acid, the hydrochloric acid/organic ratio in the second stage of back extraction, and the hot water/organic ratio in the first stage of back extraction are shown. Note that the loss amount of 35% hydrochloric acid is the loss amount of 35% hydrochloric acid relative to the amount of Ni+Co in the starting solution for treatment extraction, and was determined by the following formula. (Cl amount in the final extraction solution - Cl amount in the extraction starting solution) / (Ni+Co amount in the extraction starting solution) ÷ 35% x 36
.. 5÷35.5
【0022】[0022]
【0023】表1より逆抽2段における塩酸/有機の比
を0.096とし、逆抽1段での温水/有機の比を0.
016とすることにより塩酸ロスを大幅に低減できるこ
とがわかる。From Table 1, the hydrochloric acid/organic ratio in the second stage of back extraction is 0.096, and the hot water/organic ratio in the first stage of back extraction is 0.096.
It can be seen that hydrochloric acid loss can be significantly reduced by using 016.
【0024】(実施例2)逆抽1段の温水添加量を5l
/minとし、逆抽2段に添加する塩酸濃度を変化させ
た以外は実施例1と同じようにして20日間の試験操業
を行った。消費されたアンモニア水の量を表3に示し、
表4に結果として得られた逆抽有機中の塩素イオン濃度
とNi+Co濃度、抽出終液中のNi+Co濃度と、3
5%塩酸のロス量と、逆抽2段における塩酸/有機の比
と、逆抽1段での温水/有機の比とを示した。(Example 2) The amount of hot water added in the first stage of back extraction was 5 liters.
/min, and a test operation for 20 days was carried out in the same manner as in Example 1, except that the concentration of hydrochloric acid added to the second stage of back extraction was changed. The amount of ammonia water consumed is shown in Table 3,
Table 4 shows the resulting chlorine ion concentration and Ni+Co concentration in the back extractor, the Ni+Co concentration in the final extraction solution, and the 3
The loss amount of 5% hydrochloric acid, the hydrochloric acid/organic ratio in the second stage of back extraction, and the hot water/organic ratio in the first stage of back extraction are shown.
【0025】[0025]
【0026】[0026]
【0027】第4表より用いる塩酸濃度が320〜37
0g/lであれば、本発明の目的の達成が可能となるこ
とがわかる。しかし、塩酸濃度をこれ以上低下させるこ
とは、抽出終液中のNi+Co濃度が上昇し、Ni+C
oのロスが増加するため好ましくはない。From Table 4, the concentration of hydrochloric acid used is 320 to 37
It can be seen that at 0 g/l, the object of the present invention can be achieved. However, if the hydrochloric acid concentration is further reduced, the Ni+Co concentration in the final extraction solution will increase and the Ni+Co concentration will increase.
This is not preferable because the loss of o increases.
【0028】(実施例3)添加する温水を5l/min
とし、塩酸濃度を350g/lとした以外は実施例1と
同様にし、30日間の本発明の試験操業を行い、ついで
、温水の代わりに370g/lの塩酸溶液を25〜30
l/minの割合で逆抽1段に添加し、逆抽2段の水相
の比重が1.3〜1.4となるように3〜5g/lの塩
酸溶液を逆抽2段に添加する、従来方法に従い30日間
の試験操業を行った。得られた逆抽有機中の塩素イオン
濃度と、抽出終液中のNi+Co濃度と、塩酸原単位と
、アンモニア水の原単位とを比較した。その結果を表5
に示した。(Example 3) Add hot water at 5 l/min
The test operation of the present invention was conducted for 30 days in the same manner as in Example 1 except that the hydrochloric acid concentration was 350 g/l.
Add 3 to 5 g/l of hydrochloric acid solution to the second stage of back extraction so that the specific gravity of the aqueous phase in the second stage of back extraction becomes 1.3 to 1.4. A test operation was conducted for 30 days according to the conventional method. The chlorine ion concentration in the obtained back extraction organic, the Ni+Co concentration in the final extraction solution, the basic unit of hydrochloric acid, and the basic unit of aqueous ammonia were compared. Table 5 shows the results.
It was shown to.
【0029】 なお、原単位は以下のようにして求めた。 原単位=使用量/処理したNi+Co量[0029] The basic unit was calculated as follows. Basic unit = Usage amount / Processed Ni+Co amount
【0030】第
5表より本発明の方法により塩酸原単位とアンモニア水
源単位とが改善されていることが明かである。From Table 5, it is clear that the method of the present invention improves the hydrochloric acid consumption unit and the ammonia water source unit.
【0031】[0031]
【発明の効果】本発明の方法によれば、溶媒抽出で使用
する塩酸とアンモニア水とが削減できる。このため、本
発明の方法はNiやCoの製造コストの低下に有効であ
り、実益が大きい。[Effects of the Invention] According to the method of the present invention, the amount of hydrochloric acid and aqueous ammonia used in solvent extraction can be reduced. Therefore, the method of the present invention is effective in reducing the manufacturing cost of Ni and Co, and has great practical benefits.
【図1】 本発明の抽出、逆抽工程のフローシー
トである。FIG. 1 is a flow sheet of the extraction and reverse extraction process of the present invention.
【図2】 従来の抽出、逆抽工程のフローシート
である。FIG. 2 is a flow sheet of a conventional extraction and reverse extraction process.
Claims (2)
して用い、少なくとも3段の抽出工程と、少なくとも3
段の逆抽工程からなる向流抽出、逆抽出工程によりニッ
ケルとコバルトとを含む硫酸溶液よりニッケルとコバル
トとを含む塩酸溶液を得る方法において、逆抽出の最終
段を水によるスクラビング槽として用い、最終段の前段
以前に所定量の塩酸を添加することを特徴とする溶媒抽
出法。Claim 1: Using versatic acid as an extractant, at least three extraction steps, and at least three
In a method for obtaining a hydrochloric acid solution containing nickel and cobalt from a sulfuric acid solution containing nickel and cobalt by a countercurrent extraction and back extraction step consisting of a step back extraction step, the final stage of back extraction is used as a scrubbing tank with water, A solvent extraction method characterized by adding a predetermined amount of hydrochloric acid before the final stage.
6〜0.027として50〜55℃の温水を添加し、ス
クラビングを行い、最終段の前段で320〜370g/
lの塩酸を塩酸/O=0.06〜0.1の割合で添加す
ることを特徴とする請求項1記載の溶媒抽出法。[Claim 2] A/O=0.01 in the final stage of reverse drawing
Add hot water of 50 to 55℃ as 6 to 0.027, perform scrubbing, and add 320 to 370 g/
2. The solvent extraction method according to claim 1, wherein 1 of hydrochloric acid is added at a ratio of hydrochloric acid/O=0.06 to 0.1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8925691A JP2871147B2 (en) | 1991-03-29 | 1991-03-29 | Solvent extraction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8925691A JP2871147B2 (en) | 1991-03-29 | 1991-03-29 | Solvent extraction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04304330A true JPH04304330A (en) | 1992-10-27 |
JP2871147B2 JP2871147B2 (en) | 1999-03-17 |
Family
ID=13965685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8925691A Expired - Lifetime JP2871147B2 (en) | 1991-03-29 | 1991-03-29 | Solvent extraction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2871147B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015157992A (en) * | 2014-02-25 | 2015-09-03 | 住友金属鉱山株式会社 | Method of removing impurity in organic solvent |
CN105256141A (en) * | 2015-10-26 | 2016-01-20 | 广西银亿再生资源有限公司 | Electroplating-sludge resourceful treatment and comprehensive recycling method |
JP2016030847A (en) * | 2014-07-29 | 2016-03-07 | 住友金属鉱山株式会社 | Method for purifying cobalt chloride solution |
CN106756013A (en) * | 2016-11-25 | 2017-05-31 | 桂林理工大学 | A kind of method of the direct nickel cobalt saponification of P204, P507 |
-
1991
- 1991-03-29 JP JP8925691A patent/JP2871147B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015157992A (en) * | 2014-02-25 | 2015-09-03 | 住友金属鉱山株式会社 | Method of removing impurity in organic solvent |
JP2016030847A (en) * | 2014-07-29 | 2016-03-07 | 住友金属鉱山株式会社 | Method for purifying cobalt chloride solution |
CN105256141A (en) * | 2015-10-26 | 2016-01-20 | 广西银亿再生资源有限公司 | Electroplating-sludge resourceful treatment and comprehensive recycling method |
CN106756013A (en) * | 2016-11-25 | 2017-05-31 | 桂林理工大学 | A kind of method of the direct nickel cobalt saponification of P204, P507 |
Also Published As
Publication number | Publication date |
---|---|
JP2871147B2 (en) | 1999-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107200364B (en) | A kind of abstraction impurity removal method to industrial scum sulphuric leachate | |
CN107245582B (en) | A method of recycling iron, zinc from waste hydrochloric acid | |
CN104726724B (en) | The method that scandium is extracted from lateritic nickel ore | |
Kumbasar et al. | Separation and concentration of cobalt from ammoniacal solutions containing cobalt and nickel by emulsion liquid membranes using 5, 7-dibromo-8-hydroxyquinoline (DBHQ) | |
CN115109929B (en) | Method for directly preparing crude germanium dioxide from single Ning Zhe slag | |
JPH0280530A (en) | Method for separating rare earth element | |
FI126210B (en) | Process for the recovery of copper and zinc | |
CN106906369A (en) | The technique that a kind of utilization synergic solvent extraction technology reclaims copper, zinc, nickel, cadmium from heavy metal wastewater thereby | |
JP3440752B2 (en) | Purification method of nickel sulfate containing cobalt | |
CN110157927A (en) | A kind of no ammonium precipitation vanadium method | |
CN117327930B (en) | Method for recovering vanadium from primary shale stone coal | |
US4120817A (en) | Extraction agent composition | |
CN111057875B (en) | Method for separating vanadium and chromium from solution by using microemulsion | |
JPH04304330A (en) | Solvent extracting method | |
JPS6050128A (en) | Extracting method of iron (iii) from aqueous solution and reverse extracting method of iron (iii) from extracting solvent | |
AU2003258054A1 (en) | Solvent extraction process | |
CN114058876B (en) | Method for extracting cobalt from cobalt-iron slag | |
CN108342572A (en) | Using the technique of two-stage extraction method removal of impurities from copper-cobalt mine leachate | |
CA2674490C (en) | Method for scrubbing an amine type extractant after stripping | |
CN109626344B (en) | Resource utilization method suitable for PCB deplating waste liquid | |
CN113881857A (en) | Method for treating cobalt-containing solution produced in wet zinc smelting cadmium recovery process | |
CN108754142B (en) | Method for separating bismuth and iron and producing pure bismuth hydroxide by extraction-ammonia decomposition in bismuth and iron mixed solution | |
CN106381398A (en) | Method for recovering indium from indium-contained soot | |
De Schepper | Liquid-liquid extraction of gallium by tri-n-butyl phosphate | |
Bojanowska | The recovery of chromium from galvanic wastewater sludge |