JP2871147B2 - Solvent extraction method - Google Patents

Solvent extraction method

Info

Publication number
JP2871147B2
JP2871147B2 JP8925691A JP8925691A JP2871147B2 JP 2871147 B2 JP2871147 B2 JP 2871147B2 JP 8925691 A JP8925691 A JP 8925691A JP 8925691 A JP8925691 A JP 8925691A JP 2871147 B2 JP2871147 B2 JP 2871147B2
Authority
JP
Japan
Prior art keywords
extraction
hydrochloric acid
organic extractant
stage
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8925691A
Other languages
Japanese (ja)
Other versions
JPH04304330A (en
Inventor
野 仁 美 樹 矢
田 直 行 土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP8925691A priority Critical patent/JP2871147B2/en
Publication of JPH04304330A publication Critical patent/JPH04304330A/en
Application granted granted Critical
Publication of JP2871147B2 publication Critical patent/JP2871147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】有価金属を溶媒抽出法で分離回収
するに際して、抽出、逆抽出時のpH調整に使用する酸
やアルカリ使用量の削減に関する。
BACKGROUND OF THE INVENTION The present invention relates to a reduction in the amount of acids and alkalis used for pH adjustment during extraction and back extraction when valuable metals are separated and recovered by a solvent extraction method.

【0002】[0002]

【従来の技術】ニッケル、コバルト混合硫化物よりニッ
ケルとコバルトとを回収にする際し、該混合硫化物を還
元溶解し、ニッケルとコバルトとを含む硫酸溶液を得、
該硫酸溶液よりニッケルとコバルトとを抽出し、塩酸溶
液に逆抽出し、ニッケルとコバルトとを含む塩酸溶液を
得、ニッケルとコバルトとを分離し、それぞれよりニッ
ケルとコバルトを回収する方法がある。この工程の中で
硫酸溶液を溶媒抽出を用いて塩酸溶液とするのは、安価
な抽出試薬で分離の難しいニッケルとコバルトとの抽出
分離を可能とするためであり、この工程の特徴の一つと
なっている。
2. Description of the Related Art When recovering nickel and cobalt from a mixed sulfide of nickel and cobalt, the mixed sulfide is reduced and dissolved to obtain a sulfuric acid solution containing nickel and cobalt.
There is a method in which nickel and cobalt are extracted from the sulfuric acid solution and back-extracted into a hydrochloric acid solution to obtain a hydrochloric acid solution containing nickel and cobalt, nickel and cobalt are separated, and nickel and cobalt are respectively recovered. The reason that the sulfuric acid solution is converted into a hydrochloric acid solution by solvent extraction in this step is to enable extraction and separation of nickel and cobalt which are difficult to separate with an inexpensive extraction reagent. Has become.

【0003】ニッケルとコバルトとを含有する硫酸塩溶
液より溶媒抽出を用いてニッケルやコバルトを含む塩酸
溶液とするに際し、有機抽出剤として、金属イオンと交
換可能な水素原子を有するパ−サチック・アシッド(V
ersatic Acid911H,シエル化学社製)
を用い、希釈剤としてケロシンを用いる方法がある。こ
れは図2に示されるようなフロ−シ−トに従うものであ
り、3段の抽出工程と3段の逆抽出工程とからなるもの
である。図中、実線は水相の流れを示し、破線は有機相
すなわち有機抽出剤の流れを示す。このフロ−シ−トに
従う操業方法は以下のようになる。
When a hydrochloric acid solution containing nickel or cobalt is converted from a sulfate solution containing nickel and cobalt into a hydrochloric acid solution containing nickel or cobalt by using solvent extraction, a passivated acid having a hydrogen atom exchangeable with a metal ion is used as an organic extractant. (V
(ergic Acid 911H, manufactured by Ciel Chemical Co., Ltd.)
And using kerosene as a diluent. This follows the flow chart as shown in FIG. 2, and comprises three extraction steps and three reverse extraction steps. In the figure, the solid line shows the flow of the aqueous phase, and the broken line shows the flow of the organic phase, that is, the flow of the organic extractant. The operation method according to this flow sheet is as follows.

【0004】本明細書において、硫酸溶液は有機抽出剤
と複数段にわたって向流状態で接触するが、抽出1段、
2段、3段は、硫酸溶液が流れる方向に見て順次段数が
上がる。また、塩酸は有機抽出剤と複数段にわたって向
流状態で接触するが、逆抽出1段、2段、3段は、塩酸
あるいはその主成分が流れる方向に見て段数が順次上が
る。
In the present specification, the sulfuric acid solution comes into contact with the organic extractant in a countercurrent state over a plurality of stages.
In the second and third stages, the number of stages is sequentially increased in the direction in which the sulfuric acid solution flows. Hydrochloric acid comes in contact with the organic extractant in a plurality of stages in a countercurrent state, but the number of stages in the first, second, and third stages of back-extraction increases in the direction in which hydrochloric acid or its main component flows.

【0005】具体的には、40〜50g/lのNiと1
1〜15g/lのCoを含む硫酸溶液が抽出1段に供給
され、抽出2段、抽出3段と流れて行く、一方、逆抽出
後の有機抽出剤は抽出3段に供給され、抽出2段、抽出
1段と流れて行く。抽出1段、抽出2段では、ニッケル
やコバルトの抽出にともないpHが酸性側に移行し、抽
出率を低下させるため、アンモニア水をもちいて抽出1
段のpHを6.7〜7.0に維持し、抽出2段のpHを
6.9〜7.3に維持する。
More specifically, 40 to 50 g / l of Ni and 1
A sulfuric acid solution containing 1 to 15 g / l of Co is supplied to one stage of extraction and flows to two stages of extraction and three stages of extraction. On the other hand, the organic extractant after back extraction is supplied to three stages of extraction and extracted. It flows down one stage and one extraction stage. In the first extraction stage and the second extraction stage, the pH shifts to the acidic side with the extraction of nickel and cobalt, and the extraction ratio is reduced using ammonia water.
The pH of the stage is maintained at 6.7-7.0 and the pH of the two extraction stages is maintained at 6.9-7.3.

【0006】抽出1段より流出した抽出後の有機抽出剤
は逆抽出3段に供給される。逆抽出段は抽出後の有機抽
出剤中のニッケルとコバルトとを塩酸溶液で逆抽出する
が、使用する塩酸量の90%を逆抽出1段に添加し、1
0%を逆抽出2段で添加する。尚、逆抽出1段は、抽出
後の有機抽出剤に関しては、逆抽出の最終段となる。
[0006] The extracted organic extractant flowing out of the first extraction stage is supplied to the third back extraction stage. In the back-extraction stage, nickel and cobalt in the organic extractant after extraction are back-extracted with a hydrochloric acid solution.
0% is added in two back extraction stages. The first stage of back extraction is the last stage of back extraction for the organic extractant after extraction.

【0007】又、各抽出装置として、通常ミキサ−セト
ラ−が使用されている。そして、抽出段の有機抽出剤/
水相の体積比は2前後とされ、逆抽出段の有機抽出剤/
水相の体積比は10〜12とされるのが一般的である。
通常、抽出後の有機抽出剤はVAを370〜400g/
lの割合で含むケロシン溶液であり、逆抽出段で使用す
る塩酸は25%の塩酸を用いている。
[0007] A mixer-settler is usually used as each extraction device. And the organic extractant in the extraction stage /
The volume ratio of the aqueous phase is about 2, and the organic extractant /
The volume ratio of the aqueous phase is generally set to 10 to 12.
Usually, the organic extractant after extraction has a VA of 370-400 g /
1 is a kerosene solution containing 25% hydrochloric acid used in the back extraction stage.

【0008】このようにして上記操業を行うが、逆抽出
後の有機抽出剤には塩酸が塩素イオンとして1g/l程
度含まれている。この塩酸は抽出工程で水相に移行し、
抽出残液の組成分として排出されるため、ロスとなるば
かりか、抽出工程でのpH調整用のアンモニア水の消費
量を増加させることになり、コスト低減の足かせとなっ
ている。
[0008] The above operation is carried out in this manner, but the organic extractant after back extraction contains about 1 g / l of hydrochloric acid as chloride ions. This hydrochloric acid moves into the aqueous phase during the extraction process,
Since it is discharged as a component of the extraction residual liquid, it not only causes a loss but also increases the consumption of ammonia water for pH adjustment in the extraction step, which hinders cost reduction.

【0009】[0009]

【発明が解決しようとする課題】本発明は、ニッケルと
コバルトとを含む混合硫酸溶液より溶媒抽出によりニッ
ケルとコバルトを含む混合塩化物溶液を製造するに際
し、逆抽出後の有機抽出剤中の塩酸濃度を減少させるこ
とにより混合塩化物溶液の製造コストの低減を可能とさ
せる溶媒抽出法の提供にある。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a mixed chloride solution containing nickel and cobalt by solvent extraction from a mixed sulfuric acid solution containing nickel and cobalt. An object of the present invention is to provide a solvent extraction method capable of reducing the production cost of a mixed chloride solution by reducing the concentration.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の方法は、ニッケルとコバルトを回収するための有機
抽出剤を用い、少なくとも3段の抽出工程と、少なくと
も3段の逆抽出工程からなる向流抽出、逆抽出工程によ
りニッケルとコバルトとを含む硫酸溶液よりニッケルと
コバルトとを含む塩酸溶液を得る方法において、逆抽出
1段において有機抽出剤に水を通し、該水を逆抽出2段
に排出し、逆抽出2段以後でニッケルとコバルトの逆抽
出に必要な所定量の塩酸を添加するものであり、好まし
くは、逆抽出1段で水相/有機抽出剤の体積比を0.0
16〜0.027として50〜55℃の温水を添加し、
逆抽出2段で塩酸を塩酸/有機抽出剤の体積比0.06
〜0.1の割合で添加するものであり、用いる塩酸は3
20〜370g/lとすることが好ましい。
The method of the present invention for solving the above-mentioned problems uses an organic extractant for recovering nickel and cobalt, and comprises at least three extraction steps and at least three back extraction steps. In a method for obtaining a hydrochloric acid solution containing nickel and cobalt from a sulfuric acid solution containing nickel and cobalt by the countercurrent extraction and back extraction steps, water is passed through the organic extractant in one stage of back extraction, and the water is subjected to back extraction 2 It is discharged to a stage, and a predetermined amount of hydrochloric acid necessary for back extraction of nickel and cobalt is added after the second stage of back extraction. Preferably, the volume ratio of aqueous phase / organic extractant is reduced to 0 in one stage of back extraction. .0
Add hot water at 50-55 ° C as 16-0.027,
Hydrochloric acid is converted to hydrochloric acid / organic extractant in a volume ratio of 0.06 in two stages of back extraction.
To 0.1, and the hydrochloric acid used is 3
It is preferably 20 to 370 g / l.

【0011】[0011]

【作用】本発明において、逆抽出1段すなわち抽出剤か
らみて最終段で50〜55℃の水を通すのは、温水のス
クラビングにより逆抽出後の有機抽出剤中の塩酸を洗い
だし、また逆抽出後の有機抽出剤中に混入している水相
中の塩酸濃度を希釈することにより、抽出段に有機抽出
剤と共に持ち込まれる塩素イオンの量を低減しようとす
るものである。水の温度を50〜55℃とするのは、温
度の低下により逆抽出後の有機抽出剤の粘度が低下し、
洗浄効果が低下するのを防止し、且つ温度の上がりすぎ
による希釈剤の揮散を防止するためである。最適温度
は、用いる希釈剤と抽出剤の濃度により異なるため予め
求めておくことが好ましい。
In the present invention, passing water at 50 to 55 ° C. in the first stage of back extraction, that is, the final stage from the viewpoint of the extractant, is to scrub the hydrochloric acid in the organic extractant after back extraction by scrubbing with warm water, By diluting the concentration of hydrochloric acid in the aqueous phase mixed in the organic extractant after extraction, the amount of chloride ions brought into the extraction stage together with the organic extractant is reduced. The reason for setting the temperature of the water to 50 to 55 ° C. is that the viscosity of the organic extractant after the back extraction decreases due to the decrease in the temperature,
This is for preventing the cleaning effect from lowering and for preventing the diluent from volatilizing due to an excessive rise in temperature. Since the optimum temperature differs depending on the concentrations of the diluent and the extractant to be used, it is preferable to obtain the optimum temperature in advance.

【0012】逆抽出1段すなわち有機抽出剤からみて最
終段での水相/有機抽出剤の体積比を0.016〜0.
027とするのは、水相と有機相との相分離性を良好に
維持しつつ、可能な限りNiとCoのロスを防止し、有
機抽出剤中の塩素イオンを低減するためである。すなわ
ち、水相/有機抽出剤の体積比が0.016未満の場合
には充分な洗浄効果が得られず、0.027を越える
と、pHの変動が大きくなり、層分離性が悪化し、結果
として洗浄不十分となるからである。
The volume ratio of the aqueous phase / organic extractant in the first stage of back extraction, that is, the final stage from the viewpoint of the organic extractant, is 0.016-0.
The reason for setting it to 027 is to prevent loss of Ni and Co as much as possible and to reduce chloride ions in the organic extractant while maintaining good phase separation between the aqueous phase and the organic phase. That is, if the volume ratio of the aqueous phase / organic extractant is less than 0.016, a sufficient washing effect cannot be obtained, and if it exceeds 0.027, the fluctuation of pH becomes large and the layer separation property deteriorates, As a result, the cleaning becomes insufficient.

【0013】逆抽出2段以後に、すなわち有機抽出剤か
らみて最終段の前段以前で塩酸を添加するのは、ここで
有機抽出剤中のニッケルとコバルトを完全に逆抽出する
ためである。ここで、添加する塩酸と有機抽出剤の体積
比が小さすぎると、逆抽出が不十分となり、大きすぎる
と過剰の塩酸が必要とされ、経済性を損なうこととな
る。このため塩酸/有機抽出剤の体積比は0.06〜
0.1とする。用いる塩酸の濃度は逆抽出段の段数によ
り異なるが、逆抽出段を3段としたときには、逆抽出2
段で必要な塩酸量を全量添加しなければならない。この
場合、処理される有機抽出剤中のニッケルとコバルトと
の濃度により異なるが、ニッケルとコバルトとの有機抽
出剤中の濃度範囲が15〜20g/lであれば、塩酸濃
度を320〜370g/lとすることで足りる。
The reason that hydrochloric acid is added after the second stage of the back extraction, that is, before the last stage of the organic extractant is to completely back extract nickel and cobalt in the organic extractant. Here, if the volume ratio of the hydrochloric acid and the organic extractant to be added is too small, the back extraction is insufficient, and if it is too large, excess hydrochloric acid is required, which impairs economic efficiency. For this reason, the volume ratio of hydrochloric acid / organic extractant is from 0.06 to
0.1. The concentration of hydrochloric acid to be used varies depending on the number of back extraction stages.
The required amount of hydrochloric acid must be added in all stages. In this case, although it depends on the concentration of nickel and cobalt in the organic extractant to be treated, if the concentration range of nickel and cobalt in the organic extractant is 15 to 20 g / l, the hydrochloric acid concentration is 320 to 370 g / l. It is sufficient to set it to 1.

【0014】[0014]

【実施例】以下実施例に基づき本発明をさらに説明す
る。
The present invention will be further described below with reference to examples.

【0015】 (実施例1) 図1のフロ−シ−トに示した3m3のミキサ−部と10
3のセトラ−部からなる6基のミキサ−セトラ−を用
いて構成された3つの抽出段、3つの逆抽出段からなる
抽出工程を用いて以下の条件で20日間の試験操業を行
った。
(Embodiment 1) A 3 m 3 mixer shown in the flowchart of FIG.
A test operation was performed for 20 days under the following conditions using an extraction process including three extraction stages and three back-extraction stages, each of which was configured using six mixer-settlers each having m 3 settler portions. .

【0016】 (抽出始液の組成) (単位 g/l) Ni Co Ca Mg NH3 Na SiO2 Zn 40〜50 11〜15 0.07〜0.1 0.03 0.1〜0.7 20〜25 0.05〜0.1 0.01 NO3 0.05〜0.1[0016] (Composition of extraction starting solution) (unit g / l) Ni Co Ca Mg NH 3 Na SiO 2 Zn 40~50 11~15 0.07~0.1 0.03 0.1~0.7 20~25 0.05~0.1 0.01 NO 3 0.05~ 0.1

【0017】 (有機抽出剤の組成) 抽出剤 VA 380g/l 希釈剤 ケロシン(Composition of Organic Extractant) Extractant VA 380 g / l Diluent Kerosene

【0018】 (抽出条件) 抽出段の有機抽出剤/水の体積比 2 抽出始液の給液量 110 l/min 有機抽出剤の給液量 220 l/min 抽出1段のpH 6.7〜7.0 抽出2段のpH 6.9〜7.3 用いたアンモニア水の条件 18〜19%(Extraction conditions) Volume ratio of organic extractant / water in extraction stage 2 Feed amount of starting liquid for extraction 110 l / min Feed amount of organic extractant 220 l / min pH of one stage of extraction 6.7- 7.0 pH of second extraction 6.9-7.3 Conditions of aqueous ammonia used 18-19%

【0019】 (逆抽出条件) 有機抽出剤の給液量 320 l/min 逆抽出1段の温水添加量 0,3,5,7 l/min 逆抽出2段の塩酸量 350g/l塩酸溶液を水相の比
重が1.3〜1.4となるように添加する。 温水温度 50〜55℃
(Back extraction conditions) Feed amount of organic extractant 320 l / min Hot water addition amount in one stage of back extraction 0,3,5,7 l / min Hydrochloric acid amount in two stages of back extraction 350 g / l hydrochloric acid solution It is added so that the specific gravity of the aqueous phase becomes 1.3 to 1.4. Hot water temperature 50-55 ° C

【0020】この試験操業は温水添加量の影響を求める
ために行ったものであり、用いた抽出始液と有機抽出剤
の総量はそれぞれ2807.7m3、7776.0m3
あり、得られた逆抽出液の量は833.4m3であり、
消費されたアンモニア水の総量を表1に示した。
[0020] The test operation is intended performed to determine the influence of the hot water amount, respectively the total amount of extraction starting solution with an organic extraction agent used 2807.7M 3, a 7776.0M 3, resulting The amount of the back extract is 833.4 m 3 ,
Table 1 shows the total amount of consumed ammonia water.

【0021】[0021]

【表1】 [Table 1]

【0022】得られた結果として、表2に有機抽出剤中
の塩素イオン濃度とNi+Co濃度、抽出終液中のNi
+Co濃度と、35%塩酸のロス量と、逆抽出2段にお
ける塩酸/有機抽出剤の体積比と、逆抽出1段での温水
/有機抽出剤の体積比とを示した。なお、35%塩酸の
ロス量とは、処理抽出始液中のNi+Co量に対する3
5%塩酸のロス量であり、以下の式で求めた。
As a result, Table 2 shows the chloride ion concentration and the Ni + Co concentration in the organic extractant, and the Ni and Co in the final extract.
The + Co concentration, the loss amount of 35% hydrochloric acid, the volume ratio of hydrochloric acid / organic extractant in two stages of back extraction, and the volume ratio of warm water / organic extractant in one stage of back extraction are shown. Note that the loss amount of 35% hydrochloric acid is 3% of the amount of Ni + Co in the starting liquid for treatment extraction.
It is the loss amount of 5% hydrochloric acid, which was obtained by the following equation.

【0023】 (抽出終液中Cl量−抽出始液中Cl量)/(抽出始液中Ni+Co量) ÷35%×36.5÷35.5(Cl amount in final extraction liquid−Cl amount in initial extraction liquid) / (Ni + Co amount in initial extraction liquid) {35% × 36.5} 35.5

【0024】[0024]

【表2】 ┌───┬────────┬──────┬────┬────┬────┐ │温水量│有機抽出剤(g/l) 抽出終液(g/l)│35%塩酸 │塩酸/ │温水/ │ │ ├───┬────┤ │ Loss │有機抽出│有機抽出│ │l/min │ Cl │Ni+Co │ Ni+Co │(Kg/t) │剤 │剤 │ ├───┼───┼────┼──────┼────┼────┼────┤ │0 │ 1.00 │0.010 │ 0.050 │ 600 │0.094 │ 0 │ ├───┼───┼────┼──────┼────┼────┼────┤ │3 │ 0.60 │0.020 │ 0.040 │ 400 │0.091 │ 0.010 │ ├───┼───┼────┼──────┼────┼────┼────┤ │5 │ 0.50 │0.033 │ 0.044 │ 230 │0.096 │ 0.016 │ ├───┼───┼────┼──────┼────┼────┼────┤ │7 │ 0.30 │0.126 │ 0.055 │ 180 │0.092 │ 0.022 │ └───┴───┴────┴──────┴────┴────┴────┘[Table 2] │ │Hot water volume│Organic extractant (g / l) Final solution of extraction (g / l) │35% hydrochloric acid │ hydrochloric acid / │ warm water / │ │ ├───┬────┤ │ Loss │ organic extraction │ organic extraction │ l / min │ Cl │Ni + Co │ Ni + Co │ (Kg / t) │ Agent │ Agent │ ├───┼───┼────┼──────┼────┼────┼─── ─┤ │0 │ 1.00 │0.010 │ 0.050 │ 600 │0.094 │ 0 │ ├───┼───┼────┼──────┼────┼────┼── ──┤ │3 │ 0.60 │0.020 │ 0.040 │ 400 │0.091 │ 0.010 │ ├───┼───┼────┼──────┼────┼──── ┼────┤ │5 │ 0.50 │0.033 │ 0.044 │ 230 │0.096 │ 0.016 │ ───┼────┤ │7 │ 0.30 │0.126 │ 0.055 │ 180 │0.092 │ 0.022 │ └───┴───┴────┴──────┴────┴────┴────┘

【0025】表1より逆抽出2段における塩酸/有機抽
出剤の比を0.096とし、逆抽出1段での温水/有機
抽出剤の比を0.016とすることにより塩酸ロスを大
幅に低減できることがわかる。
According to Table 1, the ratio of hydrochloric acid / organic extractant in the second stage of back extraction is set to 0.096, and the ratio of hot water / organic extractant in the first stage of back extraction is set to 0.016, so that the hydrochloric acid loss is greatly reduced. It can be seen that it can be reduced.

【0026】 (実施例2) 逆抽出1段すなわち有機抽出剤に関し逆抽出の最終段の
温水添加量を5l/minとし、逆抽出2段に添加する
塩酸濃度を変化させた以外は実施例1と同じようにして
20日間の試験操業を行った。消費されたアンモニア水
の量を表3に示し、表4に結果として得られた逆抽出後
の有機抽出剤中の塩素イオン濃度とNi+Co濃度、抽
出終液中のNi+Co濃度と、35%塩酸のロス量と、
逆抽出2段における塩酸/有機抽出剤の体積比と、逆抽
出1段での温水/有機抽出剤の体積比とを示した。
Example 2 Example 1 was repeated except that the amount of hot water added in the first stage of back extraction, that is, the final stage of back extraction with respect to the organic extractant, was 5 l / min, and the concentration of hydrochloric acid added in the second stage of back extraction was changed. A 20-day test run was performed in the same manner as described above. The amount of ammonia water consumed is shown in Table 3, and in Table 4, the resulting chloride ion concentration and Ni + Co concentration in the organic extractant after back-extraction, the Ni + Co concentration in the final extract, and the 35% hydrochloric acid Loss amount,
The volume ratio of hydrochloric acid / organic extractant in two stages of back extraction and the volume ratio of hot water / organic extractant in one stage of back extraction are shown.

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 ┌───┬────────┬────┬────┬─────┬─────┐ │塩 酸│有機抽出剤(g/l) │抽出終液│35%塩酸 │塩 酸 │温 水 │ │濃 度├───┬────┤ (g/l) │ Loss │ / │ / │ │ g/l │ Cl │ Ni+Co │Ni+Co │(Kg/t) │有機抽出剤│有機抽出剤│ ├───┼───┼────┼────┼────┼─────┼─────┤ │320 │ 0.20│ 1.15 │0.090 │ 255 │ 0.094 │ 0.016 │ ├───┼───┼────┼────┼────┼─────┼─────┤ │350 │ 0.50│ 0.033 │0.052 │ 230 │ 0.096 │ 0.016 │ ├───┼───┼────┼────┼────┼─────┼─────┤ │370 │ 0.55│ 0.023 │0.050 │ 270 │ 0.095 │ 0.016 │ └───┴───┴────┴────┴────┴─────┴─────┘[Table 4] ┌───┬────────┬────┬────┬─────┬─────┐ │ hydrochloric acid │ organic extractant (g / l) │Extraction solution│35% hydrochloric acid │hydrochloric acid │hot water │ │concentration├───┬────┤ (g / l) │Loss │ / │ / │ │ g / l │ Cl │ Ni + Co │Ni + Co │ (Kg / t) │Organic extractant│Organic extractant│ ├───┼───┼────┼────┼────┼───── ┼─────┤ │320 │ 0.20│ 1.15 │0.090 │ 255 │ 0.094 │ 0.016 │ ├───┼───┼────┼────┼────┼ ─────┼─────┤ │350 │ 0.50│ 0.033 │0.052 │ 230 │ 0.096 │ 0.016 │ ├───┼───┼────┼────┼ │ │370 │ 0.55│ 0.023 │0.050 │ 270 │ 0.095 │ 0.016 │ └───┴───┴────┴ ────┴────┴─────┴─ ───┘

【0029】第4表より用いる塩酸濃度が320〜37
0g/lであれば、本発明の目的の達成が可能となるこ
とがわかる。しかし、塩酸濃度をこれ以上低下させるこ
とは、抽出終液中のNi+Co濃度が上昇し、Ni+C
oのロスが増加するため好ましくない。
According to Table 4, the concentration of hydrochloric acid used is from 320 to 37.
It can be seen that the object of the present invention can be achieved if 0 g / l. However, if the concentration of hydrochloric acid is further reduced, the concentration of Ni + Co in the final solution for extraction increases, and the concentration of Ni + C
This is not preferable because the loss of o increases.

【0030】 (実施例3) 添加する温水を5l/minとし、塩酸濃度を350g
/lとした以外は実施例1と同様にし、30日間の本発
明の試験操業を行い、ついで、温水の代わりに370g
/lの塩酸溶液を25〜30l/minの割合で逆抽出
1段に添加し、逆抽出2段の水相の比重が1.3〜1.
4となるように3〜5g/lの塩酸溶液を逆抽出2段に
添加する、従来方法に従い30日間の試験操業を行っ
た。得られた逆抽出後の有機抽出剤中の塩素イオン濃度
と、抽出終液中のNi+Co濃度と、塩酸原単位と、ア
ンモニア水の原単位とを比較した。その結果を表5に示
した。
(Example 3) The hot water to be added was 5 l / min, and the hydrochloric acid concentration was 350 g.
/ L, and the test operation of the present invention was carried out for 30 days, except that the temperature was changed to 370 g / l.
/ L hydrochloric acid solution at a rate of 25 to 30 l / min is added to one stage of back extraction, and the specific gravity of the aqueous phase of two stages of back extraction is 1.3 to 1.
A test operation for 30 days was carried out according to the conventional method, in which a 3-5 g / l hydrochloric acid solution was added to two back-extraction steps so as to obtain a pH of 4. The chlorine ion concentration in the obtained organic extractant after back-extraction, the Ni + Co concentration in the final extract, the basic unit of hydrochloric acid, and the basic unit of aqueous ammonia were compared. Table 5 shows the results.

【0031】[0031]

【表5】 ┌──────────────────────┬──────┬────┐ │ │本発明の方法│従来方法│ ├──────────────────────┼──────┼────┤ │逆抽出後の有機抽出剤中の塩素イオン濃度g/l│ 0.03 │1.0 │ ├──────────────────────┼──────┼────┤ │抽出終液中のNi+Co濃度g/l │ 0.05 │0.05│ ├──────────────────────┼──────┼────┤ │塩酸原単位 Kg/t │ 4150 │4400│ ├──────────────────────┼──────┼────┤ │アンモニア水の原単位 Kg/t │ 170 │ 280│ └──────────────────────┴──────┴────┘[Table 5] ┌──────────────────────┬──────┬────┐ │ │ method of the present invention │ conventional method │ │ │Concentration of chloride ion in organic extractant after back extraction g / L│ 0.03 │1.0 │ ├──────────────────────┼──────┼────┤ │ extraction end Ni + Co concentration in the liquid g / l │ 0.05 │ 0.05 │ ├──────────────────────┼──────┼── │ │HCl basic unit Kg / t │ 4150 │4400│ ├──────────────────────┼──────┼──── │ │ Basic unit of ammonia water Kg / t │ 170 │ 280 │ └─────────────────── ──┴──────┴────┘

【0032】なお、原単位は以下のようにして求めた。The basic unit was determined as follows.

【0033】原単位=使用量/処理したNi+Co量Basic unit = amount used / amount of Ni + Co processed

【0034】第5表より本発明の方法により塩酸原単位
とアンモニア水原単位とが改善されていることが明らか
である。
From Table 5, it is clear that the hydrochloric acid basic unit and the ammonia water basic unit are improved by the method of the present invention.

【0035】[0035]

【発明の効果】本発明の方法によれば、溶媒抽出で使用
する塩酸とアンモニア水とが削減できる。このため、本
発明の方法はNiやCoの製造コストの低下に有効であ
り、実益が大きい。
According to the method of the present invention, hydrochloric acid and ammonia water used in solvent extraction can be reduced. For this reason, the method of the present invention is effective in lowering the production cost of Ni or Co, and has a great benefit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の抽出、逆抽出工程のフロ−シ−トで
ある。
FIG. 1 is a flowchart of the extraction and back-extraction steps of the present invention.

【図2】 従来の抽出、逆抽出工程のフロ−シ−トであ
る。
FIG. 2 is a flowchart of a conventional extraction and back-extraction process.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−76027(JP,A) 特公 昭52−42428(JP,B2) 特公 昭63−50411(JP,B2) 特公 平2−27420(JP,B2) 特公 昭57−30894(JP,B2) 特公 平1−60538(JP,B2) 特公 昭57−9613(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C22B 23/00 - 23/04 ──────────────────────────────────────────────────の Continuation of front page (56) References JP-A-55-76027 (JP, A) JP-B-52-42828 (JP, B2) JP-B-63-50411 (JP, B2) JP-B 2- 27420 (JP, B2) JP-B 57-30894 (JP, B2) JP-B 1-60538 (JP, B2) JP-B 57-9613 (JP, B2) (58) Fields investigated (Int. 6 , DB name) C22B 23/00-23/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケルとコバルトを回収するための
機抽出剤用い、少なくとも3段の抽出工程と、少なく
とも3段の逆抽出工程からなる向流抽出、逆抽出工程に
よりニッケルとコバルトとを含む硫酸溶液よりニッケ
ルとコバルトとを含む塩酸溶液を得る方法において、逆
抽出1段において有機抽出剤に水を通し、該水を逆抽出
2段に排出し、逆抽出2段以後でニッケルとコバルトの
逆抽出に必要な所定量の塩酸を添加することを特徴とす
る溶媒抽出法。
[Claim 1] with organic <br/> machine extractant to recover nickel and cobalt, and the extraction step at least three stages, comprising countercurrent extraction from the inverse extraction step of at least three stages, nickel by back extraction step In a method for obtaining a hydrochloric acid solution containing nickel and cobalt from a sulfuric acid solution containing sulfur and cobalt , water is passed through an organic extractant in one stage of back extraction, and the water is back extracted.
It is discharged into two stages, and nickel and cobalt
A solvent extraction method comprising adding a predetermined amount of hydrochloric acid necessary for back extraction .
【請求項2】 逆抽出1段で水相/有機抽出剤の体積比
0.016〜0.027として50〜55℃の温水を
添加し、逆抽出2段で320〜370g/lの塩酸を塩
酸/有機抽出剤の体積比を0.06〜0.1の割合で添
加することを特徴とする請求項1記載の溶媒抽出方法。
2. Volume ratio of aqueous phase / organic extractant in one stage of back extraction
Is adjusted to 0.016 to 0.027, hot water at 50 to 55 ° C. is added, and in two back extraction steps, 320 to 370 g / l of hydrochloric acid is added at a volume ratio of hydrochloric acid / organic extractant of 0.06 to 0.1. The solvent extraction method according to claim 1, wherein the solvent is added.
JP8925691A 1991-03-29 1991-03-29 Solvent extraction method Expired - Lifetime JP2871147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8925691A JP2871147B2 (en) 1991-03-29 1991-03-29 Solvent extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8925691A JP2871147B2 (en) 1991-03-29 1991-03-29 Solvent extraction method

Publications (2)

Publication Number Publication Date
JPH04304330A JPH04304330A (en) 1992-10-27
JP2871147B2 true JP2871147B2 (en) 1999-03-17

Family

ID=13965685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8925691A Expired - Lifetime JP2871147B2 (en) 1991-03-29 1991-03-29 Solvent extraction method

Country Status (1)

Country Link
JP (1) JP2871147B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217449B2 (en) * 2014-02-25 2017-10-25 住友金属鉱山株式会社 Method for removing impurities in organic solvents
JP6340980B2 (en) * 2014-07-29 2018-06-13 住友金属鉱山株式会社 Purification method of cobalt chloride solution
CN105256141B (en) * 2015-10-26 2017-12-19 广西银亿再生资源有限公司 A kind of electric plating sludge resource processing and the method for comprehensive reutilization
CN106756013A (en) * 2016-11-25 2017-05-31 桂林理工大学 A kind of method of the direct nickel cobalt saponification of P204, P507

Also Published As

Publication number Publication date
JPH04304330A (en) 1992-10-27

Similar Documents

Publication Publication Date Title
US4041126A (en) Separation and selective recovery of platinum and palladium by solvent extraction
JPH0776391B2 (en) Zinc recovery method
WO2015110702A1 (en) Method for recovery of copper and zinc
JP2871147B2 (en) Solvent extraction method
JP3440752B2 (en) Purification method of nickel sulfate containing cobalt
Kyuchoukov et al. A novel method for recovery of copper from hydrochloric acid solutions
WO2016209178A1 (en) Recovering scandium and derivatives thereof from a leach solution loaded with metals obtained as a result of leaching lateritic ores comprising nickel, cobalt and scandium, and secondary sources comprising scandium
US9689056B2 (en) Solvent extraction process
JP6929240B2 (en) Manufacturing method of cobalt sulfate for batteries
AU2009203188C1 (en) Method for scrubbing an amine type extractant after stripping
US4314976A (en) Purification of nickel sulfate
JP4259165B2 (en) Purification method of aqueous nickel sulfate solution containing cobalt and calcium
AU2008224344B2 (en) Method for scrubbing amine-type extractant
JP2000017347A (en) Production of high purity cobalt solution
JP3480216B2 (en) Separation method of platinum and ruthenium
JP3090142B2 (en) Method for removing lead ions from nickel chloride solution
CA1091037A (en) Liquid ion exchange process for the recovery of copper and nickel
JPH0160538B2 (en)
TW200417626A (en) Treatment method of waste tin lead stripping solution
CA2342513C (en) Use of cupric chloride etchant solution in a solvent extraction electrowinning copper refinery
JP2003089827A (en) Method for refining silver
CA2265068C (en) Method for removal of lead ion
US5221525A (en) Solvent extraction of gallium from acidic solutions containing phosphorus
JPS604269B2 (en) How to collect etching solution
JP2021059758A (en) Method of removing droplet of aqueous phase included in organic phase, and production method for cobalt chloride solution