JP4259165B2 - Purification method of aqueous nickel sulfate solution containing cobalt and calcium - Google Patents

Purification method of aqueous nickel sulfate solution containing cobalt and calcium Download PDF

Info

Publication number
JP4259165B2
JP4259165B2 JP2003103593A JP2003103593A JP4259165B2 JP 4259165 B2 JP4259165 B2 JP 4259165B2 JP 2003103593 A JP2003103593 A JP 2003103593A JP 2003103593 A JP2003103593 A JP 2003103593A JP 4259165 B2 JP4259165 B2 JP 4259165B2
Authority
JP
Japan
Prior art keywords
nickel
cobalt
calcium
concentration
organic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003103593A
Other languages
Japanese (ja)
Other versions
JP2004307270A (en
Inventor
勲 西川
和幸 高石
稔 柿本
伸正 家守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003103593A priority Critical patent/JP4259165B2/en
Priority to AU2004201049A priority patent/AU2004201049B2/en
Priority to GB0406885A priority patent/GB2400368B/en
Priority to CA2463268A priority patent/CA2463268C/en
Publication of JP2004307270A publication Critical patent/JP2004307270A/en
Application granted granted Critical
Publication of JP4259165B2 publication Critical patent/JP4259165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0446Juxtaposition of mixers-settlers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、コバルトとカルシウムを含む硫酸ニッケル水溶液の精製方法に関し、さらに詳しくは、コバルトとカルシウムを含み、かつコバルト濃度が高い硫酸ニッケル水溶液から、交換反応のコバルト抽出効率を向上させることによりコバルトの処理量を増加させるとともに、コバルトとカルシウム濃度が低い精製硫酸ニッケル水溶液を得ることができる工業的に高効率な硫酸ニッケル水溶液の精製方法に関する。
【0002】
【従来の技術】
コバルトとカルシウムを含む硫酸ニッケル水溶液の精製方法は、種々の不純物を含む粗硫酸ニッケル水溶液から、高純度の精製硫酸ニッケル水溶液を工業的に高効率で生産するものである。高純度の精製硫酸ニッケル水溶液からは、必要に応じて晶析法等の濃縮操作によって硫酸ニッケル、あるいは焙焼して酸化ニッケル、あるいは炭酸ナトリウムで中和して炭酸ニッケル等の高純度のニッケル塩類が得られる。
硫酸ニッケル、酸化ニッケル、炭酸ニッケル等のニッケル塩類の工業的用途として、例えば一般電解めっき材料のほか、コンピューターのハードディスク用の無電解めっき材料、触媒材料、電池用材料等に使用されている。特に、硫酸ニッケルは、めっき材料、二次電池用材料等に多用されている。一方、硫酸ニッケル等のニッケル塩類の原料としては、比較的コバルト濃度の低い粗硫酸ニッケルのほかに、ニッケルマットやニッケルとコバルトの複合水酸化物あるいは複合硫化物といったコバルトが数%程度含まれている原料を処理して得られる粗硫酸ニッケル水溶液を用いることが少なくない。そのため、上記粗硫酸ニッケル水溶液等から精製硫酸ニッケル水溶液を製造するプロセスでは、ニッケルとコバルトの分離工程を有するのが一般的である。コバルトはニッケルと比べて稀有で高価な金属であるので、ここで分離されたコバルトは、精製されて電解コバルト、塩化コバルト、炭酸コバルト等として製品化され、前記プロセスの経済性向上に寄与している。また、ニッケル塩類の用途のなかには、コバルトのほかに、不純物として上記粗硫酸ニッケル水溶液に含まれるアンモニア、ナトリウム、鉄、亜鉛、銅、カルシウム、マグネシウムなどの含有を極力抑えなければならない場合が多い。
【0003】
従来、不純物を含む粗硫酸ニッケル水溶液の精製方法に、溶媒抽出法が用いられている。この溶媒抽出法は、(1)抽出剤として、例えば酸性ホスホン酸エステルや酸性ホスフィン酸エステルなどの有機リン酸系の酸性有機抽出剤を使用し、有機抽出剤中に粗硫酸ニッケル水溶液中の不純物を抽出分離して精製する方法、また(2)有機抽出剤中にニッケルを抽出し、ニッケルを含む有機相から硫酸による逆抽出により精製硫酸ニッケル水溶液を得る方法が行われていた。
しかしながら、いずれの方法においても、酸性有機抽出剤では、原料水溶液中の不純物又はニッケルを抽出するときに水素イオンを放出するために、中和剤とし水酸化ナトリウムやアンモニアの使用が不可欠であるという問題があった。
【0004】
例えば、粗硫酸ニッケル水溶液から酸性有機抽出剤で不純物を抽出する方法の場合には、抽出のpHを調節することにより通常ニッケルよりも低pH側で抽出されるコバルト、カルシウム、鉄、亜鉛、銅などを酸性有機抽出剤中に抽出することによって、これらの不純物を抽出剤中に分離除去し、精製硫酸ニッケル水溶液を得ることができる。しかし、その抽出反応を行う際に必要な中和剤中のナトリウム、又はアンモニウムイオンが、精製硫酸ニッケル水溶液中に混入し、汚染する問題がある。
また、酸性有機抽出剤でこれらの不純物を含む粗硫酸ニッケル溶液から、そのニッケルを酸性有機抽出剤中に抽出しようとすれば、ニッケルよりも低いpH側で抽出される不純物元素も同時に抽出剤中に抽出されてしまう。そこで、抽出剤中のニッケルを回収するために行われる硫酸を用いた逆抽出操作を行うのみでは、これらの不純物元素の全部を分離させることは困難である。
【0005】
この解決策として、コバルトその他の不純物を含む粗硫酸ニッケル水溶液を、あらかじめニッケルを抽出させた酸性有機抽出剤(以下、ニッケル保持酸性有機抽出剤と称する場合がある。)と接触させることにより、ニッケルより優先的に酸性有機抽出剤に抽出されるコバルトをはじめとした不純物とニッケル保持酸性有機抽出剤のニッケルを交換(置換)させて、精製硫酸ニッケル水溶液を製造し、同時にコバルトを濃縮した有機抽出剤を得るプロセスが提案されており、代表的な方法としては、以下のようなものが挙げられる。
【0006】
(1)ニッケルを含有するアルキルホスホン酸エステル又はアルキルホスフィン酸を抽出剤として使用し、不純ニッケル水溶液中のコバルト、カルシウム、マグネシウム、鉄等を抽出分離する(例えば、特許文献1参照)、
【0007】
(2)酸性有機抽出剤によりナトリウム、アンモニアを多く含む粗硫酸ニッケル溶液からニッケルを抽出してニッケル保持有機相を得る抽出工程と、該抽出工程で得られたニッケル保持有機相をニッケル含有洗浄液で洗浄する工程と、該洗浄工程で得られた洗浄後のニッケル保持有機相をコバルトを多く含む硫酸ニッケル水溶液と反応させ、該ニッケル保持有機相中のニッケルと前記粗硫酸ニッケル水溶液中のコバルトなどの不純物とを交換(置換)させる工程(交換工程)とよりなり、該置換により精製硫酸ニッケル溶液を得るとともにコバルトの濃縮した有機相を得ることを含む硫酸ニッケルの精製プロセスであり、さらに該交換工程で得られた不純物を含む抽出有機相を、希硫酸によりニッケルを選択的に逆抽出するニッケル選択逆抽出工程、 該ニッケル選択抽出工程で得られた有機相を塩酸によりコバルトを塩酸で逆抽出するコバルト回収工程、該コバルト回収工程で得られた有機相を洗浄後、硫酸を用いて他の不純物を硫酸中に逆抽出する不純物逆抽出工程を含み、該不純物逆抽出工程で得られた不純物を含まない有機相の一部を該抽出工程における酸性有機抽出剤として還流し、また残部をニッケル保持有機相の希釈に使用することよりなる(例えば、特許文献2参照)。
【0008】
これらの提案は、不純物を含む粗硫酸ニッケル水溶液から高純度の精製硫酸ニッケル水溶液を製造する方法及びコバルトの回収方法として貢献しているが、近年、従来にも増してコバルトをはじめとした不純物含有量の高い原料を使用した粗硫酸ニッケル水溶液から、高純度の精製硫酸ニッケル水溶液を製造するのと同時に高価なコバルトの回収効率を向上できる方法が望まれている。
この対応策として、粗硫酸ニッケル水溶液から精製硫酸ニッケル水溶液を得るとともに、コバルトを濃縮した有機溶媒を得ることができる上記プロセス(例えば、特許文献2参照)を適用することが期待される。上記プロセスでコバルト含有量の高い原料の処理量を増加することができれば、ニッケルとコバルトの分離工程として既存の硫酸ニッケル水溶液の精製プロセスの生産設備を積極的に活用して、コバルトの回収量を増加することができるので、工業的に高効率なプロセスとなる。
【0009】
コバルト含有量の高い原料を処理することによって、従来よりコバルト濃度が高い粗硫酸ニッケル水溶液が生成されるが、上記プロセスで、コバルトの処理量を増加させるためには、上記プロセスのニッケル保持有機相中のニッケルと粗硫酸ニッケル水溶液中のコバルトなどの不純物とを置換させる工程において、(1)ニッケル保持有機相の流量を増加させて、単位時間当たりに抽出するコバルト量を増加させる方法と、(2)交換反応後の有機相中のコバルト濃度を上昇させる方法とがある。前者の処理流量の増加は簡便な手段であるが、ニッケル保持有機相と粗硫酸ニッケル水溶液相の分離に必要な滞留時間を保持するためにミキサーセトラー等の溶媒抽出反応設備の設備容量を流量比例で増強しなければならないので多額の設備投資を伴ない、経済性を阻害する問題がある。
【0010】
また、後者の場合には、ニッケル保持有機相中の酸性有機抽出剤の濃度を上げ、さらにコバルト抽出効率を上昇することによって、交換後の有機相のコバルト濃度を上昇させることが有効である。前記交換反応では、酸性有機抽出剤としてリン酸あるいはホスホン酸系の抽出剤を使用した場合には、抽出剤2molに対しコバルトあるいはカルシウム1molが抽出できる。すなわち、これが交換反応で抽出されるコバルトあるいはカルシウムの最大量(以下、理論抽出量と称する。)である。例えば、2−エチルヘキシルホスホン酸モノ−2エチルヘキシルエステル抽出剤の場合、希釈剤を含む混合有機溶媒中の抽出剤の濃度20容量%のとき理論コバルト抽出量は有機溶媒中の濃度で18.3g/Lとなる。しかしながら、通常工業的に得られているコバルト抽出効率は、この理論抽出量の40%から60%の間と低い水準にある。
【0011】
この理由は、(1)抽出剤中にニッケルやコバルトイオンが結合した官能基の量が多くなると、水素イオンと結合している官能基が多い抽出剤と比較して抽出反応の駆動力が小さくなること、(2)抽出量を増加させるために反応のpHを上げるとニッケルが抽出される領域になり、交換反応後の有機相中のニッケル濃度が上昇しニッケルの交換反応での利用効率が悪化すること、(3)一般に有機相のコバルト濃度が上昇すると有機相の粘度が上昇し、有機相と水溶液相の分離性が悪化すること等から、コバルトの抽出を安定的に行うために、意図的にコバルト濃度の上昇を抑えて操業することによる。したがって、コバルトの処理量を増加するために交換反応後の有機相中のコバルト濃度を上昇させる方法にも、解決すべき問題がある。
【0012】
したがって、コバルトの処理量を増加するために、設備容量を増強せずに、粘度の上昇を抑制して交換反応後の有機相中のコバルト濃度を上げる、即ちコバルト抽出効率を向上できる方法の開発が望まれている。
【0013】
【特許文献1】
特開平10−30135号公報(第1頁、第2頁)
【特許文献2】
特開平10−310437号公報(第1〜5頁)
【0014】
【発明が解決しようとする課題】
本発明の目的は、上記の従来技術の問題点に鑑み、コバルトとカルシウムを含み、かつコバルト濃度が高い硫酸ニッケル水溶液から、交換反応でのコバルト抽出効率を向上させることによりコバルトの処理量を増加させるとともに、コバルトとカルシウム濃度が低い精製硫酸ニッケル水溶液を得ることができる工業的に高効率な硫酸ニッケル水溶液の精製方法を提供することにある。
【0015】
【課題を解決するための手段】
発明者らは、上記目的を達成するために、多段向流反応槽を用いて交換反応を利用した溶媒抽出法による硫酸ニッケル水溶液の精製方法について、鋭意研究を重ねた結果、コバルトとカルシウムを含む硫酸ニッケル水溶液相と特定濃度の抽出剤を含む混合有機溶媒相を、相互に接触させ、水相のpH、並びに有機相中のカルシウム濃度と、ニッケル、コバルト及びカルシウムの合計濃度を特定濃度に調整したところ、コバルト抽出効率を向上させることができることを見出し、本発明を完成した。
【0016】
すなわち、本発明の第1の発明によれば、多段向流反応槽を用いて交換反応を利用した溶媒抽出法によりコバルトとカルシウムを含む硫酸ニッケル水溶液を精製する際に、該硫酸ニッケル水溶液を水相として上記反応槽の最終段に供給し、一方、ニッケルを保持させた2−エチルヘキシルホスホン酸モノ−2エチルヘキシルエステル抽出剤を濃度20〜30容量%になるまで炭化水素で希釈した混合有機溶媒を有機相として上記反応槽の1段目に供給し、両相を接触させ交換反応を行わせ、該最終段の水相のpHを、硫酸を添加して、4.5〜5.5に調整するとともに、該最終段の有機相中のカルシウム濃度を0.4g/L以下に、同じくニッケル、コバルト及びカルシウムの合計濃度を25g/L以下にすることを特徴とする硫酸ニッケル水溶液の精製方法が提供される。
【0017】
また、本発明の第2の発明によれば、第1の発明において、前記混合有機溶媒中の前記抽出剤の濃度が、25〜30容量%であることを特徴とするコバルトとカルシウムを含む硫酸ニッケル水溶液の精製方法が提供される。
【0018】
また、本発明の第3の発明によれば、第1の発明において、前記最終段の有機相中のニッケル、コバルト及びカルシウムの合計濃度が、20g/L以下であることを特徴とするコバルトとカルシウムを含む硫酸ニッケル水溶液の精製方法が提供される。
【0019】
また、本発明の第4の発明によれば、第1の発明において、前記最終段の水相のpHが、4.8〜5.2であることを特徴とするコバルトとカルシウムを含む硫酸ニッケル水溶液の精製方法が提供される。
【0020】
【発明の実施の形態】
以下、本発明のコバルトとカルシウムを含む硫酸ニッケル水溶液の精製方法を詳細に説明する。
本発明に係るコバルトとカルシウムを含む硫酸ニッケル水溶液の精製方法は、コバルトとカルシウムを含み、かつコバルト濃度が高い硫酸ニッケル水溶液とニッケル保持酸性有機抽出剤との交換反応において、設備容量を増強せずに、交換反応のコバルト抽出効率を向上させることによりコバルトの処理量を増加できる工業的に高効率な硫酸ニッケル水溶液の精製方法であるので、ニッケル保持有機相を得る抽出工程、粗硫酸ニッケル水溶液中のコバルト等との交換工程、コバルトの濃縮された交換反応後の有機相からのニッケル逆抽出工程、コバルト回収工程、不純物逆抽出工程等を有する硫酸ニッケル精製プロセスの該交換工程の方法として好適である。
【0021】
本発明のコバルトとカルシウムを含む硫酸ニッケル水溶液の精製方法は、多段向流反応槽を用いて、該硫酸ニッケル水溶液を水相として最終段に供給し、ニッケルを保持させた2−エチルヘキシルホスホン酸モノ−2エチルヘキシルエステル抽出剤を所定濃度に炭化水素で希釈した混合有機溶媒を有機相として1段目に供給して、両相を接触させて交換反応を行い、該最終段の水相を所定のpHに、並びに該最終段の有機相中のカルシウム濃度とニッケル、コバルト及びカルシウムの合計濃度を所定濃度に調整するものである。
【0022】
(1)硫酸ニッケル水溶液
本発明に用いる硫酸ニッケル水溶液は、コバルトとカルシウムを含む硫酸ニッケル水溶液が用いられるが、これら中でも、特にコバルトが数%程度含まれている原料を処理して得られるコバルト濃度が高い粗硫酸ニッケル水溶液が好ましい。また、交換反応のpHを調整するため、所定のpHへ事前に調整することもできる。
【0023】
(2)ニッケル保持酸性有機抽出剤を含む混合有機溶媒
本発明において、交換反応に先立って、ニッケル保持酸性有機抽出剤を含む混合有機溶媒(以下、ニッケル保持混合溶媒と呼称することがある。)を調整する。本発明では、酸性有機抽出剤として、2−エチルヘキシルホスホン酸モノ−2エチルヘキシルエステルを使用し、これを所定濃度に炭化水素で希釈した混合有機溶媒を用いる。前記2−エチルヘキシルホスホン酸モノ−2エチルヘキシルエステル抽出剤は、コバルト、カルシウム、マグネシウムに対して高い抽出性を有する。例えば、硫酸溶液での分離係数は、コバルト/ニッケルで650、カルシウム/ニッケルで110、マグネシウム/ニッケルで50であり、亜鉛、鉄、銅はこれらよりさらに分離係数が高く優先的に抽出される。
【0024】
酸性有機抽出剤は、一般に粘度が高いので希釈剤で希釈されて用いられるが、本発明では、炭化水素で希釈する。本発明で用いる炭化水素は、特に限定されるものではなく、脂肪族又は芳香族炭化水素が用いられるが、この中で、特に芳香族炭化水素であるアルキルベンゼンが好ましい。本発明で用いる混合有機溶媒中の2−エチルヘキシルホスホン酸モノ−2エチルヘキシルエステル抽出剤の濃度は、20〜30容量%であり、好ましくは25〜30容量%である。すなわち、前記抽出剤の濃度が、20容量%未満では、混合有機溶媒あたりのコバルトの抽出量が低く、一方30容量%を超えると、有機溶媒の粘度が上昇し、有機溶媒相と水溶液相の分離性が悪化して操業が不安定になり生産性が低下する。本発明の上記の組成の混合有機溶媒は、硫酸ニッケル水溶液中のコバルト、カルシウムその他のニッケルより優先的に抽出される不純物と前記抽出剤にあらかじめ保持されたニッケルを、前記交換反応によって置換するのに好適なものである。
【0025】
また、前記混合有機溶媒として、交換反応後の不純物を含む有機相を、上記の硫酸ニッケル精製プロセス(例えば、特許文献2参照)のニッケル逆抽出工程、コバルト回収工程、不純物逆抽出工程等の一連の回収工程に送り、有機相中に含まれる残留ニッケル分の回収、コバルトを回収およびコバルト以外の不純物の除去を行うことによって清浄化を行い回収した有機相を再び用いるのが経済的である。
【0026】
前記混合有機溶媒へのニッケルの保持は、通常の溶媒抽出法で行うことができる。例えば、ニッケルの抽出には、多段向流溶媒抽出槽を用いて、1段目に前記酸性有機抽出剤を含む混合有機溶媒を供給し、最終段に原料の粗硫酸ニッケル溶液を供給して、pH5.0〜7.0で向流で抽出反応を行わせる。ここで、前記混合有機溶媒に保持されるニッケル濃度は、交換反応において抽出すべき不純物元素に対して、化学量論的に過剰な量となるようにするのが好ましい。すなわち、不純物量に対する交換すべきニッケル量が少ないと交換反応が完全に行われた場合にも精製硫酸ニッケル水溶液中に不純物が残存することになり、また化学量論的に当量では、交換反応が進行するにつれて有機相中のニッケル濃度が低下して交換反応が十分に進行しないからである。
【0027】
(3)精製の装置と方法
本発明において、交換反応を行う反応装置は、有機相と水相の接触と分離が効率的に行える各種の方式の多段向流反応槽が使用されるが、特に連続式の多段向流ミキサーセトラーが好ましい。多段向流ミキサーセトラーでは、1段目のミキサーセトラーにニッケル保持混合溶媒を供給し、最終段のミキサーセトラーに精製しようとする硫酸ニッケル水溶液を供給して、両者を向流的に接触させる。したがって、精製硫酸ニッケル水溶液は1段目のミキサーセトラーから、交換反応終了後のコバルトを含む有機相は最終段のミキサーセトラーから得られる。
【0028】
ここで、交換反応終了後の有機相のニッケル濃度は、1〜4.5g/Lが好ましい。すなわち、多段向流反応槽で交換反応が進行するに伴ない有機相のニッケル濃度は低下するが、ニッケル濃度が1g/L未満になると、ニッケルとコバルトの交換反応が十分行われず、精製硫酸ニッケル中のコバルト濃度が高くなり
、4.5g/Lを超えると精製硫酸ニッケル中へのニッケル回収率が低下するためである。有機相のニッケル濃度が1〜4.5g/Lのとき、ニッケルとコバルトの交換反応が円滑に進行している。
【0029】
本発明において、多段向流反応槽での最終段の水相のpHを4.5〜5.5に、好ましくは4.8〜5.2に調整する。すなわち、pHが上昇するに伴ない、有機相に抽出されるニッケルとコバルト濃度は上昇するが、pHが4.5未満では、交換反応後の有機相のコバルト濃度が低下し、コバルト抽出効率が低下する。一方pHが5.5を超えると有機相中のニッケル濃度が上昇するため、精製硫酸ニッケル水溶液へのニッケル回収率が低下するばかりでなく、抽出剤の官能基にニッケルが結合し、実質的にコバルトに結合する官能基の量が低減するので、コバルトの抽出効率の悪化を招くことになる。従来、交換工程では、適性量のニッケルを保持させた酸性有機抽出剤を用いた交換反応では水素イオンの放出がないので、中和剤を使用しなくとも、交換段に供給する硫酸ニッケル水溶液をあらかじめpH4〜6に調製しておけば、pHがその範囲に保たれるが、本発明では、さらに適正な範囲にpHを調整するのが特徴である。このpHの調整は、硫酸で行われることができる。
【0030】
表1は、粗硫酸ニッケル水溶液と、ニッケルを保持させた2−エチルヘキシルホスホン酸モノ−2エチルヘキシルエステル抽出剤を所定濃度になるまでアルキルベンゼンで希釈した混合有機溶媒を用いた場合に得られた多段向流反応槽での最終段のセトラー部の水相のpHと有機相のニッケル濃度の関係を示す。
【0031】
【表1】

Figure 0004259165
【0032】
表1より、pHが低くなるにつれ、有機相中のニッケル濃度が低下し、またpHが4.5〜5.5のとき、有機相中のニッケル濃度が前記した1〜4.5g/Lであり、ニッケルとコバルトの交換反応が円滑に行われていることが分かる。
【0033】
本発明では、多段向流反応槽での最終段の有機相中のカルシウム濃度とニッケル、コバルト及びカルシウムの合計濃度を所定濃度に調整することが重要である。これによって、有機相の粘度の上昇を防止し、ニッケルとコバルトの交換反応を妨げることなくコバルト抽出効率を従来操業に比べて安定的に向上させることができる。
【0034】
本発明の多段向流反応槽での最終段の有機相中のニッケル、コバルト及びカルシウムの合計濃度は、25g/L以下に調整され、好ましくは20g/L以下に調整される。すなわち、有機相中のニッケル、コバルト及びカルシウムの合計濃度が、25g/Lを超えると、混合有機溶媒の粘度が上昇し、有機相と水相の分離性が悪化して操業が不安定になり生産性が著しく低下する。
【0035】
図1は、上記表1と同様の場合に得られた有機相中のニッケル、コバルト及びカルシウムの合計濃度と有機相の粘度の関係を示す。図1より、有機相中のニッケル、コバルト及びカルシウムの合計濃度が25g/L以上になると有機相の粘度が著しく上昇することが分かる。また、有機相中のニッケル、コバルト及びカルシウムの合計濃度は、交換反応のpHに依存する。
【0036】
図2は、上記表1と同様の場合に得られた有機相の抽出剤濃度が高い場合について、交換反応のpHと有機相中のニッケル、コバルト及びカルシウムの合計濃度との関係を示す。図2より、pHが上がるとニッケル、コバルト及びカルシウムの合計濃度が上昇し、抽出量が増加していることが分かる。また、抽出剤濃度を上昇させることにより、同じpHにおいても有機相中に抽出されるニッケル、コバルト及びカルシウムの合計濃度が上昇していることが分かる。
【0037】
本発明の多段向流反応槽での最終段の有機相中のカルシウム濃度は、0.4g/L以下に調整される。すなわち、カルシウム濃度が0.4g/Lを超えると、コバルトの理論抽出量に対する抽出効率が従来操業並みの40〜60%に低下し、コバルトの抽出効率を向上することができない。
【0038】
図3は、上記表1と同様の場合に得られた有機相中のカルシウム濃度とコバルトの抽出効率(有機相中コバルト量/理論コバルト抽出量の比率)の関係を示す。図3の回帰式を表わす実線より、カルシウム濃度が0.4g/L以下のとき、60%以上のコバルトの抽出効率が得られることが分かる。最終段の有機相中のカルシウム濃度と粘度の関係は明確ではないが、有機相中のカルシウム濃度が高くなると交換反応の際に水相中で局部的なカルシウムの濃度上昇が起り、不溶性の硫酸カルシウムが析出し、有機相中に混入した場合に粘度の上昇をもたらすためとみられる。
【0039】
ここで、有機相中のニッケル、コバルト及びカルシウムの合計濃度は、所定の抽出剤濃度のもとで交換反応のpHに依存する。また、本発明においてカルシウムは、ほぼ全量有機相に分配されるので、カルシウム濃度の調整は粗硫酸ニッケル水溶液の流量を調整すること、あるいは上記した希釈用有機相量の調節によって行える。
【0040】
【実施例】
以下に、本発明の実施例によって本発明をさらに詳細に説明するが、本発明は、実施例によってなんら限定されるものではない。なお、実施例で用いた評価方法は、以下の通りである。
(1)金属の分析:原子吸光法で行った。
(2)有機相の粘度の測定:B型回転粘度計で測定した。
【0041】
(実施例1)
向流4段のミキサーセトラーを使用して交換工程を行った。ミキサーの有効容量は300ml、セトラーの有効容量は3,000mlのミキサーセトラーを使用した。1段目のミキサーセトラーに有機相を、4段目のミキサーセトラーに水相を供給した。
有機相として、2−エチルヘキシルホスホン酸モノ−2エチルヘキシルエステル(商品名PC−88A、大八化学工業製)をアルキルベンゼン(商品名クリーンソルG、日本石油製)で濃度25容量%に希釈した後、ニッケルを25g/Lに保持させて調製した混合有機溶媒を用いた。さらに、前記有機相には、逆抽出工程でコバルトとカルシウムを分離して得た希釈用有機相を適宜添加した。また、水相として、ニッケル50〜60g/L、コバルト30〜40g/L、カルシウム0.6g/Lの組成の粗硫酸ニッケル水溶液を用い、そのpHを4.5〜5.0に調整した。
【0042】
上記のように調製した有機相と水相を、有機相流量は90ml/分で、水相流量は30〜40ml/分とすることによって、カルシウムの負荷量を調整して供給した。また、硫酸の添加によって4段目ミキサーセトラーのセトラー部の水相pHを4.8〜5.2に微調整した。このようにして、4段目ミキサーセトラーの有機相のカルシウム濃度を0.40g/L以下、並びにニッケル、コバルト及びカルシウムの合計濃度を20g/L以下に調節し、反応温度を40〜45℃に維持して、8時間以上の連続運転を実施した。交換反応後の水相と有機相を適宜サンプリングして、ニッケル、コバルト及びカルシウム濃度を分析した。
【0043】
表2に、1段目のミキサーセトラーから得られた水相すなわち精製硫酸ニッケル水溶液及び4段目のミキサーセトラーから得られた交換反応後有機相のニッケル、コバルト、カルシウムの濃度、並びに該有機相のニッケル、コバルト及びカルシウムの合計濃度及び該有機相へのコバルト抽出効率を示す。
【0044】
【表2】
Figure 0004259165
【0045】
表2より、4段目ミキサーセトラーのセトラー部水相pHを4.8〜5.2に、4段目ミキサーセトラーから得られた有機相のカルシウム濃度を0.40g/L以下、並びにニッケル、コバルト及びカルシウムの合計濃度を20g/L以下に調節して操作したとき、有機相へのコバルト抽出効率60%以上が得られ、また水相側でコバルトの大部分が抽出され、コバルト濃度10mg/L以下、カルシウム濃度20mg/L以下の極めて不純物の少ない精製硫酸ニッケル水溶液が安定して得られることが分かる。
【0046】
【発明の効果】
以上説明したように、本発明のコバルトとカルシウムを含む硫酸ニッケル水溶液の精製方法は、コバルトとカルシウムを含み、かつコバルト濃度が高い硫酸ニッケル水溶液から、交換反応でのコバルト抽出効率を向上させることによりコバルトの処理量を増加するとともに、コバルトとカルシウム濃度が低い精製硫酸ニッケル水溶液を得ることができる工業的に高効率な硫酸ニッケル水溶液の精製方法であり、その工業的価値は極めて大きい。
【図面の簡単な説明】
【図1】有機相中のニッケル、コバルト及びカルシウムの合計濃度と有機相の粘度の関係を表わす図である。
【図2】交換反応のpHと有機相中のニッケル、コバルト及びカルシウムの合計濃度の関係を表わす図である。
【図3】有機相中のカルシウム濃度とコバルト抽出効率(有機相中コバルト量/理論コバルト抽出量の比率)の関係を表わす図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying a nickel sulfate aqueous solution containing cobalt and calcium, and more specifically, by improving the cobalt extraction efficiency of the exchange reaction from a nickel sulfate aqueous solution containing cobalt and calcium and having a high cobalt concentration. The present invention relates to an industrially efficient nickel sulfate aqueous solution purification method capable of increasing the amount of treatment and obtaining a purified nickel sulfate aqueous solution having a low cobalt and calcium concentration.
[0002]
[Prior art]
The method for purifying an aqueous nickel sulfate solution containing cobalt and calcium is to industrially produce a highly purified purified nickel sulfate aqueous solution with high efficiency from a crude nickel sulfate aqueous solution containing various impurities. From high-purity purified nickel sulfate aqueous solution, if necessary, high-purity nickel salts such as nickel sulfate by concentration operation such as crystallization, or roasted and neutralized with nickel oxide or sodium carbonate. Is obtained.
As industrial uses of nickel salts such as nickel sulfate, nickel oxide and nickel carbonate, they are used, for example, as electroless plating materials for computer hard disks, catalyst materials, battery materials, etc. in addition to general electrolytic plating materials. In particular, nickel sulfate is frequently used for plating materials, secondary battery materials, and the like. On the other hand, the raw materials for nickel salts such as nickel sulfate contain about several percent of cobalt such as nickel matte, nickel-cobalt composite hydroxide or composite sulfide, in addition to crude nickel sulfate with relatively low cobalt concentration. In many cases, a crude nickel sulfate aqueous solution obtained by treating raw materials is used. Therefore, the process for producing a purified nickel sulfate aqueous solution from the above-mentioned crude nickel sulfate aqueous solution or the like generally has a nickel and cobalt separation step. Since cobalt is a rare and expensive metal compared to nickel, the separated cobalt is refined and commercialized as electrolytic cobalt, cobalt chloride, cobalt carbonate, etc., and contributes to improving the economics of the process. Yes. In addition, among the uses of nickel salts, in addition to cobalt, it is often necessary to suppress as much as possible the contents of ammonia, sodium, iron, zinc, copper, calcium, magnesium, etc. contained in the crude nickel sulfate aqueous solution as impurities.
[0003]
Conventionally, a solvent extraction method is used as a method for purifying a crude nickel sulfate aqueous solution containing impurities. In this solvent extraction method, (1) an organic phosphoric acid-based organic organic extracting agent such as acidic phosphonic acid ester or acidic phosphinic acid ester is used as the extracting agent, and impurities in the crude nickel sulfate aqueous solution are contained in the organic extracting agent. And (2) a method of extracting nickel in an organic extractant and obtaining a purified aqueous solution of nickel sulfate by back extraction with sulfuric acid from an organic phase containing nickel.
However, in any method, in the case of acidic organic extractant, it is indispensable to use sodium hydroxide or ammonia as a neutralizing agent in order to release hydrogen ions when extracting impurities or nickel in the raw material aqueous solution. There was a problem.
[0004]
For example, in the case of a method of extracting impurities from an aqueous solution of crude nickel sulfate with an acidic organic extractant, cobalt, calcium, iron, zinc, copper, which are usually extracted at a lower pH side than nickel by adjusting the pH of extraction. These impurities are separated and removed in the extractant by extracting them into an acidic organic extractant, and a purified nickel sulfate aqueous solution can be obtained. However, there is a problem that sodium or ammonium ions in the neutralizing agent necessary for the extraction reaction are mixed in the purified nickel sulfate aqueous solution and contaminated.
In addition, if an attempt is made to extract nickel from a crude nickel sulfate solution containing these impurities with an acidic organic extractant into the acidic organic extractant, impurity elements extracted at a lower pH than nickel are also present in the extractant. Will be extracted. Therefore, it is difficult to separate all of these impurity elements only by performing a back extraction operation using sulfuric acid performed to recover nickel in the extractant.
[0005]
As a solution to this problem, a nickel nickel sulfate aqueous solution containing cobalt and other impurities is brought into contact with an acidic organic extractant from which nickel has been extracted in advance (hereinafter sometimes referred to as a nickel-retaining acidic organic extractant). Impurities such as cobalt extracted to the acidic organic extractant more preferentially and nickel in the nickel-retained acidic organic extractant are exchanged (substituted) to produce a purified nickel sulfate aqueous solution, and at the same time, organic extraction with concentrated cobalt A process for obtaining an agent has been proposed, and typical methods include the following.
[0006]
(1) Extracting and separating cobalt, calcium, magnesium, iron, etc. in an impure nickel aqueous solution by using an alkylphosphonic acid ester or alkylphosphinic acid containing nickel as an extractant (see, for example, Patent Document 1),
[0007]
(2) An extraction step of extracting nickel from a crude nickel sulfate solution rich in sodium and ammonia with an acidic organic extractant to obtain a nickel-retained organic phase, and the nickel-retained organic phase obtained in the extraction step with a nickel-containing cleaning solution A step of washing, and reacting the washed nickel-retained organic phase obtained in the washing step with a nickel sulfate aqueous solution containing a large amount of cobalt, and the nickel in the nickel-retained organic phase and cobalt in the crude nickel sulfate aqueous solution, etc. And a step of exchanging (substituting) impurities with (a step of exchanging), which is a nickel sulfate purification process including obtaining a purified nickel sulfate solution and obtaining a cobalt-concentrated organic phase by the substitution. Selective extraction of nickel by selectively back-extracting nickel with dilute sulfuric acid from the extracted organic phase containing impurities. Step, a cobalt recovery step of back-extracting cobalt with hydrochloric acid from the organic phase obtained in the selective nickel extraction step, washing the organic phase obtained in the cobalt recovery step, and then sulfuric acid to remove other impurities An impurity back-extraction step for back-extraction, a part of the organic phase free of impurities obtained in the impurity back-extraction step is refluxed as an acidic organic extractant in the extraction step, and the remainder is a nickel-retaining organic phase (For example, refer patent document 2).
[0008]
Although these proposals have contributed as a method for producing a purified nickel sulfate aqueous solution of high purity from a crude nickel sulfate aqueous solution containing impurities and a method for recovering cobalt, in recent years, impurities such as cobalt have been added. There is a demand for a method capable of improving the recovery efficiency of expensive cobalt at the same time as producing a high-purity purified nickel sulfate aqueous solution from a crude nickel sulfate aqueous solution using a high amount of raw material.
As a countermeasure, it is expected to apply the above-described process (see, for example, Patent Document 2) that can obtain a purified nickel sulfate aqueous solution from a crude nickel sulfate aqueous solution and an cobalt-concentrated organic solvent. If the throughput of raw materials with high cobalt content can be increased by the above process, the production capacity of the existing nickel sulfate aqueous solution refining process will be actively utilized as the nickel and cobalt separation process to reduce the amount of cobalt recovered. Since it can increase, it becomes an industrially highly efficient process.
[0009]
By treating a raw material having a high cobalt content, a crude nickel sulfate aqueous solution having a higher cobalt concentration than before is produced. In order to increase the amount of cobalt treated in the above process, the nickel-retaining organic phase of the above process is used. In the step of substituting nickel in the solution and impurities such as cobalt in the crude nickel sulfate aqueous solution, (1) a method of increasing the amount of cobalt extracted per unit time by increasing the flow rate of the nickel-retaining organic phase; 2) There is a method of increasing the cobalt concentration in the organic phase after the exchange reaction. Increasing the former process flow rate is a simple means, but in order to maintain the residence time required for the separation of the nickel-retaining organic phase and the crude nickel sulfate aqueous phase, the capacity of the solvent extraction reaction facility such as a mixer settler is proportional to the flow rate. Therefore, there is a problem of hindering economic efficiency with a large capital investment.
[0010]
In the latter case, it is effective to increase the cobalt concentration of the organic phase after replacement by increasing the concentration of the acidic organic extractant in the nickel-retaining organic phase and further increasing the cobalt extraction efficiency. In the exchange reaction, when a phosphoric acid or phosphonic acid type extractant is used as the acidic organic extractant, 1 mol of cobalt or calcium can be extracted with respect to 2 mol of the extractant. That is, this is the maximum amount of cobalt or calcium extracted by the exchange reaction (hereinafter referred to as the theoretical extraction amount). For example, in the case of 2-ethylhexylphosphonic acid mono-2 ethylhexyl ester extractant, when the concentration of the extractant in the mixed organic solvent including the diluent is 20% by volume, the theoretical cobalt extract amount is 18.3 g / concentration in the organic solvent. L. However, the cobalt extraction efficiency usually obtained industrially is at a low level between 40% and 60% of the theoretical extraction amount.
[0011]
This is because (1) when the amount of the functional group bonded with nickel or cobalt ions in the extractant is increased, the driving force of the extraction reaction is smaller compared to the extractant having a large number of functional groups bonded to hydrogen ions. (2) When the pH of the reaction is increased to increase the extraction amount, nickel is extracted, the nickel concentration in the organic phase after the exchange reaction is increased, and the utilization efficiency in the nickel exchange reaction is increased. In order to stably extract cobalt, (3) in general, when the cobalt concentration of the organic phase increases, the viscosity of the organic phase increases, and the separability between the organic phase and the aqueous phase deteriorates. By intentionally controlling the increase in cobalt concentration. Therefore, there is a problem to be solved also in the method of increasing the cobalt concentration in the organic phase after the exchange reaction in order to increase the throughput of cobalt.
[0012]
Therefore, in order to increase the throughput of cobalt, development of a method capable of increasing the cobalt concentration in the organic phase after the exchange reaction by suppressing the increase in viscosity without increasing the equipment capacity, that is, improving the cobalt extraction efficiency. Is desired.
[0013]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-30135 (first page, second page)
[Patent Document 2]
JP 10-310437 A (pages 1 to 5)
[0014]
[Problems to be solved by the invention]
The object of the present invention is to increase the throughput of cobalt by improving cobalt extraction efficiency in an exchange reaction from a nickel sulfate aqueous solution containing cobalt and calcium and having a high cobalt concentration in view of the above-mentioned problems of the prior art. Another object of the present invention is to provide an industrially highly efficient nickel sulfate aqueous solution purification method capable of obtaining a purified nickel sulfate aqueous solution having low cobalt and calcium concentrations.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the inventors have conducted extensive research on a method for purifying an aqueous nickel sulfate solution by a solvent extraction method using an exchange reaction using a multi-stage countercurrent reaction tank, and as a result, cobalt and calcium are included. A mixed organic solvent phase containing a nickel sulfate aqueous phase and a specific concentration of extractant are brought into contact with each other, and the pH of the aqueous phase, the calcium concentration in the organic phase, and the total concentration of nickel, cobalt, and calcium are adjusted to a specific concentration. As a result, it was found that the cobalt extraction efficiency can be improved, and the present invention has been completed.
[0016]
That is, according to the first aspect of the present invention, when purifying an aqueous nickel sulfate solution containing cobalt and calcium by a solvent extraction method using an exchange reaction using a multistage countercurrent reaction vessel, the aqueous nickel sulfate solution is purified by water. A mixed organic solvent obtained by diluting a 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester extractant holding nickel as a phase with a hydrocarbon to a concentration of 20 to 30% by volume is supplied to the final stage of the reaction vessel as a phase. The organic phase is supplied to the first stage of the reaction vessel, and both phases are brought into contact with each other to carry out an exchange reaction. Add sulfuric acid, 4.5 to 5.5 Adjustment And a method for purifying an aqueous solution of nickel sulfate, characterized in that the calcium concentration in the organic phase of the final stage is 0.4 g / L or less, and the total concentration of nickel, cobalt and calcium is 25 g / L or less. Provided.
[0017]
According to the second invention of the present invention, in the first invention, the sulfuric acid containing cobalt and calcium is characterized in that the concentration of the extractant in the mixed organic solvent is 25 to 30% by volume. A method for purifying an aqueous nickel solution is provided.
[0018]
According to a third invention of the present invention, in the first invention, the total concentration of nickel, cobalt and calcium in the organic phase in the final stage is 20 g / L or less. A method for purifying an aqueous nickel sulfate solution containing calcium is provided.
[0019]
According to a fourth aspect of the present invention, there is provided nickel sulfate containing cobalt and calcium according to the first aspect, wherein the pH of the water phase in the final stage is 4.8 to 5.2. A method for purifying an aqueous solution is provided.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method for purifying an aqueous nickel sulfate solution containing cobalt and calcium according to the present invention will be described in detail.
The method for purifying a nickel sulfate aqueous solution containing cobalt and calcium according to the present invention does not increase the equipment capacity in the exchange reaction between the nickel sulfate aqueous solution containing cobalt and calcium and having a high cobalt concentration and the nickel-retaining acidic organic extractant. In addition, since it is an industrially highly efficient purification method of nickel sulfate aqueous solution that can increase the throughput of cobalt by improving the cobalt extraction efficiency of the exchange reaction, the extraction step for obtaining the nickel-retained organic phase, It is suitable as a method for the exchange step of nickel sulfate purification process having an exchange step with cobalt, etc., a nickel back-extraction step from the organic phase after the cobalt-concentrated exchange reaction, a cobalt recovery step, an impurity back-extraction step, etc. is there.
[0021]
The method for purifying an aqueous nickel sulfate solution containing cobalt and calcium according to the present invention comprises using a multi-stage counter-current reaction tank to supply the aqueous nickel sulfate solution as an aqueous phase to the final stage to retain nickel. A mixed organic solvent obtained by diluting a 2-ethylhexyl ester extractant with a hydrocarbon to a predetermined concentration is supplied to the first stage as an organic phase, an exchange reaction is performed by bringing both phases into contact with each other, and the aqueous phase of the final stage is The pH and the calcium concentration in the organic phase in the final stage and the total concentration of nickel, cobalt and calcium are adjusted to a predetermined concentration.
[0022]
(1) Nickel sulfate aqueous solution
As the nickel sulfate aqueous solution used in the present invention, a nickel sulfate aqueous solution containing cobalt and calcium is used. Among these, a crude nickel sulfate aqueous solution having a high cobalt concentration obtained by treating a raw material containing about several percent of cobalt in particular. Is preferred. Moreover, in order to adjust the pH of the exchange reaction, it can also be adjusted in advance to a predetermined pH.
[0023]
(2) Mixed organic solvent containing nickel-carrying acidic organic extractant
In the present invention, prior to the exchange reaction, a mixed organic solvent containing a nickel-retaining acidic organic extractant (hereinafter sometimes referred to as a nickel-retaining mixed solvent) is prepared. In the present invention, as the acidic organic extractant, 2-ethylhexylphosphonic acid mono-2 ethylhexyl ester is used, and a mixed organic solvent obtained by diluting this with a hydrocarbon to a predetermined concentration is used. The 2-ethylhexylphosphonic acid mono-2ethylhexyl ester extractant has high extractability with respect to cobalt, calcium and magnesium. For example, the separation factor in the sulfuric acid solution is 650 for cobalt / nickel, 110 for calcium / nickel, and 50 for magnesium / nickel, and zinc, iron, and copper have higher separation factors and are preferentially extracted.
[0024]
The acidic organic extractant is generally used after being diluted with a diluent because of its high viscosity, but in the present invention, it is diluted with a hydrocarbon. The hydrocarbon used in the present invention is not particularly limited, and aliphatic or aromatic hydrocarbons are used. Among them, alkylbenzene which is an aromatic hydrocarbon is particularly preferable. The concentration of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester extractant in the mixed organic solvent used in the present invention is 20 to 30% by volume, preferably 25 to 30% by volume. That is, when the concentration of the extractant is less than 20% by volume, the extraction amount of cobalt per mixed organic solvent is low, while when it exceeds 30% by volume, the viscosity of the organic solvent increases, and the organic solvent phase and the aqueous solution phase Separation deteriorates, operation becomes unstable, and productivity decreases. The mixed organic solvent having the above composition of the present invention replaces the cobalt, calcium and other impurities preferentially extracted from nickel in the nickel sulfate aqueous solution with nickel previously held in the extractant by the exchange reaction. It is suitable for.
[0025]
Moreover, as the mixed organic solvent, an organic phase containing impurities after the exchange reaction is used as a series of nickel back extraction step, cobalt recovery step, impurity back extraction step and the like in the nickel sulfate purification process (see, for example, Patent Document 2). It is economical to use the recovered organic phase again by sending it to the recovery step, purifying the residual nickel contained in the organic phase, recovering cobalt and removing impurities other than cobalt.
[0026]
The nickel can be retained in the mixed organic solvent by a usual solvent extraction method. For example, for extraction of nickel, a mixed organic solvent containing the acidic organic extractant is supplied to the first stage using a multistage countercurrent solvent extraction tank, and a raw crude nickel sulfate solution is supplied to the final stage. The extraction reaction is carried out counter-currently at pH 5.0-7.0. Here, it is preferable that the nickel concentration held in the mixed organic solvent is stoichiometrically excessive with respect to the impurity element to be extracted in the exchange reaction. In other words, if the amount of nickel to be exchanged relative to the amount of impurities is small, impurities will remain in the purified nickel sulfate aqueous solution even when the exchange reaction is completely carried out. This is because as the progress proceeds, the nickel concentration in the organic phase decreases and the exchange reaction does not proceed sufficiently.
[0027]
(3) Purification equipment and method
In the present invention, the reaction apparatus for carrying out the exchange reaction uses various types of multi-stage counter-current reaction tanks that can efficiently contact and separate the organic phase and the aqueous phase, and in particular, a continuous multi-stage counter-current mixer settler. Is preferred. In the multistage counterflow mixer settler, the nickel holding mixed solvent is supplied to the first stage mixer settler, and the nickel sulfate aqueous solution to be purified is supplied to the final stage mixer settler, and both are brought into countercurrent contact. Therefore, the purified nickel sulfate aqueous solution is obtained from the first-stage mixer settler, and the organic phase containing cobalt after the exchange reaction is finished is obtained from the final-stage mixer settler.
[0028]
Here, the nickel concentration of the organic phase after completion of the exchange reaction is preferably 1 to 4.5 g / L. That is, the nickel concentration in the organic phase decreases as the exchange reaction proceeds in the multi-stage countercurrent reaction tank, but when the nickel concentration is less than 1 g / L, the nickel-cobalt exchange reaction is not sufficiently performed, and purified nickel sulfate. The cobalt concentration in the inside increases
If it exceeds 4.5 g / L, the nickel recovery rate in the purified nickel sulfate is reduced. When the nickel concentration in the organic phase is 1 to 4.5 g / L, the exchange reaction between nickel and cobalt proceeds smoothly.
[0029]
In the present invention, the pH of the final aqueous phase in the multistage countercurrent reaction tank is adjusted to 4.5 to 5.5, preferably 4.8 to 5.2. That is, as the pH rises, the nickel and cobalt concentrations extracted into the organic phase increase, but when the pH is less than 4.5, the cobalt concentration in the organic phase after the exchange reaction decreases, and the cobalt extraction efficiency increases. descend. On the other hand, since the nickel concentration in the organic phase increases when the pH exceeds 5.5, not only the nickel recovery rate in the purified nickel sulfate aqueous solution is reduced, but also nickel is bonded to the functional group of the extractant, Since the amount of the functional group bonded to cobalt is reduced, the extraction efficiency of cobalt is deteriorated. Conventionally, in the exchange process, there is no hydrogen ion release in the exchange reaction using an acidic organic extractant holding a suitable amount of nickel, so a nickel sulfate aqueous solution to be supplied to the exchange stage can be obtained without using a neutralizer. If the pH is adjusted to 4 to 6 in advance, the pH is maintained within the range. In the present invention, the pH is further adjusted to an appropriate range. This pH adjustment can be performed with sulfuric acid.
[0030]
Table 1 shows the results obtained by using a crude nickel sulfate aqueous solution and a mixed organic solvent obtained by diluting 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester extractant retaining nickel with alkylbenzene to a predetermined concentration. 3 shows the relationship between the pH of the aqueous phase of the final-stage settler in the flow reactor and the nickel concentration of the organic phase.
[0031]
[Table 1]
Figure 0004259165
[0032]
From Table 1, as the pH is lowered, the nickel concentration in the organic phase is decreased. When the pH is 4.5 to 5.5, the nickel concentration in the organic phase is 1 to 4.5 g / L as described above. It can be seen that the exchange reaction of nickel and cobalt is smoothly performed.
[0033]
In the present invention, it is important to adjust the calcium concentration in the organic phase in the final stage and the total concentration of nickel, cobalt and calcium to a predetermined concentration in the multistage countercurrent reaction tank. As a result, an increase in the viscosity of the organic phase can be prevented, and the cobalt extraction efficiency can be stably improved as compared with the conventional operation without hindering the exchange reaction between nickel and cobalt.
[0034]
The total concentration of nickel, cobalt and calcium in the organic phase in the final stage in the multistage countercurrent reaction tank of the present invention is adjusted to 25 g / L or less, preferably 20 g / L or less. That is, when the total concentration of nickel, cobalt and calcium in the organic phase exceeds 25 g / L, the viscosity of the mixed organic solvent increases, the separability of the organic phase and the aqueous phase deteriorates, and the operation becomes unstable. Productivity is significantly reduced.
[0035]
FIG. 1 shows the relationship between the total concentration of nickel, cobalt and calcium in the organic phase obtained in the same manner as in Table 1 above, and the viscosity of the organic phase. From FIG. 1, it can be seen that when the total concentration of nickel, cobalt and calcium in the organic phase is 25 g / L or more, the viscosity of the organic phase significantly increases. Also, the total concentration of nickel, cobalt and calcium in the organic phase depends on the pH of the exchange reaction.
[0036]
FIG. 2 shows the relationship between the pH of the exchange reaction and the total concentration of nickel, cobalt, and calcium in the organic phase when the organic phase extractant concentration obtained in the same manner as in Table 1 is high. From FIG. 2, it can be seen that as the pH increases, the total concentration of nickel, cobalt and calcium increases and the amount of extraction increases. It can also be seen that by increasing the extractant concentration, the total concentration of nickel, cobalt and calcium extracted into the organic phase is increased even at the same pH.
[0037]
The calcium concentration in the organic phase of the final stage in the multistage countercurrent reaction tank of the present invention is adjusted to 0.4 g / L or less. That is, when the calcium concentration exceeds 0.4 g / L, the extraction efficiency with respect to the theoretical extraction amount of cobalt is reduced to 40 to 60%, which is the same as the conventional operation, and the extraction efficiency of cobalt cannot be improved.
[0038]
FIG. 3 shows the relationship between the calcium concentration in the organic phase and the cobalt extraction efficiency (ratio of the amount of cobalt in the organic phase / theoretical cobalt extraction amount) obtained in the same manner as in Table 1 above. From the solid line representing the regression equation in FIG. 3, it can be seen that when the calcium concentration is 0.4 g / L or less, a cobalt extraction efficiency of 60% or more is obtained. The relationship between the calcium concentration in the final organic phase and the viscosity is not clear, but when the calcium concentration in the organic phase increases, a local increase in calcium concentration occurs in the aqueous phase during the exchange reaction, resulting in insoluble sulfuric acid. This appears to be caused by an increase in viscosity when calcium is precipitated and mixed in the organic phase.
[0039]
Here, the total concentration of nickel, cobalt and calcium in the organic phase depends on the pH of the exchange reaction under a given extractant concentration. In the present invention, calcium is almost entirely distributed in the organic phase, so the calcium concentration can be adjusted by adjusting the flow rate of the crude nickel sulfate aqueous solution or by adjusting the amount of the organic phase for dilution described above.
[0040]
【Example】
EXAMPLES The present invention will be described in more detail below with reference to examples of the present invention, but the present invention is not limited to the examples. The evaluation methods used in the examples are as follows.
(1) Analysis of metal: An atomic absorption method was used.
(2) Measurement of viscosity of organic phase: Measured with a B-type rotational viscometer.
[0041]
Example 1
The exchange process was carried out using a countercurrent four-stage mixer settler. The mixer settling capacity was 300 ml and the settling capacity was 3,000 ml. The organic phase was supplied to the first mixer settler, and the aqueous phase was supplied to the fourth mixer settler.
As an organic phase, after diluting 2-ethylhexylphosphonic acid mono-2ethylhexyl ester (trade name PC-88A, manufactured by Daihachi Chemical Industry Co., Ltd.) with alkylbenzene (trade name Cleansol G, manufactured by Nippon Oil Corporation) to a concentration of 25% by volume, A mixed organic solvent prepared by keeping nickel at 25 g / L was used. Furthermore, the organic phase for dilution obtained by separating cobalt and calcium in the back extraction step was appropriately added to the organic phase. Moreover, the pH was adjusted to 4.5-5.0 using the crude nickel sulfate aqueous solution of the composition of nickel 50-60g / L, cobalt 30-40g / L, and calcium 0.6g / L as an aqueous phase.
[0042]
The organic phase and the aqueous phase prepared as described above were supplied by adjusting the amount of calcium load by adjusting the organic phase flow rate to 90 ml / min and the aqueous phase flow rate to 30 to 40 ml / min. In addition, the aqueous phase pH of the settler part of the fourth-stage mixer settler was finely adjusted to 4.8 to 5.2 by adding sulfuric acid. In this way, the calcium concentration of the organic phase of the 4th stage mixer settler is adjusted to 0.40 g / L or less, and the total concentration of nickel, cobalt and calcium is adjusted to 20 g / L or less, and the reaction temperature is 40 to 45 ° C. The operation was continued for 8 hours or more. The aqueous phase and organic phase after the exchange reaction were appropriately sampled and analyzed for nickel, cobalt and calcium concentrations.
[0043]
Table 2 shows the aqueous phase obtained from the first-stage mixer settler, that is, the purified nickel sulfate aqueous solution, the concentration of nickel, cobalt and calcium in the organic phase after the exchange reaction obtained from the fourth-stage mixer settler, and the organic phase. The total concentration of nickel, cobalt and calcium and the efficiency of cobalt extraction into the organic phase.
[0044]
[Table 2]
Figure 0004259165
[0045]
From Table 2, the settler water phase pH of the fourth stage mixer settler is 4.8 to 5.2, the calcium concentration of the organic phase obtained from the fourth stage mixer settler is 0.40 g / L or less, nickel, When the total concentration of cobalt and calcium was adjusted to 20 g / L or less, the cobalt extraction efficiency to the organic phase was 60% or more, and most of the cobalt was extracted on the water phase side, and the cobalt concentration was 10 mg / L. It can be seen that a purified nickel sulfate aqueous solution with a very low impurity content of L or less and a calcium concentration of 20 mg / L or less is obtained stably.
[0046]
【The invention's effect】
As described above, the method for purifying an aqueous nickel sulfate solution containing cobalt and calcium according to the present invention improves the cobalt extraction efficiency in an exchange reaction from an aqueous nickel sulfate solution containing cobalt and calcium and having a high cobalt concentration. This is an industrially highly efficient purification method of nickel sulfate aqueous solution that can increase the throughput of cobalt and obtain a purified nickel sulfate aqueous solution with low cobalt and calcium concentrations, and its industrial value is extremely large.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the total concentration of nickel, cobalt and calcium in an organic phase and the viscosity of the organic phase.
FIG. 2 is a graph showing the relationship between the pH of the exchange reaction and the total concentration of nickel, cobalt and calcium in the organic phase.
FIG. 3 is a graph showing a relationship between calcium concentration in an organic phase and cobalt extraction efficiency (ratio of cobalt content in organic phase / theoretical cobalt extraction amount).

Claims (4)

多段向流反応槽を用いて交換反応を利用した溶媒抽出法によりコバルトとカルシウムを含む硫酸ニッケル水溶液を精製する際に、
該硫酸ニッケル水溶液を水相として上記反応槽の最終段に供給し、一方、ニッケルを保持させた2−エチルヘキシルホスホン酸モノ−2エチルヘキシルエステル抽出剤を濃度20〜30容量%になるまで炭化水素で希釈した混合有機溶媒を有機相として上記反応槽の1段目に供給し、両相を接触させ交換反応を行わせ、該最終段の水相のpHを、硫酸を添加して、4.5〜5.5に調整するとともに、該最終段の有機相中のカルシウム濃度を0.4g/L以下に、同じくニッケル、コバルト及びカルシウムの合計濃度を25g/L以下にすることを特徴とする硫酸ニッケル水溶液の精製方法。
When purifying an aqueous nickel sulfate solution containing cobalt and calcium by a solvent extraction method using an exchange reaction using a multistage counter-current reactor,
The nickel sulfate aqueous solution is supplied as an aqueous phase to the final stage of the reaction vessel, while the 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester extractant holding nickel is added with hydrocarbon until the concentration reaches 20 to 30% by volume. The diluted mixed organic solvent is supplied as an organic phase to the first stage of the reaction vessel, and both phases are brought into contact with each other to perform an exchange reaction. The pH of the final aqueous phase is adjusted to 4.5 by adding sulfuric acid. together is adjusted to 5.5, the calcium concentration in the organic phase of the final stage below 0.4 g / L, also nickel, sulphate, characterized in that the total concentration of cobalt and calcium below 25 g / L Purification method of nickel aqueous solution.
前記混合有機溶媒中の前記抽出剤の濃度が、25〜30容量%であることを特徴とする請求項1に記載の硫酸ニッケル水溶液の精製方法。  The concentration method of the said extractant in the said mixed organic solvent is 25-30 volume%, The purification method of the nickel sulfate aqueous solution of Claim 1 characterized by the above-mentioned. 前記最終段の有機相中のニッケル、コバルト及びカルシウムの合計濃度が、20g/L以下であることを特徴とする請求項1に記載の硫酸ニッケル水溶液の精製方法。  The method for purifying an aqueous nickel sulfate solution according to claim 1, wherein the total concentration of nickel, cobalt and calcium in the organic phase in the final stage is 20 g / L or less. 前記最終段の水相のpHが、4.8〜5.2であることを特徴とする請求項1に記載の硫酸ニッケル水溶液の精製方法。  The method for purifying an aqueous nickel sulfate solution according to claim 1, wherein the pH of the water phase in the final stage is 4.8 to 5.2.
JP2003103593A 2003-04-08 2003-04-08 Purification method of aqueous nickel sulfate solution containing cobalt and calcium Expired - Lifetime JP4259165B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003103593A JP4259165B2 (en) 2003-04-08 2003-04-08 Purification method of aqueous nickel sulfate solution containing cobalt and calcium
AU2004201049A AU2004201049B2 (en) 2003-04-08 2004-03-12 Process for purification of aqueous solution of nickel sulfate containing cobalt and calcium
GB0406885A GB2400368B (en) 2003-04-08 2004-03-29 Process for purification of aqueous solution of nickel sulfate containing cobalt and calcium
CA2463268A CA2463268C (en) 2003-04-08 2004-04-05 Process for purification of aqueous solution of nickel sulfate containing cobalt and calcium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103593A JP4259165B2 (en) 2003-04-08 2003-04-08 Purification method of aqueous nickel sulfate solution containing cobalt and calcium

Publications (2)

Publication Number Publication Date
JP2004307270A JP2004307270A (en) 2004-11-04
JP4259165B2 true JP4259165B2 (en) 2009-04-30

Family

ID=32212188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103593A Expired - Lifetime JP4259165B2 (en) 2003-04-08 2003-04-08 Purification method of aqueous nickel sulfate solution containing cobalt and calcium

Country Status (4)

Country Link
JP (1) JP4259165B2 (en)
AU (1) AU2004201049B2 (en)
CA (1) CA2463268C (en)
GB (1) GB2400368B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881952B2 (en) * 2011-01-24 2016-03-09 住友金属鉱山株式会社 Method for producing cobalt sulfate
JP5904459B2 (en) * 2011-11-22 2016-04-13 住友金属鉱山株式会社 Manufacturing method of high purity nickel sulfate
JP5598778B2 (en) 2013-01-25 2014-10-01 住友金属鉱山株式会社 Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
JP6094822B2 (en) * 2014-02-03 2017-03-15 住友金属鉱山株式会社 Method for quantifying fat-soluble phosphorus compounds
CN104591304B (en) * 2015-01-13 2016-04-27 江西赣锋锂业股份有限公司 A kind for the treatment of process of sulfur acid nickel waste material
CN113816439A (en) * 2021-08-20 2021-12-21 广东邦普循环科技有限公司 Method and system for purifying nickel sulfate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924168B2 (en) * 1977-05-14 1984-06-07 株式会社大八化学工業所 Separation method of cobalt and nickel by solvent extraction method
US4246240A (en) * 1978-07-24 1981-01-20 Nippon Mining Co., Ltd. Process for separating cobalt and nickel from a solution containing cobalt and nickel
GB2034290A (en) * 1978-11-10 1980-06-04 Nippon Mining Co Separation of Cobalt from Nickel by Solvent Extraction
DE3411885A1 (en) * 1984-03-30 1985-10-10 Hermann C. Starck Berlin, 1000 Berlin Use of a synergistic extraction medium mixture for Co/Ni separation
JPS61170528A (en) * 1985-01-22 1986-08-01 Sutaaroi Sangyo Kk Method for recovering cobalt
JP3867871B2 (en) * 1997-04-30 2007-01-17 住友金属鉱山株式会社 Nickel sulfate solvent extraction method

Also Published As

Publication number Publication date
GB2400368B (en) 2007-09-26
GB0406885D0 (en) 2004-04-28
CA2463268A1 (en) 2004-10-08
GB2400368A (en) 2004-10-13
AU2004201049B2 (en) 2009-11-05
CA2463268C (en) 2010-06-01
JP2004307270A (en) 2004-11-04
AU2004201049A1 (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP5686258B2 (en) Solvent extraction method for obtaining high purity nickel sulfate
JP5514844B2 (en) Method for separating valuable metals from waste secondary batteries and method for recovering valuable metals using the same
AU2013238535B2 (en) Method for producing high-purity nickel sulfate
JP5800254B2 (en) Method for producing cobalt sulfate
FI93972B (en) Procedure for Removal of Disturbing Substances from Precious Metal Electrolyte Solutions
KR101021180B1 (en) Method for producing high purity cobalt surfate
RU2726618C1 (en) Method of producing solutions containing nickel or cobalt
FI125216B (en) Method for recovering metals
JPS5817815B2 (en) How to recover copper from copper-containing materials
CN108603247A (en) The recovery method of scandium
JP3440752B2 (en) Purification method of nickel sulfate containing cobalt
JP2013221178A (en) Method for separating valuable metal
JP4259165B2 (en) Purification method of aqueous nickel sulfate solution containing cobalt and calcium
WO2016209178A1 (en) Recovering scandium and derivatives thereof from a leach solution loaded with metals obtained as a result of leaching lateritic ores comprising nickel, cobalt and scandium, and secondary sources comprising scandium
TWI811993B (en) Manufacturing method of cobalt sulfate
US4314976A (en) Purification of nickel sulfate
AU2020368620B2 (en) An improved process for the recovery of zinc from zinc-bearing raw materials
JP7360091B2 (en) Solvent extraction method and method for producing cobalt aqueous solution
CN117642519A (en) Production of high purity nickel and cobalt compounds
JP3546911B2 (en) Purification method of high purity nickel sulfate
JPH1150167A (en) Production of high purity cobalt solution
JP2008013387A (en) Method for producing high purity nickel sulfate aqueous solution
JP7389338B2 (en) Method for producing nickel aqueous solution
JPH0432712B2 (en)
JP2022006900A (en) Production method of nickel sulfate aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4259165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

EXPY Cancellation because of completion of term