JP2022006900A - Production method of nickel sulfate aqueous solution - Google Patents

Production method of nickel sulfate aqueous solution Download PDF

Info

Publication number
JP2022006900A
JP2022006900A JP2020109470A JP2020109470A JP2022006900A JP 2022006900 A JP2022006900 A JP 2022006900A JP 2020109470 A JP2020109470 A JP 2020109470A JP 2020109470 A JP2020109470 A JP 2020109470A JP 2022006900 A JP2022006900 A JP 2022006900A
Authority
JP
Japan
Prior art keywords
stage
aqueous solution
nickel sulfate
sulfate aqueous
exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020109470A
Other languages
Japanese (ja)
Inventor
英一 中川
Hidekazu Nakagawa
宏之 三ツ井
Hiroyuki Mitsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020109470A priority Critical patent/JP2022006900A/en
Publication of JP2022006900A publication Critical patent/JP2022006900A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a method for efficiently producing a high-purity nickel sulfate aqueous solution at low cost.SOLUTION: Provided is a production method of a nickel sulfate aqueous solution for producing a high purity nickel sulfate aqueous solution from a crude nickel sulfate aqueous solution including at least cobalt by a solvent extraction process using an acidic organic extractant. The solvent extraction process has an exchange stage in which the acidic organic extractant and the crude nickel sulfate aqueous solution are introduced into a mixer-settler-type solvent extraction device of a plurality of stages in a countercurrent way relative to each other to carry out continuous extraction treatment, thereby causing nickel preliminarily extracted into the acidic organic extractant and cobalt in the crude nickel sulfate aqueous solution to carry out exchange reaction for substitution. Of the plurality of stages, a preceding stage of a rearmost stage, the rearmost stage, and the other stages are controlled so as to have an aqueous phase of pH 4.4 to 5.0, pH 2.5 to 4.0, and pH 4.0 to 4.5, respectively.SELECTED DRAWING: Figure 4

Description

本発明は、硫酸ニッケル水溶液の製造方法に関し、特に酸性有機溶媒を抽出剤とする溶媒抽出工程を経て高純度の硫酸ニッケル水溶液を製造する方法に関する。 The present invention relates to a method for producing a nickel sulfate aqueous solution, and more particularly to a method for producing a high-purity nickel sulfate aqueous solution through a solvent extraction step using an acidic organic solvent as an extractant.

硫酸ニッケルは、ニッケルめっきの用途のほか、アルミ発色、触媒、二次電池用正極材料等の幅広い用途に利用されている。この硫酸ニッケルの製造方法としては、例えば、乾式製錬で製造したニッケルマット、銅製錬所などで発生するニッケル副原料、及び電気ニッケルの湿式製造プロセスの脱鉛工程から排出されるニッケルを含む脱鉛澱物を原料に用い、加圧浸出工程、溶解工程、浄液工程、溶媒抽出工程等を経て高純度の硫酸ニッケル水溶液を得る方法が知られている。 Nickel sulfate is used not only for nickel plating but also for a wide range of applications such as aluminum coloring, catalysts, and positive electrode materials for secondary batteries. Examples of the method for producing nickel sulfate include nickel mats produced by dry smelting, nickel auxiliary raw materials generated in copper smelters, and nickel discharged from the lead removal step of the wet production process of electric nickel. A method is known in which a lead starch is used as a raw material to obtain a high-purity nickel sulfate aqueous solution through a pressure leaching step, a dissolution step, a purification step, a solvent extraction step and the like.

上記の硫酸ニッケル水溶液の製造方法に含まれる溶媒抽出工程では、特許文献1に開示されているように、酸性有機抽出剤を用いた、いわゆるCOB-SX(Crowding Organic Bypass-Solvent Extraction)プロセスを用いることが提案されている。この特許文献1に示すCOB-SXプロセスは、酸性有機抽出剤を用いて抽出系粗硫酸ニッケル水溶液からニッケルを抽出してニッケル保持有機相を得る抽出段と、該抽出段で得たニッケル保持有機相をニッケルを含む洗浄液で洗浄する洗浄段と、該洗浄後のニッケル保持有機相及び交換系粗硫酸ニッケル水溶液を互いに向流に導入することで、該交換系粗硫酸ニッケル水溶液に含まれるコバルトなどの不純物を該ニッケル保持有機相に含まれるニッケルと置換する交換段とからなる。 In the solvent extraction step included in the above-mentioned method for producing a nickel sulfate aqueous solution, a so-called COB-SX (Crowding Organic Bipath-Solvent Operation) process using an acidic organic extractant is used as disclosed in Patent Document 1. Has been proposed. In the COB-SX process shown in Patent Document 1, an extraction stage for extracting nickel from an extraction system crude nickel sulfate aqueous solution to obtain a nickel-retaining organic phase using an acidic organic extractant, and a nickel-retaining organic obtained in the extraction stage. By introducing a cleaning stage in which the phase is washed with a cleaning solution containing nickel, a nickel-retaining organic phase after cleaning, and an exchange-type crude nickel sulfate aqueous solution into a countercurrent flow, cobalt and the like contained in the exchange-type crude nickel sulfate aqueous solution can be used. It consists of an exchange stage that replaces the impurities in the nickel with nickel contained in the nickel-retaining organic phase.

上記の交換段には複数段のミキサーセトラーが用いられており、高純度の硫酸ニッケル水溶液を製造することを目的としてこれら複数段(n交換段)のミキサーセトラーのうち最後段の1段前段のミキサーセトラー(第n-1交換段)のpHを意図的に高く設定することがある。これにより、該第n-1交換段の水相からそれより前段のミキサーセトラーに持ち込まれる不純物の量を減らすことができるので、高純度の硫酸ニッケル水溶液を製造することが可能になる。なお、上記の交換段を構成するn段のミキサーセトラーは、有機相の流れ方向の順に第1交換段、第2交換段、…、第n-1交換段、及び第n交換段と称している。 A multi-stage mixer settler is used in the above-mentioned exchange stage, and among these multiple stages (n exchange stage) of the mixer settler, one stage before the last stage is used for the purpose of producing a high-purity nickel sulfate aqueous solution. The pH of the mixer settler (n-1th exchange stage) may be intentionally set high. As a result, the amount of impurities brought from the aqueous phase of the n-1 exchange stage to the mixer settler in the previous stage can be reduced, so that a high-purity nickel sulfate aqueous solution can be produced. The n-stage mixer settler constituting the above-mentioned exchange stage is referred to as a first exchange stage, a second exchange stage, ..., An n-1 exchange stage, and an n-th exchange stage in the order of the flow direction of the organic phase. There is.

特開平10-310437号公報Japanese Unexamined Patent Publication No. 10-310437

上記したように、例えば4段で構成される交換段において、第3交換段のpHを他の第1、第2、及び第4交換段よりも高くすることで高純度の硫酸ニッケル水溶液が得られるものの、下記(3)~(5)が繰り返されることにより、図1の白矢印で示すように、第3交換段と第4交換段との間で大量のCoが循環することが問題になることがあった。
(1)第4交換段において、水相中のCoの一部が有機相に抽出されずに水相に残存したまま第3交換段に送られる。
(2)第3交換段において水相中の残存Coが有機相に抽出され、Co濃度の高い有機相が生成する。
(3)Co濃度の高い有機相が第3交換段から第4交換段に送られる。
(4)第4交換段において、有機相中のCoが水相に逆抽出され、該逆抽出されたCoを含む水相は第3交換段に送られる。
(5)第3交換段において、逆抽出されたCoを含む水相中のCoが有機相に抽出され、Co濃度の高い有機相が生成する。
As described above, for example, in an exchange stage composed of four stages, a high-purity nickel sulfate aqueous solution can be obtained by making the pH of the third exchange stage higher than that of the other first, second, and fourth exchange stages. However, by repeating the following (3) to (5), as shown by the white arrow in FIG. 1, a large amount of Co circulates between the third exchange stage and the fourth exchange stage, which is a problem. It happened to be.
(1) In the fourth exchange stage, a part of Co in the aqueous phase is sent to the third exchange stage without being extracted into the organic phase and remaining in the aqueous phase.
(2) In the third exchange stage, the residual Co in the aqueous phase is extracted into the organic phase, and an organic phase having a high Co concentration is generated.
(3) The organic phase having a high Co concentration is sent from the third exchange stage to the fourth exchange stage.
(4) In the fourth exchange stage, Co in the organic phase is back-extracted into the aqueous phase, and the aqueous phase containing the back-extracted Co is sent to the third exchange stage.
(5) In the third exchange stage, Co in the aqueous phase containing the back-extracted Co is extracted into the organic phase, and an organic phase having a high Co concentration is generated.

これにより、従来の交換段は下記に示す2つの問題を抱えていた。
1.第3交換段で抽出したCoの逆抽出反応が生じるために、第4交換段で多くの酸が必要となり、酸原単位が高くなる。
2.第3交換段の有機相中のCo濃度が、操業時の変動も加わって一時的に急上昇することがあり、これにより有機相の粘度が上昇してミキサーセトラーの油水分離不良が生じる。
As a result, the conventional exchange stage has the following two problems.
1. 1. Since the back extraction reaction of Co extracted in the third exchange stage occurs, a large amount of acid is required in the fourth exchange stage, and the acid intensity becomes high.
2. 2. The Co concentration in the organic phase of the third exchange stage may temporarily rise sharply due to fluctuations during operation, which causes the viscosity of the organic phase to rise and causes poor oil-water separation in the mixer settler.

また、図1の交換段においては、上記Coと同様に、下記[1]~[2]が繰り返されることにより第3交換段と第4交換段との間でNiが循環することが問題になることがある。
[1]第3交換段において、水相中のNiが有機相に抽出され、Niを過剰に含んだ有機相が第4交換段に送られる。
[2]第4交換段において、有機相中のNiが水相に逆抽出される。
Further, in the exchange stage of FIG. 1, the problem is that Ni circulates between the third exchange stage and the fourth exchange stage by repeating the following [1] to [2] as in the case of the above Co. May become.
[1] In the third exchange stage, Ni in the aqueous phase is extracted into the organic phase, and the organic phase containing an excess of Ni is sent to the fourth exchange stage.
[2] In the fourth exchange stage, Ni in the organic phase is back-extracted into the aqueous phase.

上記COB-SXプロセスで処理される粗硫酸ニッケル水溶液では、原料種やその処理比率の変動、原料中の含有率の変動、工程変更やプロセス上の条件変更等により、不純物としてのCo負荷が低減するときがあり、その場合、より低コストでの操業が望まれている。本発明は上記の実状に鑑みてなされたものであり、第n-1交換段と第n交換段との間で循環するCoやNiの量を低減することで、高純度の硫酸ニッケル水溶液を低コストで効率よく製造可能な方法を提供することを課題とする。 In the crude nickel sulfate aqueous solution treated by the above COB-SX process, the Co load as an impurity is reduced due to fluctuations in the raw material species and their treatment ratio, fluctuations in the content in the raw materials, process changes, process condition changes, etc. In that case, lower cost operation is desired. The present invention has been made in view of the above circumstances, and by reducing the amount of Co and Ni circulating between the n-1th exchange stage and the nth exchange stage, a high-purity nickel sulfate aqueous solution can be obtained. The challenge is to provide a method that can be manufactured efficiently at low cost.

上記目的を達成するため、本発明に係る硫酸ニッケル水溶液の製造方法は、酸性有機抽出剤を用いた溶媒抽出工程によって少なくともコバルトを含む粗硫酸ニッケル水溶液から高純度硫酸ニッケル水溶液を製造する硫酸ニッケル水溶液の製造方法であって、前記溶媒抽出工程は、複数段のミキサーセトラー型溶媒抽出装置に前記酸性有機抽出剤及び前記粗硫酸ニッケル水溶液を互いに向流に導入して連続抽出処理を行うことによって、前記酸性有機抽出剤に予め抽出させておいたニッケルと前記粗硫酸ニッケル水溶液中のコバルトとを交換反応させて置換する交換段を有しており、前記複数段のうち、最後段の1段前段の水相のpHを4.4~5.0に、最後段の水相のpHを2.5~4.0に、これら以外の段の水相のpHを4.0~4.5にそれぞれ制御することを特徴とする。 In order to achieve the above object, the method for producing a nickel sulfate aqueous solution according to the present invention is a nickel sulfate aqueous solution for producing a high-purity nickel sulfate aqueous solution from a crude nickel sulfate aqueous solution containing at least cobalt by a solvent extraction step using an acidic organic extractant. In the solvent extraction step, the acidic organic extractant and the crude nickel sulfate aqueous solution are introduced into a countercurrent flow into a multi-stage mixer settler type solvent extractor to perform a continuous extraction process. It has an exchange stage in which nickel previously extracted by the acidic organic extractant and cobalt in the crude nickel sulfate aqueous solution are exchanged and replaced, and among the plurality of stages, one stage before the last stage. The pH of the aqueous phase of the above is 4.4 to 5.0, the pH of the aqueous phase of the last stage is 2.5 to 4.0, and the pH of the aqueous phase of the other stages is 4.0 to 4.5. It is characterized by controlling each.

本発明によれば、より低コストで効率よく高純度の硫酸ニッケル水溶液を製造することができる。 According to the present invention, it is possible to efficiently produce a high-purity nickel sulfate aqueous solution at a lower cost.

COB-SXプロセスの第3交換段及び第4交換段の間でのCoの循環を示す模式的なフロー図である。It is a schematic flow diagram which shows the circulation of Co between the 3rd exchange stage and the 4th exchange stage of a COB-SX process. 本発明の実施形態に係る硫酸ニッケル水溶液の製造方法のブロックフロー図である。It is a block flow figure of the manufacturing method of the nickel sulfate aqueous solution which concerns on embodiment of this invention. 図2の溶媒抽出工程で行われるCOB-SXプロセスの概略フロー図である。It is a schematic flow chart of the COB-SX process performed in the solvent extraction step of FIG. 図3のCOB-SXプロセスの交換段の概略フロー図である。It is a schematic flow chart of the exchange stage of the COB-SX process of FIG. 本発明の実施例及び比較例で行ったCOB-SXプロセスの交換段で消費した硫酸の被抽出メタル当量に対する割合を示すグラフである。It is a graph which shows the ratio with respect to the metal equivalent to be extracted of sulfuric acid consumed in the exchange stage of the COB-SX process performed in the Example and the comparative example of this invention.

以下、本発明の実施形態に係る硫酸ニッケル水溶液の製造方法について詳細に説明する。この本発明の実施形態の硫酸ニッケル水溶液の製造方法は、図2に示すように、乾式製錬で製造されるニッケルマットと、電気ニッケル製造工程で生成される脱鉛澱物と、銅製錬所などで発生する粗硫酸ニッケルとを原料に使用している。これらのうち、ニッケルマットは、好ましくは、所定のサイズまで粉砕された後、加圧浸出工程において高温高圧の条件下で浸出されて粗硫酸ニッケル水溶液となる。 Hereinafter, a method for producing an aqueous nickel sulfate solution according to an embodiment of the present invention will be described in detail. As shown in FIG. 2, the method for producing an aqueous nickel sulfate solution according to an embodiment of the present invention includes a nickel mat produced by pyrometallurgy, a deleaded starch produced in an electronickel manufacturing process, and a copper smelter. It uses crude nickel sulfate generated in such cases as a raw material. Of these, the nickel mat is preferably pulverized to a predetermined size and then leached under high temperature and high pressure conditions in the pressure leaching step to obtain a crude nickel sulfate aqueous solution.

脱鉛澱物は、硫酸溶解工程で硫酸に溶解された後、還元溶解工程においてSOガス等の還元剤で還元溶解されることで粗硫酸ニッケル・コバルト混合水溶液となる。なお、上記の脱鉛澱物は、いわゆるMCLE法(Matte Chlorine Leach Electrowinning法)の脱鉛工程において生成される。このMCLE法は、ニッケルマットとニッケル・コバルト混合硫化物(MS:Mixed Sulfide)とを電解廃液でレパルプした後、これをセメンテーション工程及び塩素浸出工程で処理することで電気ニッケルを製造するプロセスであり、上記セメンテーション工程の後工程の脱鉛工程において脱鉛澱物が回収される。 The deleaded starch is dissolved in sulfuric acid in the sulfuric acid dissolution step and then reduced and dissolved in a reducing agent such as SO 2 gas in the reduction dissolution step to obtain a crude nickel sulfate / cobalt mixed aqueous solution. The deleaded starch is produced in the deleading step of the so-called MCLE method (Matte Chlorine Leach Electrowinning method). This MCLE method is a process for producing electric nickel by repulping nickel matte and nickel-cobalt mixed sulfide (MS: Mixed Sulfide) with an electrolytic waste liquid and then treating this with a cementation step and a chlorine leaching step. Yes, the deleaded starch is recovered in the deleading step after the cementation step.

上記のニッケルマット及び脱鉛澱物からそれぞれ生成された粗硫酸ニッケル水溶液及び粗硫酸ニッケル・コバルト混合水溶液の混合水溶液は、脱鉄工程で鉄分が除去されて少なくともコバルトを含む粗硫酸ニッケル水溶液からなる交換系脱Fe終液となる。一方、粗硫酸ニッケルは、溶解工程において溶解された後、脱Zn・脱Cd工程でZn及びCdが除去され、脱鉄工程で鉄分が除去されて粗硫酸ニッケル水溶液からなる抽出系脱Fe終液となる。 The mixed aqueous solution of the crude nickel sulfate aqueous solution and the crude nickel sulfate / cobalt mixed aqueous solution produced from the above nickel matte and the deleaded starch, respectively, is composed of a crude nickel sulfate aqueous solution containing at least cobalt from which iron is removed in the iron removal step. It becomes the exchange system de-Fe final solution. On the other hand, after the crude nickel sulfate is dissolved in the dissolution step, Zn and Cd are removed in the Zn removal / Cd removal step, and iron is removed in the iron removal step. Will be.

上記の2系統の原料処理ルートから別々に生成される抽出系脱Fe終液及び交換系脱Fe終液は、次にCOB-SXプロセスによる溶媒抽出工程で処理され、製品となる高純度硫酸ニッケル水溶液と粗塩化コバルト水溶液が製造される。この溶媒抽出工程は、抽出段、洗浄段、交換段、Ni回収段、Co回収段、及び逆抽出段からなり、各段において、一般的なミキサーセトラー型溶媒抽出装置を複数段直列に接続した装置を用いることで多段向流連続抽出処理が行われる。この溶媒抽出工程を循環する有機溶媒には、一般的な有機リン酸系の酸性有機抽出剤を用いることができ、下記化1に示す構造式を有する2-エチルヘキシルホスホン酸モノ-2-エチルヘキシルを上記の酸性有機抽出剤に用いるのが好ましい。

Figure 2022006900000002
The extraction-based de-Fe final solution and the exchange-based de-Fe final solution, which are separately generated from the above two raw material processing routes, are then processed in a solvent extraction step by the COB-SX process to produce a high-purity nickel sulfate product. An aqueous solution and a crude cobalt chloride aqueous solution are produced. This solvent extraction step consists of an extraction stage, a cleaning stage, an exchange stage, a Ni recovery stage, a Co recovery stage, and a reverse extraction stage. In each stage, a general mixer-settler type solvent extraction device is connected in series. Multi-stage countercurrent continuous extraction processing is performed by using the apparatus. A general organic phosphoric acid-based acidic organic extractant can be used as the organic solvent circulating in this solvent extraction step, and 2-ethylhexylphosphonate mono-2-ethylhexyl having the structural formula shown in Chemical formula 1 below can be used. It is preferable to use it for the above-mentioned acidic organic extractant.
Figure 2022006900000002

上記のCOB-SXプロセスについて図3を参照しながら具体的に説明すると、抽出段では、コバルトを含まない粗硫酸ニッケル水溶液である抽出系脱Fe終液が供給され、ここで逆抽出段から排出された逆抽出後有機によって主にNiが例えば下記式1に示す抽出反応により抽出され、Niよりも抽出率が低いナトリウム、アンモニアなどが水相側に分離除去される。なお、下記式1において、Rはヒドロキシ基のHを除いた酸性有機抽出剤を表している。
[式1]
2(R-H)+Ni2+→R-Ni-R+2H
The COB-SX process described above will be specifically described with reference to FIG. 3. In the extraction stage, an extraction system de-Fe final solution, which is a crude nickel sulfate aqueous solution containing no cobalt, is supplied and discharged from the back extraction stage. After the reverse extraction, Ni is mainly extracted by the extraction reaction represented by the following formula 1, for example, and sodium, ammonia and the like having a lower extraction rate than Ni are separated and removed on the aqueous phase side. In the following formula 1, R represents an acidic organic extractant excluding H of the hydroxy group.
[Equation 1]
2 (RH) + Ni 2+ → R-Ni-R + 2H +

上記抽出段から排出された抽出後有機は次に洗浄段に供給され、ここで洗浄液を用いた洗浄により、有機相中に残留したナトリウム、アンモニアが、洗浄液中のNiと置換することにより除去される。さらに、エントレインメントと呼ばれる有機相中に懸濁した微細な液滴を、洗浄液と置換させることによって、エントレインメントとして有機相中に保持された不純物が除去される。洗浄液は、不純物濃度が低い硫酸ニッケル水溶液であるのが好ましく、例えば交換段から排出された高純度硫酸ニッケル水溶液や、高純度硫酸ニッケル結晶の製造工程から産出された脱水母液を水で希釈したものが好適に用いられる。 The post-extraction organic discharged from the extraction stage is then supplied to the cleaning stage, where sodium and ammonia remaining in the organic phase are removed by replacing Ni in the cleaning liquid by cleaning with the cleaning liquid. To. Further, by replacing the fine droplets suspended in the organic phase called entrainment with a cleaning liquid, impurities retained in the organic phase as entrainment are removed. The cleaning solution is preferably an aqueous solution of nickel sulfate having a low impurity concentration. For example, a high-purity nickel sulfate aqueous solution discharged from the exchange stage or a dehydrated mother liquor produced from the manufacturing process of high-purity nickel sulfate crystals diluted with water. Is preferably used.

上記洗浄段を出た洗浄後有機は、次に例えば4段のミキサーセトラーから構成される交換段に第1段目側から導入され、ここで第4段目側から導入される交換系脱Fe終液との向流接触が行われる。これにより、該洗浄後有機に含まれるNiと、交換系脱Fe終液に含まれるCoなどの不純物とが例えば下記式2の交換反応により置換され、交換系脱Fe終液中の不純物が有機相に抽出される。
[式2]
R-Ni-R+Co2+→R-Co-R+Ni2+
The post-cleaning organic that has left the cleaning stage is then introduced from the first stage side into an exchange stage composed of, for example, a four-stage mixer settler, and here, the exchange system de-Fe introduced from the fourth stage side. Countercurrent contact with the final liquid is performed. As a result, Ni contained in the organic after cleaning and impurities such as Co contained in the exchange-based de-Fe final solution are replaced by, for example, the exchange reaction of the following formula 2, and the impurities in the exchange-based de-Fe final solution are organic. Extracted to the phase.
[Equation 2]
R-Ni-R + Co 2+ → R-Co-R + Ni 2+

これにより、高純度硫酸ニッケル水溶液が水相側に生成される。この高純度硫酸ニッケル水溶液は、そのまま製品として出荷されるか、あるいは晶析設備に供給されて加熱により濃縮、晶析されて硫酸ニッケル結晶が製造される。上記のように、交換段では予めNiを抽出させておいた抽出剤によってCoを抽出するため、pH調整用の中和剤が不要になる。これにより、例えば中和剤としてNaOHを使用したときに問題になるNaによる高純度硫酸ニッケル水溶液の汚染を防ぐことができる。また、Coの抽出に相応してNiが逆抽出されるため、Ni濃度を高く維持することができる。 As a result, a high-purity nickel sulfate aqueous solution is generated on the aqueous phase side. This high-purity nickel sulfate aqueous solution is shipped as a product as it is, or is supplied to a crystallization facility and concentrated and crystallized by heating to produce nickel sulfate crystals. As described above, since Co is extracted by the extractant from which Ni has been extracted in advance in the exchange stage, a neutralizing agent for pH adjustment becomes unnecessary. This makes it possible to prevent contamination of the high-purity nickel sulfate aqueous solution with Na, which is a problem when NaOH is used as a neutralizing agent, for example. Further, since Ni is back-extracted corresponding to the extraction of Co, the Ni concentration can be maintained high.

上記の交換段では、洗浄後有機に含まれる不純物濃度が高すぎると水相中の不純物濃度が置換反応により低くなったときに、該不純物の水相から有機相への移行が生じにくくなる。そこで、図3及び図4に示すように、逆抽出段で再生した逆抽出後有機の一部を抜き出して上記抽出段及び洗浄段をバイパスさせ、該交換段の第1段目側から導入する洗浄後有機の希釈液に用いている。なお、上記洗浄後有機は、水相中の不純物濃度が高い後段のミキサーセトラーにおいてより効率よく置換反応を行わせるため、一部が抜き出されて該交換段の第3段目に導入されている。 In the above exchange stage, if the concentration of impurities contained in the organic after washing is too high, when the concentration of impurities in the aqueous phase becomes low due to the substitution reaction, the migration of the impurities from the aqueous phase to the organic phase is less likely to occur. Therefore, as shown in FIGS. 3 and 4, a part of the organic substance after the back extraction regenerated in the back extraction stage is extracted, the extraction stage and the washing stage are bypassed, and the organic material is introduced from the first stage side of the exchange stage. After washing, it is used as an organic diluent. In addition, the organic after washing is partially extracted and introduced into the third stage of the exchange stage in order to carry out the substitution reaction more efficiently in the mixer settler in the subsequent stage where the impurity concentration in the aqueous phase is high. There is.

上記交換段を出た交換後有機は次にNi回収段に供給され、ここで該交換後有機に含まれるNiが水相側の希硫酸中に回収される。このようにして回収されたNiを含むNi回収液は、必要に応じて硫酸ニッケルの製造プロセスに繰り返される。上記Ni回収段を出たNi回収後有機は次にCo回収段に供給され、ここで該Ni回収後有機に含まれるCoが水相側の塩酸に回収される。このようにして回収されたCoを含む粗塩化Co水溶液は、さらなる浄液工程において亜鉛、マンガン、銅、カドミウム等の不純物が除去されて高純度塩化コバルト水溶液となった後、電解採取工程に供給されて電気コバルトが製造される。上記Co回収段を出たCo回収後有機は最後に逆抽出段に導入され、ここで希硫酸により鉄などの不純物が逆抽出処理される。 The exchanged organic that has left the exchange stage is then supplied to the Ni recovery stage, where Ni contained in the exchanged organic is recovered in the dilute sulfuric acid on the aqueous phase side. The Ni recovery liquid containing Ni recovered in this way is repeated in the nickel sulfate manufacturing process as necessary. The organic after Ni recovery from the Ni recovery stage is then supplied to the Co recovery stage, where Co contained in the organic after Ni recovery is recovered to hydrochloric acid on the aqueous phase side. The crude Co chloride aqueous solution containing Co recovered in this manner is supplied to the electrowinning step after impurities such as zinc, manganese, copper and cadmium are removed to obtain a high-purity cobalt chloride aqueous solution in a further purification step. And electric cobalt is manufactured. After the Co recovery from the Co recovery stage, the organic substance is finally introduced into the back extraction stage, where impurities such as iron are back-extracted with dilute sulfuric acid.

上記のような酸性有機抽出剤を用いた溶媒抽出では、抽出反応に水素イオンが関与するため、pHによって抽出率が変化する。抽出率は金属によって異なり、Fe>Zn>Cu>Mn>Co>Ca>Mg>Niの順に抽出されやすい。従って、有機相の流れの順である抽出段、洗浄段、交換段、ニッケル回収段、コバルト回収段、及び逆抽出段の順にpHを下げていくことで、それぞれの段で異なる金属を分離回収することができる。 In solvent extraction using an acidic organic extractant as described above, hydrogen ions are involved in the extraction reaction, so the extraction rate changes depending on the pH. The extraction rate differs depending on the metal, and it is easy to extract in the order of Fe> Zn> Cu> Mn> Co> Ca> Mg> Ni. Therefore, by lowering the pH in the order of the extraction stage, cleaning stage, exchange stage, nickel recovery stage, cobalt recovery stage, and reverse extraction stage, which are the order of the flow of the organic phase, different metals can be separated and recovered in each stage. can do.

上記のCOB-SXプロセスの交換段においては、第1~第4交換段の各々に、好ましくは硫酸からなる酸を添加してpHを個別に制御している。具体的には、第3交換段はpHを4.4~5.0の範囲内に制御し、第1及び第2交換段はpHを4.0~4.5の範囲内に制御し、第4交換段はpHを2.5~4.0の範囲内に制御している。これにより、前述した第3交換段と第4交換段の間でCoやNiが循環する問題を極力抑えて、高純度硫酸ニッケル水溶液を製造することが可能になる。 In the exchange stage of the above COB-SX process, an acid preferably composed of sulfuric acid is added to each of the first to fourth exchange stages to individually control the pH. Specifically, the third exchange stage controls the pH within the range of 4.4 to 5.0, and the first and second exchange stages control the pH within the range of 4.0 to 4.5. The fourth exchange stage controls the pH within the range of 2.5 to 4.0. This makes it possible to produce a high-purity nickel sulfate aqueous solution while suppressing the problem of circulation of Co and Ni between the third exchange stage and the fourth exchange stage described above as much as possible.

上記の第3交換段のpHが4.4より低いと、カルシウムやマグネシウム等の不純物の有機相への分配が低下し、得られる高純度硫酸ニッケル水溶液中の不純物濃度が増加してしまう。逆に、この第3交換段のpHが5.0より高いと、前述した第3交換段と第4交換段の間でのCoやNiの循環量を低減することができず、前述した酸原単位が高くなる問題や有機相の粘度が一時的に高くなる問題を抑えることができなくなる。 When the pH of the third exchange stage is lower than 4.4, the distribution of impurities such as calcium and magnesium to the organic phase decreases, and the concentration of impurities in the obtained high-purity nickel sulfate aqueous solution increases. On the contrary, if the pH of the third exchange stage is higher than 5.0, the circulation amount of Co and Ni between the above-mentioned third exchange stage and the fourth exchange stage cannot be reduced, and the above-mentioned acid cannot be reduced. It becomes impossible to suppress the problem that the basic unit becomes high and the problem that the viscosity of the organic phase temporarily becomes high.

以上説明したように、本発明の実施形態に係る高純度硫酸ニッケルの製造方法は、例えば4段で構成される交換段において、第3交換段のpHを従来と比較して低く制御することで、該第3交換段において有機相にCoやNiが過度に抽出されるのを防止できるので、交換段で消費する酸の使用量を削減することができる。また、第3交換段において有機相中のCo濃度を低く維持できるので、Coの負荷変動時に有機相のCo濃度が一時的に高くなることによる粘度上昇が生じにくく、油水分離性が悪化するリスクを大幅に下げることができる。その結果、品質が安定すると共に生産性が向上する。 As described above, in the method for producing high-purity nickel sulfate according to the embodiment of the present invention, for example, in an exchange stage composed of four stages, the pH of the third exchange stage is controlled to be lower than that of the conventional method. Since Co and Ni can be prevented from being excessively extracted into the organic phase in the third exchange stage, the amount of acid consumed in the exchange stage can be reduced. Further, since the Co concentration in the organic phase can be kept low in the third exchange stage, it is difficult for the viscosity to increase due to the temporary increase in the Co concentration in the organic phase when the load of Co fluctuates, and there is a risk that the oil-water separability deteriorates. Can be significantly reduced. As a result, the quality is stable and the productivity is improved.

[実施例]
図2に示す硫酸ニッケル水溶液のブロックフローに沿って硫酸ニッケル水溶液を製造した。その際、溶媒抽出工程には図3のフロー図に示すようなCOB-SXプロセスを採用し、その交換段には、図4に示す構成の4段のミキサーセトラーを用いた。また、抽出剤には大八化学工業株式会社製の有機リン酸系の酸性有機抽出剤であるPC-88Aを使用し、これをJXTGエネルギー株式会社製の飽和炭化水素からなる希釈剤であるテクリーンN-20を用いて有機溶媒中の抽出剤濃度が約15~25容量%となるように希釈した。このようにして調製した有機溶媒を、水相流量に対する有機相流量の比率、いわゆるO/Aが1~4となるように調整して交換段を操業した。
[Example]
A nickel sulfate aqueous solution was produced along the block flow of the nickel sulfate aqueous solution shown in FIG. At that time, a COB-SX process as shown in the flow chart of FIG. 3 was adopted for the solvent extraction step, and a four-stage mixer settler having the configuration shown in FIG. 4 was used for the exchange stage. In addition, PC-88A, which is an organic phosphoric acid-based acidic organic extractant manufactured by Daihachi Chemical Industry Co., Ltd., is used as the extractant, and Teclean, which is a diluent composed of saturated hydrocarbons manufactured by JXTG Energy Co., Ltd., is used. It was diluted with N-20 so that the concentration of the extractant in the organic solvent was about 15 to 25% by volume. The organic solvent thus prepared was adjusted so that the ratio of the organic phase flow rate to the aqueous phase flow rate, so-called O / A, was 1 to 4, and the exchange stage was operated.

また、第1及び第2交換段をpHを4.0~4.5に制御し、第4交換段のpHを2.5~4.0に制御し、第3交換段のpHを4.8±0.1に制御した。この条件で約1ヶ月間に亘って高純度硫酸ニッケル水溶液を製造した。その間に交換段で消費した硫酸は、被抽出メタル当量の約85%であった。なお、被抽出メタル当量は、有機相中のNiとCoのバランスから求めることができる。具体的な考え方の手順を示すと、洗浄後有機流量(L/min)×洗浄後有機Ni濃度(mol/L)-交換後有機流量(L/min)×交換後有機Ni+Co濃度(mol/L)=被抽出メタル当量(H必要量)(mol/min)のようにして求める。 Further, the pH of the first and second exchange stages is controlled to 4.0 to 4.5, the pH of the fourth exchange stage is controlled to 2.5 to 4.0, and the pH of the third exchange stage is 4. It was controlled to 8 ± 0.1. Under these conditions, a high-purity nickel sulfate aqueous solution was produced for about one month. During that time, the sulfuric acid consumed in the exchange stage was about 85% of the metal equivalent to be extracted. The metal equivalent to be extracted can be obtained from the balance of Ni and Co in the organic phase. To show the specific procedure, organic flow rate after cleaning (L / min) x organic Ni concentration after cleaning (mol / L) -organic flow rate after replacement (L / min) x organic Ni + Co concentration after replacement (mol / L) ) = Metal equivalent to be extracted (H + required amount) (mol / min).

[比較例1]
第3交換段のpHを5.5±0.1に制御した以外は上記実施例と同様にして高純度硫酸ニッケル溶液を製造した。その間に消費した硫酸は、被抽出メタル当量の約101%であった。
[Comparative Example 1]
A high-purity nickel sulfate solution was produced in the same manner as in the above Examples except that the pH of the third exchange stage was controlled to 5.5 ± 0.1. The sulfuric acid consumed during that period was about 101% of the metal equivalent to be extracted.

[比較例2]
第3交換段のpHを5.2±0.1に制御した以外は上記実施例と同様にして高純度硫酸ニッケル溶液を製造した。その間に消費した硫酸は、被抽出メタル当量の約92%であった。
[Comparative Example 2]
A high-purity nickel sulfate solution was produced in the same manner as in the above Examples except that the pH of the third exchange stage was controlled to 5.2 ± 0.1. The sulfuric acid consumed during that period was about 92% of the metal equivalent to be extracted.

上記の実施例及び比較例1、2の硫酸の消費量を、その被抽出メタル当量で除した図5のグラフから分かるように、本発明の要件を満たす条件で第3交換段のpHを制御した実施例に比べて、第3交換段のpHを5.5±0.1で制御した比較例1及び第3交換段のpHを5.2±0.1で制御した比較例2は、それぞれ16%及び8%硫酸使用量が増加した。 As can be seen from the graph of FIG. 5 in which the amount of sulfuric acid consumed in Examples 1 and 2 above is divided by the equivalent of the metal to be extracted, the pH of the third exchange stage is controlled under the condition satisfying the requirements of the present invention. In Comparative Example 1 in which the pH of the third exchange stage was controlled by 5.5 ± 0.1 and Comparative Example 2 in which the pH of the third exchange stage was controlled by 5.2 ± 0.1 as compared with the above-mentioned Examples. The amount of sulfuric acid used increased by 16% and 8%, respectively.

Claims (5)

酸性有機抽出剤を用いた溶媒抽出工程によって少なくともコバルトを含む粗硫酸ニッケル水溶液から高純度硫酸ニッケル水溶液を製造する硫酸ニッケル水溶液の製造方法であって、
前記溶媒抽出工程は、複数段のミキサーセトラー型溶媒抽出装置に前記酸性有機抽出剤及び前記粗硫酸ニッケル水溶液を互いに向流に導入して連続抽出処理を行うことによって、前記酸性有機抽出剤に予め抽出させておいたニッケルと前記粗硫酸ニッケル水溶液中のコバルトとを交換反応させて置換する交換段を有しており、前記複数段のうち、最後段の1段前段の水相のpHを4.4~5.0に、最後段の水相のpHを2.5~4.0に、これら以外の段の水相のpHを4.0~4.5にそれぞれ制御することを特徴とする硫酸ニッケル水溶液の製造方法。
A method for producing a high-purity nickel sulfate aqueous solution from a crude nickel sulfate aqueous solution containing at least cobalt by a solvent extraction step using an acidic organic extractant.
In the solvent extraction step, the acidic organic extractant and the crude nickel sulfate aqueous solution are introduced into a countercurrent flow of the acidic organic extractant and the crude nickel sulfate aqueous solution into a multi-stage mixer settler type solvent extractor to perform a continuous extraction process, whereby the acidic organic extractant is previously used. It has an exchange stage in which the extracted nickel and cobalt in the crude nickel sulfate aqueous solution are exchanged and replaced, and the pH of the aqueous phase of the first stage before the last stage of the plurality of stages is set to 4. The feature is that the pH of the aqueous phase of the last stage is controlled to 2.5 to 4.0, and the pH of the aqueous phase of the other stages is controlled to 4.0 to 4.5, respectively. A method for producing an aqueous solution of nickel sulfate.
前記複数段が4段であることを特徴とする、請求項1に記載の硫酸ニッケル水溶液の製造方法。 The method for producing a nickel sulfate aqueous solution according to claim 1, wherein the plurality of stages are four stages. 前記溶媒抽出工程は前記交換段の前段に洗浄段を有しており、前記洗浄段から排出される洗浄後有機の一部が前記交換段の第3段目に、前記洗浄段から排出される洗浄後有機の残部が前記交換段の第1段目に導入されることを特徴とする、請求項2に記載の硫酸ニッケル水溶液の製造方法。 The solvent extraction step has a cleaning stage in front of the exchange stage, and a part of the organic after cleaning discharged from the cleaning stage is discharged from the cleaning stage in the third stage of the exchange stage. The method for producing a nickel sulfate aqueous solution according to claim 2, wherein the organic residue after washing is introduced into the first stage of the exchange stage. 硫酸水溶液の添加によって前記pHの制御を行うことを特徴とする、請求項1~3のいずれか1項に記載の硫酸ニッケル水溶液の製造方法。 The method for producing a nickel sulfate aqueous solution according to any one of claims 1 to 3, wherein the pH is controlled by adding a sulfuric acid aqueous solution. 前記酸性有機抽出剤が2-エチルヘキシルホスホン酸モノ-2-エチルヘキシルであることを特徴とする、請求項1~4のいずれか1項に記載の硫酸ニッケル水溶液の製造方法。 The method for producing an aqueous nickel sulfate solution according to any one of claims 1 to 4, wherein the acidic organic extractant is mono-2-ethylhexyl 2-ethylhexylphosphonate.
JP2020109470A 2020-06-25 2020-06-25 Production method of nickel sulfate aqueous solution Pending JP2022006900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020109470A JP2022006900A (en) 2020-06-25 2020-06-25 Production method of nickel sulfate aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020109470A JP2022006900A (en) 2020-06-25 2020-06-25 Production method of nickel sulfate aqueous solution

Publications (1)

Publication Number Publication Date
JP2022006900A true JP2022006900A (en) 2022-01-13

Family

ID=80110332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020109470A Pending JP2022006900A (en) 2020-06-25 2020-06-25 Production method of nickel sulfate aqueous solution

Country Status (1)

Country Link
JP (1) JP2022006900A (en)

Similar Documents

Publication Publication Date Title
FI125027B (en) Method of metal recycling from materials containing them
EA005464B1 (en) Method for recovering copper
JP5686258B2 (en) Solvent extraction method for obtaining high purity nickel sulfate
JP6471912B2 (en) Method for producing high purity cobalt sulfate aqueous solution
US8906220B2 (en) Method for production of metallic cobalt from the nickel solvent extraction raffinate
WO2013099551A1 (en) Method for producing cobalt sulfate
CN110352254B (en) Method for recovering iron from zinc sulfate solution
KR101021180B1 (en) Method for producing high purity cobalt surfate
EA020759B1 (en) Method of processing nickel bearing raw material
JP7251406B2 (en) Method for producing cobalt aqueous solution
US4042474A (en) Separating nickel, cobalt and chromium from iron in metallurgical products
JP6233478B2 (en) Purification method of bismuth
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
JP2004285368A (en) Method for refining cobalt aqueous solution
WO2018138917A1 (en) Bismuth purification method
WO2009050334A1 (en) Method for the hydrometallurgical processing of sulphidic material containing zinc and copper
US3787301A (en) Electrolytic method for producing high-purity nickel from nickel oxide ores
JP2022006900A (en) Production method of nickel sulfate aqueous solution
JP7360091B2 (en) Solvent extraction method and method for producing cobalt aqueous solution
JP4259165B2 (en) Purification method of aqueous nickel sulfate solution containing cobalt and calcium
KR20230028221A (en) Method for producing cobalt sulfate
JP7293976B2 (en) Scandium recovery method
JP2008106348A (en) Method of separating and recovering zinc
CN108754142B (en) Method for separating bismuth and iron and producing pure bismuth hydroxide by extraction-ammonia decomposition in bismuth and iron mixed solution
JPH1150167A (en) Production of high purity cobalt solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240417