JPH10310437A - Method for refining nickel sulfate containing cobalt - Google Patents

Method for refining nickel sulfate containing cobalt

Info

Publication number
JPH10310437A
JPH10310437A JP9126349A JP12634997A JPH10310437A JP H10310437 A JPH10310437 A JP H10310437A JP 9126349 A JP9126349 A JP 9126349A JP 12634997 A JP12634997 A JP 12634997A JP H10310437 A JPH10310437 A JP H10310437A
Authority
JP
Japan
Prior art keywords
nickel
organic phase
cobalt
nickel sulfate
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9126349A
Other languages
Japanese (ja)
Other versions
JP3440752B2 (en
Inventor
Susumu Makino
進 牧野
Naoyuki Tsuchida
直行 土田
Atsushi Kanesaka
淳 金坂
Masaki Imamura
正樹 今村
Kazuyuki Takaishi
和幸 高石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP12634997A priority Critical patent/JP3440752B2/en
Priority to US09/067,020 priority patent/US6149885A/en
Priority to CA002236125A priority patent/CA2236125C/en
Priority to GB9809290A priority patent/GB2324792B/en
Publication of JPH10310437A publication Critical patent/JPH10310437A/en
Application granted granted Critical
Publication of JP3440752B2 publication Critical patent/JP3440752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly purified nickel sulfate soln. and to effectively recover cobalt at the time of producing refined nickel sulfate from a crude nickel sulfate soln. by reducing the consumption of a neutralizer and the waste water treating cost and removing such impurities as cobalt, calcium, magnesium, iron, zinc, copper, sodium and ammonia contained in the crude nickel sulfate soln. SOLUTION: Nickel is extracted from a crude nickel sulfate soln. having high contents of sodium and ammonia with an acidic org. extractant to obtain a nickel-holding org. phase. The nickel-holding org. phase is cleaned with a nickel-contg. cleaning soln., the cleaned org. phase is allowed to react with an aq. crude nickel sulfate soln. having especially a high content of cobalt to substitute the nickel in the org. phase for the impurities in the aq. acrude nickel sulfate soln., and a refined nickel sulfate soln. and an org. phase concentrated in cobalt are obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コバルトを含む硫
酸ニッケルの精製方法に関するものであり、さらに詳細
にはコバルトを多く含む粗硫酸ニッケル溶液中からその
うちに含まれるアンモニア、ナトリウム、コバルト、
鉄、銅、亜鉛、カルシウム、マグネシウムなどの不純物
を除去して高純度の精製硫酸ニッケル溶液を得るととも
にコバルトを回収する方法に関するものである。
The present invention relates to a method for purifying nickel sulfate containing cobalt, and more particularly to ammonia, sodium, cobalt, and the like contained in a crude nickel sulfate solution containing a large amount of cobalt.
The present invention relates to a method for obtaining a high-purity purified nickel sulfate solution by removing impurities such as iron, copper, zinc, calcium, and magnesium, and for recovering cobalt.

【0002】[0002]

【従来の技術】ニッケルの工業的用途として、例えば一
般電解めっきのほか、コンピュータのハードデスク用ニ
ッケル無電解めっきなどに硫酸ニッケルが広く用いられ
ており、さらに最近では、二次電池用ニッケルにも原料
として硫酸ニッケルが多用されるようになってきてい
る。
2. Description of the Related Art Nickel sulfate is widely used in industrial applications of nickel, for example, in general electroplating, nickel electroless plating for computer hard disks, and more recently, nickel for secondary batteries. Nickel sulfate is increasingly used as a raw material.

【0003】しかしながら、これらの用途のうちには、
硫酸ニッケル不純物として含まれるアンモニア、ナトリ
ウム、コバルト、鉄、亜鉛、銅、カルシウム、マグネシ
ウムなどの含有を極力抑えなければならない場合が多
い。従来、粗硫酸ニッケルの精製は溶媒抽出法によって
行われており、一般には酸性抽出剤として、例えば有機
リン酸系の酸性抽出剤、すなわち酸性ホスホン酸エステ
ルや酸性ホスフィン酸エステルなどを使用し、該有機抽
出剤中に粗硫酸ニッケル溶液中の不純物を抽出分離して
精製する方法、または該抽出剤中にニッケルを抽出し、
ニッケルを含む有機相から硫酸逆抽出法により精製硫酸
ニッケル溶液を得る方法が採られているが、いずれの方
法を採用するにしても、酸性抽出剤を使用するときは、
原料溶液中の不純物またはニッケルを抽出するときに水
素イオンを放出するために、中和剤とし水酸化ナトリウ
ムやアンモニアの使用が必要となる。
However, among these uses,
In many cases, the content of ammonia, sodium, cobalt, iron, zinc, copper, calcium, magnesium and the like contained as nickel sulfate impurities must be minimized. Conventionally, crude nickel sulfate has been purified by a solvent extraction method. Generally, an acidic extractant such as an organic phosphoric acid-based acidic extractant, that is, an acidic phosphonate or an acid phosphinate is used. A method of extracting and separating impurities in a crude nickel sulfate solution into an organic extractant and purifying, or extracting nickel into the extractant,
Although a method of obtaining a purified nickel sulfate solution from a nickel-containing organic phase by a sulfuric acid back-extraction method has been adopted, no matter which method is employed, when using an acidic extractant,
In order to release hydrogen ions when extracting impurities or nickel in the raw material solution, it is necessary to use sodium hydroxide or ammonia as a neutralizing agent.

【0004】例えば、粗硫酸ニッケル溶液から不純物を
酸性抽出剤中に抽出する方法を採る場合には、抽出時の
pHを調節することにより通常ニッケルよりも低pH側
で抽出されるコバルト、カルシウム、鉄、亜鉛、銅など
を抽出剤中に抽出することによって、これらの不純物を
該抽出剤中に分離除去し、精製硫酸ニッケル溶液を得る
ことができるが、その抽出反応を行う際に必要な中和剤
中のNa、NH イオンが精製された硫酸ニッケル
水溶液中に混入し、これが精製硫酸ニッケル溶液を汚染
するので問題であった。
[0004] For example, when a method of extracting impurities from a crude nickel sulfate solution into an acidic extractant is employed, by adjusting the pH at the time of extraction, cobalt, calcium, which is usually extracted at a lower pH side than nickel, By extracting iron, zinc, copper, and the like into the extractant, these impurities can be separated and removed from the extractant to obtain a purified nickel sulfate solution. Na + and NH 4 + ions in the wetting agent were mixed in the purified aqueous solution of nickel sulfate, which was a problem because it contaminated the purified nickel sulfate solution.

【0005】一方、酸性抽出剤でこれらの不純物を含む
粗硫酸ニッケル溶液から、そのニッケル分のみを酸性抽
出剤中に抽出しようとすれば、ニッケルよりも低いpH
側で抽出される不純物元素も同時に抽出剤中に抽出され
てしまう。さらにニッケルの抽出と同時に一部のナトリ
ウム、アンモニアの抽出が起こることも避けられない
し、またさらに上記したように抽出pHの調整のため中
和剤の使用が避けられないので抽出完了後の有機相中に
はすべてのが混入を許すことになり、通常抽出後の有機
相中のニッケルを回収するために行われる硫酸を用いた
逆抽出操作を行うのみでは、これらの不純物元素の全部
を分離させることは困難である。
On the other hand, if an attempt is made to extract only the nickel component from a crude nickel sulfate solution containing these impurities with an acidic extractant into the acidic extractant, the pH is lower than that of nickel.
The impurity element extracted on the side is also extracted into the extractant at the same time. In addition, it is inevitable that some sodium and ammonia are extracted simultaneously with the extraction of nickel, and the use of a neutralizing agent to adjust the extraction pH is unavoidable as described above. All of them will be allowed to be mixed, and only by performing a back-extraction operation using sulfuric acid that is usually performed to recover nickel in the organic phase after extraction, all of these impurity elements can be separated. It is difficult.

【0006】そこで、ナトリウム、アンモニアは抽出有
機剤を強力に洗浄することによって分離し、その他の不
純物群は、硫酸逆抽出によって得られた硫酸ニッケル
を、異なる種類の抽出剤を使用して、それぞれを抽出分
離する再精製処理を繰り返し施さなければならなかっ
た。したがって、このような従来法においては、ニッケ
ル含有抽出有機剤の洗浄のために多量の洗浄水を必要と
するばかりでなく排水処理とこれに伴うニッケル損失が
考えられるし、さらにコバルトなどの他の不純物を除去
するために、異なる溶媒抽出設備を持つ必要があるな
ど、経済的著しく不利であった。また精製すべき粗硫酸
ニッケル溶液中に比較的多量にコバルトを含む場合に
は、精製後の有機相中に残存するコバルトは高価な有価
物であるので、これを効率的に回収することができれば
経済的に有利である。
Therefore, sodium and ammonia are separated by vigorously washing the extracted organic agent, and the other impurities are separated from nickel sulfate obtained by sulfuric acid back-extraction using different types of extractants. , A re-purification process for extracting and separating the same had to be repeated. Therefore, in such a conventional method, not only a large amount of washing water is required for washing the nickel-containing extraction organic agent, but also wastewater treatment and the accompanying nickel loss can be considered, and further, other nickel such as cobalt can be considered. In order to remove impurities, it was economically disadvantageous, for example, that it was necessary to have a different solvent extraction facility. Also, when a relatively large amount of cobalt is contained in the crude nickel sulfate solution to be purified, the cobalt remaining in the organic phase after purification is an expensive valuable material. Economically advantageous.

【0007】[0007]

【発明が解決しようとする課題】本発明は、コバルトを
多く含む粗硫酸ニッケル溶液から精製硫酸ニッケルを得
る場合に、溶媒抽出法による中和剤の使用量をや排水処
理費を削減しながら、原料粗硫酸ニッケル溶液に含まれ
るコバルト、カルシウム、マグネシウム、鉄、亜鉛、
銅、ナトリウム、アンモニアなどの不純物を除去し高純
度に精製された硫酸ニッケル溶液を得るとともに、コバ
ルトを効果的に回収する方法を提供することを目的とす
るものである。
SUMMARY OF THE INVENTION The present invention provides a method for obtaining purified nickel sulfate from a crude nickel sulfate solution containing a large amount of cobalt while reducing the amount of a neutralizing agent used in the solvent extraction method and the cost of wastewater treatment. Cobalt, calcium, magnesium, iron, zinc, contained in raw nickel sulfate solution
It is an object of the present invention to provide a method for removing nickel, sodium, ammonia, and other impurities to obtain a highly purified nickel sulfate solution, and to effectively recover cobalt.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明は、酸性有機抽出剤によりナトリウム、アン
モニアを多く含む粗硫酸ニッケル溶液からニッケルを抽
出してニッケル保持有機相を得る抽出工程と、該抽出工
程で得られたニッケル保持有機相をニッケル含有洗浄液
で洗浄する工程と、該洗浄工程で得られた洗浄後のニッ
ケル保持有機相をコバルトを多く含む硫酸ニッケル水溶
液と反応させ、前記ニッケル保持有機相中のニッケルと
前記粗硫酸ニッケル水溶液中のコバルトなどの不純物と
を置換させる工程とよりなり、該置換により精製硫酸ニ
ッケル溶液を得るとともにコバルトの濃縮した有機相を
得る硫酸ニッケルの精製方法を特徴とするものである。
In order to achieve the above object, the present invention provides an extraction step of extracting nickel from a crude nickel sulfate solution containing a large amount of sodium and ammonia with an acidic organic extractant to obtain a nickel-retaining organic phase. And washing the nickel-retaining organic phase obtained in the extraction step with a nickel-containing washing solution, and reacting the washed nickel-retaining organic phase obtained in the washing step with an aqueous solution of nickel sulfate containing a large amount of cobalt, A step of substituting nickel in the nickel-retaining organic phase with impurities such as cobalt in the crude nickel sulfate aqueous solution, thereby obtaining a purified nickel sulfate solution and obtaining a cobalt-concentrated organic phase by the substitution. The method is characterized by:

【0009】本発明において、置換工程で得られたコバ
ルトなどの不純物を含む有機相は、希硫酸によりニッケ
ルを選択的に逆抽出するニッケル選択逆抽出工程に送
り、該選択逆抽出工程で得られた硫酸ニッケル溶液を置
換工程において使用される不純物を含む硫酸ニッケル溶
液の一部として供給することが好ましい。また前記選択
抽出工程で得られたコバルトその他の不純物を含む有機
相は、塩酸によりコバルトを逆抽出するコバルト回収工
程に送り、前記有機相中のコバルトを塩酸コバルトとし
て回収することができる。
In the present invention, the organic phase containing impurities such as cobalt obtained in the substitution step is sent to a nickel selective back extraction step in which nickel is selectively back extracted with dilute sulfuric acid, and is obtained in the selective back extraction step. It is preferable to supply the nickel sulfate solution as a part of the nickel sulfate solution containing impurities used in the replacement step. Further, the organic phase containing cobalt and other impurities obtained in the selective extraction step can be sent to a cobalt recovery step of back-extracting cobalt with hydrochloric acid, and the cobalt in the organic phase can be recovered as cobalt hydrochloride.

【0010】また、コバルト回収後のコバルト以外の不
純物を有する有機相は洗浄後、硫酸を用いてコバルト以
外の不純物を硫酸中に逆抽出する不純物逆抽出工程に送
って前記抽出有機相中の前記不純物を硫酸中に除去し、
前記不純物逆抽出工程で得られた不純物を含まない有機
相の一部を抽出工程に還流し、該抽出工程における酸性
有機抽出剤として繰り返し使用することが好ましい。ま
た、前記不純物逆抽出工程で得られた不純物を含まない
抽出有機相の残部は、洗浄工程で得られたニッケル保持
有機相を希釈するために使用することができる。
Further, the organic phase having impurities other than cobalt after the recovery of cobalt is washed, and then sent to an impurity back-extraction step for back-extracting impurities other than cobalt into sulfuric acid using sulfuric acid, and the organic phase in the extracted organic phase is washed. Impurities in sulfuric acid,
It is preferable that a part of the organic phase containing no impurities obtained in the impurity back-extraction step is refluxed to the extraction step and used repeatedly as the acidic organic extractant in the extraction step. In addition, the remainder of the extracted organic phase containing no impurities obtained in the impurity back-extraction step can be used for diluting the nickel-retaining organic phase obtained in the washing step.

【0011】[0011]

【発明の実施の形態】本発明は上記したように、酸性有
機抽出剤によりナトリウム、アンモニアなどのニッケル
よりも高いpHで抽出される不純物を多く含む粗硫酸ニ
ッケル水溶液からニッケルを抽出してニッケル保持有機
相を得る抽出工程と、該抽出工程で得られたニッケル保
持有機相をニッケルを含む洗浄液で洗浄する工程と、該
洗浄工程で得られた洗浄後のニッケル保持有機相とその
一部を酸性有機抽出剤により希釈した希釈有機相とをコ
バルトを多く含む粗硫酸ニッケル水溶液と反応させて、
該粗硫酸ニッケル水溶液中の不純物と前記抽出有機相中
のニッケルとを置換する置換工程とからなることを特徴
とするコバルトを含む粗硫酸ニッケルの精製方法であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the present invention extracts nickel from a crude nickel sulfate aqueous solution containing a large amount of impurities extracted at a higher pH than nickel such as sodium and ammonia by using an acidic organic extractant to retain nickel. An extraction step of obtaining an organic phase, a step of washing the nickel-retaining organic phase obtained in the extraction step with a washing liquid containing nickel, and washing the nickel-retaining organic phase obtained in the washing step and a part thereof with an acid. Reacting the diluted organic phase diluted with the organic extractant with a crude nickel sulfate aqueous solution containing a large amount of cobalt,
A method for purifying crude nickel sulfate containing cobalt, which comprises a substitution step of replacing impurities in the crude nickel sulfate aqueous solution with nickel in the extracted organic phase.

【0012】以下、本発明の基本となる技術思想につい
て説明する。前述したように鉄、亜鉛、銅、コバルト、
ナトリウム、アンモニアなどを含む硫酸ニッケル溶液か
ら酸性有機抽出剤を用いて不純物またはニッケルを溶媒
抽出する場合には、いずれの場合においても中和剤とし
て一般に水酸化ナトリウム、アンモニアなどが使用され
るので、これらが精製される硫酸ニッケル溶液中に混入
することになり好ましくない。ところで、溶媒抽出の出
発原料となる粗硫酸ニッケル溶液には、その製造履歴に
よって、ナトリウム、アンモニアなど酸性抽出剤によっ
て溶媒抽出を行う際に、ニッケルよりも高いpHで抽出
される不純物を多く含むものと、コバルト、鉄、銅、亜
鉛、カルシウム、マグネシウムなどのニッケルよりも低
いpHで抽出される不純物を多く含むものとがある。本
発明は、粗硫酸ニッケル溶液に含まれる不純物の前記抽
出特性を利用して、溶媒抽出法と置換法を原料によって
使い分けることにより粗硫酸ニッケル溶液からの不純物
の除去と、前記粗硫酸ニッケル溶液中に含まれる有価
物、特にコバルトの回収を効率的に行うことにより総合
的に経済的に有利に精製硫酸ニッケルを得る方法を確立
したものである。
Hereinafter, the technical idea underlying the present invention will be described. As mentioned above, iron, zinc, copper, cobalt,
In the case where impurities or nickel are solvent-extracted from a nickel sulfate solution containing sodium, ammonia, or the like using an acidic organic extractant, in any case, sodium hydroxide, ammonia, or the like is generally used as a neutralizing agent. These are undesirably mixed into the nickel sulfate solution to be purified. By the way, the crude nickel sulfate solution, which is a starting material for solvent extraction, contains a large amount of impurities extracted at a higher pH than nickel when performing solvent extraction with an acidic extractant such as sodium or ammonia due to its production history. And those containing more impurities extracted at a lower pH than nickel, such as cobalt, iron, copper, zinc, calcium, and magnesium. The present invention utilizes the above-described extraction characteristics of impurities contained in the crude nickel sulfate solution to remove impurities from the crude nickel sulfate solution by selectively using a solvent extraction method and a substitution method depending on the raw material. The present invention has established a method for obtaining purified nickel sulfate in a comprehensive and economically advantageous manner by efficiently recovering valuable substances, particularly cobalt, contained in the nickel.

【0013】すなわち、本発明においては、先ず抽出工
程において、酸性有機抽出剤を用いてナトリウム、アン
モニアなどのニッケルよりも高いpHで抽出される不純
物を多く含む粗硫酸ニッケル溶液中のニッケルを溶媒抽
出法により有機抽出剤中に抽出してナトリウム、アンモ
ニアなどの少ないニッケル保持有機相を調製し、このニ
ッケル保持有機相とコバルトなどのニッケルよりも低い
pHで抽出される不純物を多くふくむ粗硫酸ニッケル溶
液とを反応させて、前記ニッケル保持有機相中のニッケ
ル分と粗硫酸ニッケル溶液中のコバルトなどの不純物と
を置換させ、該粗硫酸ニッケル溶液中のこれら不純物の
大部分を有機相に移行させることにより、粗硫酸ニッケ
ル溶液中から不純物を分離除去するようにしたものであ
る。
That is, in the present invention, first, in the extraction step, nickel in a crude nickel sulfate solution containing more impurities such as sodium and ammonia extracted at a higher pH than nickel using an acidic organic extractant is subjected to solvent extraction. A crude nickel sulfate solution that contains a large amount of impurities extracted at a lower pH than nickel, such as sodium and ammonia, by extracting into an organic extractant to prepare a nickel-retaining organic phase containing less sodium and ammonia. To replace the nickel component in the nickel-containing organic phase with impurities such as cobalt in the crude nickel sulfate solution, and transfer most of these impurities in the crude nickel sulfate solution to the organic phase. Thus, impurities are separated and removed from the crude nickel sulfate solution.

【0014】このような本発明によるときは、中和剤の
使用を必要とする酸性抽出剤によるニッケルの抽出工程
は、次の置換工程でその中に含まれるニッケルと粗硫酸
ニッケル溶液中の不純物とを置換させるためニッケルを
有機相に含ませたニッケル保持有機剤の調製のために行
われるのであり、したがって単に粗硫酸ニッケル溶液か
ら溶媒抽出法のみによりニッケルの抽出を行う従来の粗
硫酸ニッケル溶液の精製法と異なり、中和剤の使用量や
その後に行われる廃液処理費を大幅に軽減することがで
き、かつ置換工程では中和剤を使用することがないの
で、置換工程から得られる精製硫酸ニッケル溶液中に
は、少なくとも中和剤の使用によるナトリウム、アンモ
ニウムの混入を避けることができる。その上、本発明に
よるときは、置換工程を行うことにより、不純物中のコ
バルトを多く含む粗硫酸ニッケル溶液から、含まれるコ
バルトを置換工程で得られた有機相中に濃縮することが
でき、その後に行われるコバルト回収工程で効率的なコ
バルト回収を行うことができるので粗硫酸ニッケル溶液
の精製における総合的な経済効果を高めることができ
る。
According to the present invention, the step of extracting nickel with an acidic extractant that requires the use of a neutralizing agent is performed by the following substitution step, in which nickel contained therein and impurities in the crude nickel sulfate solution are removed. Is carried out to prepare a nickel-retaining organic agent in which nickel is contained in an organic phase in order to replace the crude nickel sulfate solution. Unlike the purification method, the amount of the neutralizing agent used and the wastewater treatment cost to be performed thereafter can be significantly reduced, and the neutralization agent is not used in the replacement step. In the nickel sulfate solution, it is possible to avoid at least the incorporation of sodium and ammonium due to the use of the neutralizing agent. In addition, according to the present invention, by performing the substitution step, from the crude nickel sulfate solution containing a large amount of cobalt in the impurities, the contained cobalt can be concentrated in the organic phase obtained in the substitution step, and thereafter, In the cobalt recovery step performed in step (1), efficient cobalt recovery can be performed, so that the overall economic effect in the purification of the crude nickel sulfate solution can be increased.

【0015】図1は、本発明の硫酸ニッケル精製方法の
概略工程図を示したものである。以下、図1に従って本
発明を工程順に説明する。抽出工程は、酸性有機抽出剤
により溶媒抽出法で粗硫酸ニッケル溶液中のニッケルを
抽出し、ニッケル保持有機相を調製する工程である。し
たがってニッケル源としては、硫酸ニッケル溶液のほ
か、塩化ニッケル溶液、硝酸ニッケル溶液などを使用す
ることも可能であるが、本発明の目的およびその入手性
から粗硫酸ニッケル溶液を使用するのが妥当である。ニ
ッケルの抽出には、従来この種の溶媒抽出法において使
用される一般的な多段向流溶媒抽出槽、例えば向流多段
ミキサーセトラーなどが用いられ、その最上段に酸性有
機抽出剤を供給し、最下段に原料粗硫酸ニッケル溶液を
供給して向流で抽出反応を行わせる。酸性有機抽出剤と
しては、抽出剤としては、例えばCyanex 27
2、D2EHPA、PC−88Aなどの有機リン酸系の
酸性有機抽出剤を使用すればよい。
FIG. 1 shows a schematic process chart of the nickel sulfate refining method of the present invention. Hereinafter, the present invention will be described in the order of steps with reference to FIG. The extraction step is a step of extracting nickel in the crude nickel sulfate solution by a solvent extraction method with an acidic organic extractant to prepare a nickel-retaining organic phase. Therefore, as the nickel source, in addition to the nickel sulfate solution, a nickel chloride solution, a nickel nitrate solution, and the like can be used. However, it is appropriate to use a crude nickel sulfate solution in view of the object of the present invention and its availability. is there. For the extraction of nickel, a general multistage countercurrent solvent extraction tank conventionally used in this type of solvent extraction method, for example, a countercurrent multistage mixer settler or the like is used, and an acidic organic extractant is supplied to the uppermost stage thereof. The raw material crude nickel sulfate solution is supplied to the lowermost stage to cause an extraction reaction in countercurrent. As the acidic organic extractant, as the extractant, for example, Cyanex 27
2, an organic acid-based acidic organic extractant such as D2EHPA or PC-88A may be used.

【0016】抽出を行うに際しては、ニッケルを抽出残
液に可及的に残さないためには、抽出反応時のpHを従
来行われているニッケル抽出pHの5.5〜6.5より
も高い6.5〜7.0のpH範囲で行わせることが望ま
しい。また、抽出後のニッケル保持抽出有機相における
ニッケル濃度をできるだけ高く保持することが望まし
い。これは、高pHでの抽出により、ナトリウム、アン
モニアなどの同時抽出が起こり易くなるが、有機相中の
ニッケル濃度を高くし、酸性有機抽出剤が元来保有する
ニッケル保持化学量論量を超える量とするときは、ニッ
ケルと同時に抽出有機相中に抽出されるナトリウム、ア
ンモニウムの量を抑制することができるという本発明者
らの新しい知見によるものである。したがって抽出工程
に供給する酸性有機抽出剤の供給量は、必要最小限にと
どめる必要がある。なお、このニッケル保持有機相中に
は粗硫酸ニッケル溶液中に含まれるコバルト、鉄、銅、
亜鉛、カルシウム、マグネシウムなどのニッケルよりも
低pHで有機相中に抽出される不純物の大部分が同時抽
出され含まれている。
In performing the extraction, the pH at the time of the extraction reaction should be higher than the conventional nickel extraction pH of 5.5 to 6.5 in order not to leave nickel as much as possible in the extraction residue. It is desirable to work in the pH range of 6.5 to 7.0. Further, it is desirable to maintain the nickel concentration in the extracted and retained organic phase as high as possible. This means that simultaneous extraction of sodium, ammonia, etc. is likely to occur due to extraction at high pH, but increases the nickel concentration in the organic phase and exceeds the nickel retention stoichiometry originally held by the acidic organic extractant. The amount is based on a new finding by the present inventors that the amount of sodium and ammonium extracted into the extracted organic phase simultaneously with nickel can be suppressed. Therefore, the supply amount of the acidic organic extractant to be supplied to the extraction step needs to be kept to a necessary minimum. The nickel-retaining organic phase contained cobalt, iron, copper, and the like contained in the crude nickel sulfate solution.
Most of the impurities extracted into the organic phase at a lower pH than nickel such as zinc, calcium and magnesium are co-extracted and contained.

【0017】抽出工程で得られたニッケル保持有機相は
洗浄工程に送られる。洗浄工程では該ニッケル保持有機
相はニッケル含有溶液で洗浄される。洗浄液としてニッ
ケル含有溶液を用いるのは、洗浄液中のニッケルと有機
剤中のナトリウム、アンモニウムの置換反応が行われ、
ニッケル保持有機剤からのナトリウム、アンモニウムの
除去が促進されるので、ニッケルを含まない通常の洗浄
水を使用するよりも効率的なナトリウム、アンモニアの
除去を行うことができるからである。一般的には洗浄工
程に供給する洗浄液はニッケル分がNi10〜20g/
リットルになるように硫酸ニッケル溶液を水で希釈した
ものを用いるが、溶液中のナトリウム、アンモニア濃度
によってその希釈倍率の調整を行えばよい。この洗浄工
程で排出される洗浄廃液は、そのまま抽出槽に還流させ
ることができるので特別な廃液処理を施さなくてよい。
The nickel-bearing organic phase obtained in the extraction step is sent to a washing step. In the washing step, the nickel-bearing organic phase is washed with a nickel-containing solution. The use of a nickel-containing solution as a cleaning solution involves a substitution reaction between nickel in the cleaning solution and sodium and ammonium in the organic agent,
This is because the removal of sodium and ammonium from the nickel-containing organic agent is promoted, so that the removal of sodium and ammonia can be performed more efficiently than using ordinary washing water containing no nickel. Generally, the cleaning liquid supplied to the cleaning step has a nickel content of 10 to 20 g / Ni.
A solution obtained by diluting a nickel sulfate solution with water so that the volume becomes 1 liter is used. The dilution ratio may be adjusted according to the sodium and ammonia concentrations in the solution. Since the washing waste liquid discharged in this washing step can be returned to the extraction tank as it is, no special waste liquid treatment is required.

【0018】洗浄工程を経たニッケル保持有機相は置換
工程に送られる。該置換工程では、少なくとも3段の反
応槽を備えた多段連続向流反応槽、例えば多段向流ミキ
サーセトラーなどが使用される。置換反応に3段向流ミ
キサーセトラーを使用し、その最上段、すなわち1段目
のミキサーセトラーにニッケル保持有機相を供給し、最
下段、すなわち3段目のミキサーセトラーに精製しよう
とするコバルトを主体とした不純物を含む粗硫酸ニッケ
ル溶液を供給して両者を向流的に反応させる。このよう
にすると該粗硫酸ニッケル溶液中のコバルト、鉄、亜
鉛、銅、カルシウム、マグネシウムなどの不純物とニッ
ケル保持有機相中のニッケルが置換反応によって交換さ
れ、該有機相中のニッケルは水相中に、また粗硫酸ニッ
ケル溶液中のコバルトなどの不純物は有機剤相中へとそ
れぞれ移行し、高純度に精製された精製硫酸ニッケル溶
液を得ることができる。
The nickel-bearing organic phase that has undergone the washing step is sent to the replacement step. In the replacement step, a multi-stage continuous counter-current reaction tank having at least three-stage reaction tanks, for example, a multi-stage counter-current mixer settler is used. Using a three-stage countercurrent mixer settler for the substitution reaction, the top stage, ie, the first stage mixer settler, is supplied with the nickel-retaining organic phase, and the bottom stage, ie, the third stage mixer settler, is charged with cobalt to be purified. A crude nickel sulfate solution containing impurities as a main component is supplied to cause a countercurrent reaction between the two. In this manner, impurities in the crude nickel sulfate solution, such as cobalt, iron, zinc, copper, calcium, and magnesium, and nickel in the nickel-retaining organic phase are exchanged by a substitution reaction, and nickel in the organic phase is converted into an aqueous phase. In addition, impurities such as cobalt in the crude nickel sulfate solution move into the organic agent phase, respectively, and a highly purified purified nickel sulfate solution can be obtained.

【0019】この場合において、ニッケル保持有機相は
その中に含まれる不純物濃度が過度に高いと、水相中の
不純物濃度が低くなったときに不純物の水相からのニッ
ケル保持有機相への移行率が低下するので、該ニッケル
保持有機相中の不純物濃度を下げておくことが必要であ
る。このため該ニッケル保持抽出有機相の一部を、同種
の有機相組成をもつ新しい酸性有機抽出剤、または置換
工程で得られた不純物を含む有機相から逆抽出により不
純物を取り除いた後の有機相で希釈して置換反応に預か
るニッケル保持有機剤中の不純物濃度を調整することが
好ましい。また、この種の酸性有機抽出剤を使用した反
応系においては、工程中の有機相におけるコバルト濃度
が11g/リットルを超えると有機相の粘性が急激に大
きくなり、有機相と水相の分離性が低下し、置換反応を
進めることが困難となることが本発明者らの行った実験
により確認されている。したがって置換工程に供給する
ニッケル保持有機相の希釈操作を行うことは、有機相中
へのコバルト濃度が最も高くなる置換反応の最終段階で
の有機相中のコバルト濃度が11g/リットルを超えな
いようにする意味からも重要なことである。
In this case, if the concentration of impurities contained in the nickel-supporting organic phase is excessively high, the transition of the impurities from the aqueous phase to the nickel-holding organic phase occurs when the impurity concentration in the aqueous phase decreases. Therefore, it is necessary to reduce the impurity concentration in the nickel-supporting organic phase. For this reason, a part of the nickel-retained extracted organic phase is replaced with a new acidic organic extractant having the same kind of organic phase composition, or the organic phase after removing impurities by back extraction from the organic phase containing impurities obtained in the substitution step. It is preferable to adjust the concentration of impurities in the nickel-supporting organic agent which is diluted with and subjected to the substitution reaction. In a reaction system using this kind of acidic organic extractant, when the cobalt concentration in the organic phase in the process exceeds 11 g / liter, the viscosity of the organic phase sharply increases, and the separation between the organic phase and the aqueous phase becomes difficult. It has been confirmed by experiments conducted by the present inventors that the concentration of the compound decreases and the substitution reaction becomes difficult to proceed. Therefore, the operation of diluting the nickel-supporting organic phase supplied to the substitution step is performed so that the cobalt concentration in the organic phase at the final stage of the substitution reaction at which the cobalt concentration in the organic phase becomes the highest does not exceed 11 g / liter. It is important from the point of view.

【0020】置換工程でのニッケルと不純物の置換反応
はpH4〜5の範囲で行うのが適切である。この場合に
は、先の抽出工程での抽出反応とは異なり抽出剤からの
水素イオンの放出がないので中和剤を使用してpHの調
節を行わずに常に適正なpHを維持することができる。
したがってこの場合においては、通常の酸性抽出剤を使
用した溶媒抽出による抽出工程と異なり抽出剤からの水
素イオンの放出がないので、中和剤を使用しなくても通
常そのpHは4〜6の範囲に保たれるので、中和剤の使
用による精製硫酸ニッケル溶液中へのナトリウム、アン
モニウムの混入を避けることができる。
The substitution reaction between nickel and impurities in the substitution step is suitably carried out at a pH of 4 to 5. In this case, unlike the extraction reaction in the previous extraction step, since there is no release of hydrogen ions from the extractant, it is possible to always maintain an appropriate pH without adjusting the pH using a neutralizing agent. it can.
Therefore, in this case, unlike the extraction step by solvent extraction using a normal acidic extractant, there is no release of hydrogen ions from the extractant, so that the pH is usually 4 to 6 without using a neutralizing agent. Since it is kept within the range, it is possible to avoid mixing of sodium and ammonium into the purified nickel sulfate solution by using a neutralizing agent.

【0021】精製硫酸ニッケル溶液は、通常は濃縮操作
を行うことにより硫酸ニッケル結晶として回収されるの
で、置換工程で得られた精製硫酸ニッケル溶液中のニッ
ケル濃度は可及的に高く維持されることが望ましい。ま
た不純物を含む粗硫酸ニッケル溶液をニッケル保持有機
相と置換反応させるとき、該ニッケル保持有機相中のニ
ッケル量は置換すべき不純物当量よりもある程度高くな
ければ該ニッケル保持有機相中のニッケルの水相、つま
り硫酸ニッケル溶液への置換による移行が困難になり、
不純物との置換反応の進行が妨げられる。したがってニ
ッケル保持有機相中のニッケル濃度は置換反応後に得ら
れる有機相中にある程度の量のニッケルが残留する程度
の過剰量にすることが望ましい。本発明者らの実験によ
れば、置換工程に供給するニッケル保持有機相中のニッ
ケル濃度を供給粗硫酸ニッケル溶液中に存在する置換す
べき不純物量の1.3当量以上とした場合に、置換反応
後に排出される有機相中に残留するニッケル量は3g/
リットル程度となり、このとき置換反応は円滑に行われ
ること、ニッケル量が1.3当量以下になると、置換反
応でのpHが4以下となり、置換反応が進行しなくなる
ことが確認された。なお、ここでいう置換すべき不純物
量とは、粗硫酸ニッケル溶液中に含まれ、溶媒抽出を酸
性有機抽出剤で行うに際してニッケルよりも低いpHで
抽出されるような不純物、例えばコバルト、鉄、亜鉛、
銅、コバルト、カルシウム、マグネシウムなどの不純物
の総量をいう。
Since the purified nickel sulfate solution is usually recovered as nickel sulfate crystals by performing a concentration operation, the nickel concentration in the purified nickel sulfate solution obtained in the replacement step should be maintained as high as possible. Is desirable. When the crude nickel sulfate solution containing impurities is subjected to the substitution reaction with the nickel-retaining organic phase, the amount of nickel in the nickel-retaining organic phase must be somewhat higher than the equivalent of the impurity to be substituted. Phase, i.e., the transfer by replacement with nickel sulfate solution becomes difficult,
The progress of the substitution reaction with impurities is hindered. Therefore, it is desirable that the nickel concentration in the nickel-supporting organic phase be an excessive amount such that a certain amount of nickel remains in the organic phase obtained after the substitution reaction. According to the experiments of the present inventors, when the nickel concentration in the nickel-retaining organic phase supplied to the substitution step is set to 1.3 equivalents or more of the amount of impurities to be substituted present in the supplied crude nickel sulfate solution, the substitution is performed. The amount of nickel remaining in the organic phase discharged after the reaction was 3 g /
It was confirmed that the substitution reaction was carried out smoothly at this time, and that when the amount of nickel became 1.3 equivalents or less, the pH in the substitution reaction became 4 or less and the substitution reaction did not proceed. Here, the amount of impurities to be replaced means impurities contained in the crude nickel sulfate solution and extracted at a lower pH than nickel when solvent extraction is performed with an acidic organic extractant, for example, cobalt, iron, or the like. zinc,
It refers to the total amount of impurities such as copper, cobalt, calcium, and magnesium.

【0022】置換反応で得られた精製硫酸ニッケル溶液
は、そのままで、または濃縮して硫酸ニッケル結晶とし
て製品とすることができる。また不純物を含む有機相
は、順次ニッケル逆抽出工程、コバルト回収工程、回収
後洗浄工程、最終逆抽出工程などの一連の回収工程に送
り、有機相中に含まれる残留ニッケル分の回収、ニッケ
ル以外の重要な回収有価物として評価されるコバルトを
回収およびコバルト以外の不純物の除去を行うことによ
って有機相の清浄化を行い、この有機相を再びニッケル
抽出工程で粗硫酸ニッケル溶液からニッケル保持有機相
を調製するための酸性有機抽出剤および置換工程に送ら
れる洗浄後のニッケル保持有機相の希釈剤として使用に
供することができるので経済的である。
The purified nickel sulfate solution obtained by the substitution reaction can be used as it is or concentrated to produce nickel sulfate crystals as a product. In addition, the organic phase containing impurities is sequentially sent to a series of recovery steps such as a nickel back extraction step, a cobalt recovery step, a post-collection washing step, and a final back extraction step. The organic phase is purified by recovering cobalt, which is evaluated as an important recovery valuable material, and removing impurities other than cobalt. This organic phase is again extracted from the crude nickel sulfate solution by the nickel extraction step. It is economical because it can be used as an acidic organic extractant for the preparation of the organic phase and a diluent for the washed nickel-retaining organic phase sent to the displacement step.

【0023】ニッケル逆抽出工程では、硫酸を使用して
pHを4.0付近で反応させることにより、有機相中の
残留ニッケルの大部分は選択的に硫酸中に抽出される。
ニッケル逆抽出工程で得られ水相は硫酸ニッケル主体の
溶液であるから、そのまま置換工程へ還流使用すること
ができる。
In the nickel back-extraction step, most of the residual nickel in the organic phase is selectively extracted into sulfuric acid by reacting with sulfuric acid at a pH of around 4.0.
Since the aqueous phase obtained in the nickel back-extraction step is a solution mainly composed of nickel sulfate, it can be directly refluxed to the substitution step.

【0024】ニッケルを逆抽出した後の有機相は、コバ
ルト回収工程に送られ、ここでニッケル以外の回収有価
物として評価されるコバルトを塩酸を使用してpHを
1.4〜2.0の範囲に調整することで塩酸中に逆抽出
し、塩化コバルト溶液として回収することができる。な
お、この塩化コバルト溶液中には、カルシウム、マグネ
シウム、銅、亜鉛などが同時に逆抽出されて含まれるの
でさらなる精製が必要である。コバルト回収後の有機相
は、希硫酸による洗浄を行った後、最終逆抽出工程に送
られ、ここで3〜6Nの硫酸を使用して有機相中に残存
する鉄、亜鉛などの不純物を除去する。このようにして
一連の回収工程を経ることにより有機相は、浄化され、
清浄な酸性有機抽出剤として再生させることができる。
The organic phase after the nickel is back-extracted is sent to a cobalt recovery step, where cobalt, which is evaluated as a valuable resource other than nickel, is adjusted to a pH of 1.4 to 2.0 using hydrochloric acid. By adjusting to a range, it can be back-extracted into hydrochloric acid and recovered as a cobalt chloride solution. The cobalt chloride solution needs to be further purified because calcium, magnesium, copper, zinc and the like are simultaneously back-extracted and contained. The organic phase after the recovery of cobalt is washed with dilute sulfuric acid and sent to the final back-extraction step where 3 to 6N sulfuric acid is used to remove impurities such as iron and zinc remaining in the organic phase. I do. The organic phase is thus purified through a series of recovery steps,
It can be regenerated as a clean acidic organic extractant.

【0025】以上述べたように、本発明においては、ナ
トリウム、アンモニウムを含む粗硫酸ニッケル溶液を
6.5〜7.0の高pHでの酸性有機抽出剤よるニッケ
ルの抽出を行い、その際に該酸性有機抽出剤の保有する
ニッケル保持化学量論量以上の量のニッケルを有機相中
に保持させることにより、該有機相への該粗硫酸ニッケ
ル溶液中のナトリウム、アンモニウムの同時抽出を抑制
するようにしてニッケル保持有機相の調製を行い、しか
る後該ニッケル保持有機相とコバルトを多く含む粗硫酸
ニッケル溶液とを反応させることによって、ニッケル保
持有機相中のニッケルと粗硫酸ニッケル溶液中に含まれ
るコバルト、鉄、亜鉛、銅、カルシウム、マグネシウム
などの不純物とを置換させて該粗硫酸ニッケル溶液の精
製を行うものであり、これにより、中和剤の使用量や廃
液処理費を削減しつつ高純度の精製硫酸ニッケル溶液を
得ることができる上に、粗硫酸ニッケル溶液中に含まれ
るコバルトを該置換工程により得られる有機相中に濃縮
して得ることができるので、その後行われるコバルト回
収工程において効果的なコバルト回収を行うことがで
き、経済的に極めて有利である。
As described above, in the present invention, a crude nickel sulfate solution containing sodium and ammonium is subjected to nickel extraction with an acidic organic extractant at a high pH of 6.5 to 7.0. Simultaneous extraction of sodium and ammonium in the crude nickel sulfate solution into the organic phase is suppressed by holding nickel in the organic phase in an amount equal to or greater than the stoichiometric amount of nickel held by the acidic organic extractant. The nickel-retaining organic phase is prepared as described above, and then the nickel-retaining organic phase is reacted with a crude nickel sulfate solution containing a large amount of cobalt, whereby the nickel contained in the nickel-retaining organic phase and the crude nickel sulfate solution are contained. To purify the crude nickel sulfate solution by substituting impurities such as cobalt, iron, zinc, copper, calcium, and magnesium. As a result, it is possible to obtain a high-purity purified nickel sulfate solution while reducing the amount of the neutralizing agent used and the waste liquid treatment cost, and it is also possible to reduce the cobalt contained in the crude nickel sulfate solution by the organic phase obtained by the substitution step. Since it can be obtained by concentrating it inside, effective cobalt recovery can be performed in the subsequent cobalt recovery step, which is extremely economically advantageous.

【0026】[0026]

【実施例】以下に本発明の実施例について説明する。 実施例1 本実施例においては、ニッケル保持有機相を得るための
抽出工程でのニッケルの抽出条件と洗浄工程におけるナ
トリウムとアンモニウムの除去効果の関係について検証
するための実験を行った。実験には、酸性有機抽出剤と
してPC−88A(大八化学社製)をクリーンソルG
(日本石油社製)で20%(V/V)に希釈たものを用
い、抽出実験ではミキサー部の有効容積が1.72リッ
トル、セトラー部の容積が10.3リットルのミキサー
セトラーを2連用いた連続向流2段のミキサーセトラー
を用い、1段目のミキサーセトラーに酸性有機抽出剤
を、2段目のミキサーセトラーにナトリウムを含む硫酸
ニッケル溶液を導入して、該酸性有機抽出剤を用いて該
硫酸ニッケル溶液からニッケルを向流抽出した。
Embodiments of the present invention will be described below. Example 1 In this example, an experiment was conducted to verify the relationship between the nickel extraction conditions in the extraction step for obtaining a nickel-retaining organic phase and the sodium and ammonium removal effects in the washing step. In the experiment, PC-88A (manufactured by Daihachi Chemical Co., Ltd.) was used as an acidic organic extractant, and Cleansol G was used.
(Nippon Oil Co., Ltd.) diluted to 20% (V / V) was used. In the extraction experiment, a mixer setter with an effective volume of 1.72 liters and a settler portion of 10.3 liters was used in duplicate. Using a two-stage continuous countercurrent mixer settler, an acidic organic extractant was introduced into the first-stage mixer settler, and a nickel sulfate solution containing sodium was introduced into the second-stage mixer settler, and the acidic organic extractant was used. The nickel was then countercurrently extracted from the nickel sulfate solution.

【0027】このときの抽出反応のpHは7.2および
7.0とし、pH調整のための中和剤としては、200
g/リットルの苛性ソーダを使用した。また抽出反応の
温度は40℃とし、各ミキサーセトラーを同温度の温水
中に保持することにより温度を一定に保持した。また本
抽出実験では2段目のミキサーセトラーに導入するナト
リウムを含む硫酸ニッケル溶液のニッケル濃度を9.3
〜34.6g/リットルの範囲で変化させたが、ナトリ
ウムの濃度は0.53g/リットルと一定にした。ま
た、該硫酸ニッケル溶液の流量は、洗浄後に得られる抽
出有機ニッケル濃度を変えるために、7.3リットル/
hrから10.0リットル/hrまで変化させた。これ
らの操作の結果、抽出実験において供給されるナトリウ
ムを含む硫酸ニッケル溶液により抽出工程に供給される
ナトリウムの量は3.9〜5.4g/hrとなった。
At this time, the pH of the extraction reaction was 7.2 and 7.0, and the neutralizing agent for adjusting the pH was 200
g / liter of caustic soda was used. The temperature of the extraction reaction was set at 40 ° C., and the temperature was kept constant by keeping each mixer settler in hot water at the same temperature. In this extraction experiment, the nickel concentration of the sodium sulfate solution containing sodium introduced into the second-stage mixer settler was 9.3.
The concentration was varied in the range of 3434.6 g / liter, but the concentration of sodium was kept constant at 0.53 g / liter. Also, the flow rate of the nickel sulfate solution was 7.3 liter / liter in order to change the concentration of the extracted organic nickel obtained after the washing.
hr to 10.0 liters / hr. As a result of these operations, the amount of sodium supplied to the extraction step with the sodium sulfate solution containing sodium supplied in the extraction experiment was 3.9 to 5.4 g / hr.

【0028】また、これに続く洗浄実験では、洗浄槽と
して抽出実験と同仕様のミキサーセトラーを3連用いた
連続向流3段のミキサーセトラーを使用し、抽出実験で
得られたニッケル保持有機相を1段目のミキサーセトラ
ーに導入し、ニッケル含有洗浄液を3段目のミキサーセ
トラーに導入して該ニッケル保持有機相を洗浄した。表
1に抽出工程で得られたニッケル保持有機相のニッケル
濃度、抽出工程から洗浄工程に供給されるニッケル保持
有機相の流量、洗浄工程に導入される洗浄液の流量およ
びニッケル濃度、洗浄工程に供給される総ニッケル量、
洗浄後の抽出残液中のニッケル濃度、該残液の流量およ
び抽出時のpHについての測定結果を示した。また、表
2に洗浄実験後のニッケル保持有機相のニッケルおよび
ナトリウム濃度、洗浄比(有機相の流量/洗浄液の流
量)、洗浄液のNa/Ni分配比および供給洗浄廃液の
Na/Ni分配比ならびにナトリウムの除去率について
測定結果を示した。
In the subsequent washing experiment, a three-stage continuous countercurrent mixer settler using three mixer setters having the same specifications as the extraction experiment was used as the washing tank, and the nickel-retaining organic phase obtained in the extraction experiment was used. The nickel-containing organic phase was washed by introducing it to the first-stage mixer settler and introducing the nickel-containing washing solution to the third-stage mixer settler. Table 1 shows the nickel concentration of the nickel-retaining organic phase obtained in the extraction step, the flow rate of the nickel-retaining organic phase supplied from the extraction step to the cleaning step, the flow rate and the nickel concentration of the cleaning solution introduced into the cleaning step, and the supply to the cleaning step. Total nickel content,
The results of measurement of the nickel concentration in the extraction residue after washing, the flow rate of the residue, and the pH during extraction are shown. Table 2 shows the nickel and sodium concentrations of the nickel-retaining organic phase after the washing experiment, the washing ratio (the flow rate of the organic phase / the flow rate of the washing solution), the Na / Ni distribution ratio of the washing solution, and the Na / Ni distribution ratio of the supply washing waste liquid, and The measurement results were shown for the sodium removal rate.

【0029】[0029]

【表1】 抽出後有機 抽出後有機 洗浄液 洗浄後Ni 抽出残液 抽出相のNi濃度 相の流量 流量 Ni濃度 総供給量 Ni濃度 流量 pH Ni(g/l) (l/hr) (l/nr) (g/l) (g/hr) (g/l) (l/hr) 30.4 11.8 5.28 16.8 347.9 0.01 15.0 7.2 26.7 14.3 5.40 18.1 382.2 0.02 15.1 7.0 21.1 18.1 5.40 18.8 382.2 0.08 15.1 7.0 15.1 9.53 7.02 7.37 144.7 0.04 17.6 7.0 12.6 18.0 6.00 18.1 226.2 0.01 14.1 7.0 [Table 1] Extraction flow rate Ni concentration total supply of Ni concentration phase after organic extraction after organic washes washing after Ni raffinate extraction phase Ni concentration flow pH Ni (g / l) ( l / hr) (l / nr) (g / l) (g / hr) (g / l) (l / hr ) 30.4 11.8 5.28 16.8 347.9 0.01 15.0 7.2 26.7 14.3 5.40 18.1 382.2 0.02 15.1 7.0 21.1 18.1 5.40 18.8 382.2 0.08 15.1 7.0 15.1 9.53 7.02 7.37 144.7 0.04 17.6 7.0 12.6 18.0 6.00 18.1 226.2 0.01 14.1 7.0

【0030】[0030]

【表2】 洗浄後有機相中 洗浄液 Na除去率 Ni濃度 Na濃度 洗浄比 Na/Ni Na/Ni (g/l) (g/l) (ppm) (ppm) (%) 30.4 0.0005 0.45 16 1.4x104 99.9 26.7 0.004 0.38 150 1.2x104 98.7 21.1 0.003 0.30 199 1.2x104 98.8 15.1 0.009 0.74 596 3.7x104 98.4 12.6 0.51 0.33 4.0x104 1.7x104 [Table 2] Washing solution in organic phase after washing Na removal rate Ni concentration Na concentration Washing ratio Na / Ni Na / Ni (g / l) (g / l) (ppm) (ppm) (%) 30.4 0.0005 0.45 16 1.4x10 4 99.9 26.7 0.004 0.38 150 1.2x10 4 98.7 21.1 0.003 0.30 199 1.2x10 4 98.8 15.1 0.009 0.74 596 3.7x10 4 98.4 12.6 0.51 0.33 4.0x10 4 1.7x10 4

【0031】表1の洗浄後の抽出残液中のニッケル濃度
から分かるように抽出反応時のpHを7付近にするとき
は、硫酸ニッケル溶液中び含まれるニッケルの大部分を
抽出することができ、その抽出率は99.5%以上の高
い値となる。また表2の結果から、ナトリウムの除去に
関していえば、洗浄工程に供給されるニッケル保持有機
相中に保持されるニッケル濃度を高くするほど、効率的
なナトリウム除去を行い得ることが分かる。すなわちニ
ッケル保持有機相中のニッケル濃度が20g/リットル
付近より高い値では、ナトリウムの除去率はほぼ90%
以上となるのに対し、15g/リットル付近よりも低く
なると洗浄液量を増加させて洗浄比を高くしても、ニッ
ケル量を増加させてNa/Ni分配比を高くして有機相
中のナトリウムと洗浄液中のニッケルとの置換反応を促
進させても、ナトリウム除去率の向上は期待できない。
これは、抽出反応のpHが7付近であるときは、抽出有
機相中のニッケル保持濃度を高くするほど抽出時に原料
粗硫酸ニッケル溶液から抽出有機相に同時抽出されるナ
トリウム量が抑制されることと関係がある。
As can be seen from the nickel concentration in the extraction residue after washing shown in Table 1, when the pH during the extraction reaction is set to around 7, most of the nickel contained in the nickel sulfate solution can be extracted. , Its extraction rate is a high value of 99.5% or more. In addition, from the results in Table 2, it can be seen that as to the removal of sodium, the higher the concentration of nickel retained in the nickel-retaining organic phase supplied to the washing step, the more efficient sodium removal can be performed. That is, when the nickel concentration in the nickel-retaining organic phase is higher than about 20 g / liter, the removal rate of sodium is almost 90%.
On the other hand, when the washing ratio is lower than around 15 g / liter, the amount of the washing solution is increased to increase the washing ratio. However, the amount of nickel is increased to increase the Na / Ni distribution ratio, thereby reducing the amount of sodium in the organic phase. Even if the substitution reaction with nickel in the cleaning solution is promoted, improvement in the sodium removal rate cannot be expected.
This means that when the pH of the extraction reaction is around 7, the higher the nickel retention concentration in the extracted organic phase, the more the amount of sodium that is simultaneously extracted from the raw crude nickel sulfate solution into the extracted organic phase during extraction is suppressed. Has a relationship with

【0032】本実験において用いられた濃度20%のP
C−88A酸性有機抽出剤のニッケル抽出の化学量論量
は18.3g/リットルである。すなわち本実験から酸
性有機抽出剤の保有する化学量論量以上の量のニッケル
を有機相に場合には、ナトリウムの抽出有機相への同時
抽出が抑制され、ニッケルを含む洗浄剤を使用すること
による洗浄剤中のニッケルと抽出有機相中に微量に存在
するナトリムとの置換効果と相俟って抽出有機相におけ
るナトリウム除去効率を一段と高めることができたもの
と推定される。
The concentration of P used in this experiment was 20%.
The stoichiometry for nickel extraction of the C-88A acidic organic extractant is 18.3 g / l. In other words, when nickel is used in the organic phase in an amount equal to or more than the stoichiometric amount possessed by the acidic organic extractant from this experiment, simultaneous extraction of sodium into the extracted organic phase is suppressed, and a detergent containing nickel must be used. It is presumed that the sodium removal efficiency in the extracted organic phase could be further increased in combination with the effect of replacing the nickel in the detergent with the trace amount of sodium present in the extracted organic phase.

【0033】実施例2 本実施例においては、置換工程におけるニッケル保持有
機相中のニッケル量と精製すべき粗硫酸ニッケル溶液中
の不純物の除去効率について検証する実験を行った。置
換実験では、置換反応槽として実施例1と同仕様のミキ
サーセトラーを4連用いた連続向流4段のミキサーセト
ラーを使用し、実施例1で得られたニッケル保持有機相
を希釈用の有機相とともに1段目のミキサーセトラーに
導入し、精製すべき粗硫酸ニッケル溶液として、ニッケ
ルよりも低pHで酸性有機抽出剤により抽出される不純
物、特にコバルトを多く含む粗硫酸ニッケル溶液を4段
目のミキサーセトラーに導入して、それぞれを向流的に
反応させた。
Example 2 In this example, an experiment was conducted to verify the amount of nickel in the organic phase holding nickel and the efficiency of removing impurities in the crude nickel sulfate solution to be purified in the substitution step. In the substitution experiment, a four-stage continuous countercurrent mixer settler using four mixer settlers having the same specifications as in Example 1 was used as a substitution reaction tank, and the nickel-retaining organic phase obtained in Example 1 was diluted with an organic phase for dilution. Together with the crude nickel sulfate solution to be purified, and a crude nickel sulfate solution containing a large amount of impurities, particularly cobalt, which is extracted at a lower pH than the nickel by the acidic organic extractant, is introduced into the fourth stage. Each was introduced into a mixer settler and reacted countercurrently.

【0034】置換工程での1段目のミキサーセトラーに
供給するニッケル保持有機相の流量を希釈用有機相を含
めて10.8リットル/hrから18.8リットル/h
rまで変化させた。また4段目のミキサーセトラーに供
給する精製のための粗硫酸ニッケル溶液の流量を10.
7リットル/hrから18.6リットル/hrに変化さ
せた。供給粗硫酸ニッケル溶液の濃度は便宜上100g
/リットルに調整したが、有機相、水相とも種々の平衡
状態を検討するために、そのニッケルおよび不純物濃度
を変化させた。表3に置換反応実験によって得られた有
機相および精製硫酸ニッケル溶液の組成を示す。なお、
置換反応では、抽出有機相からの水素イオンの放出は起
こらず、そのpHは特に調整を行わなくても4.0〜
5.0の範囲を常時維持し安定であった。
In the replacement step, the flow rate of the nickel-retaining organic phase supplied to the first-stage mixer settler, including the organic phase for dilution, is from 10.8 liter / hr to 18.8 liter / hr.
r. Also, the flow rate of the crude nickel sulfate solution for purification supplied to the fourth-stage mixer settler was 10.
It was changed from 7 liters / hr to 18.6 liters / hr. The concentration of the supplied crude nickel sulfate solution is 100 g for convenience.
/ Liter, but the nickel and impurity concentrations of the organic phase and the aqueous phase were varied in order to examine various equilibrium states. Table 3 shows the compositions of the organic phase and the purified nickel sulfate solution obtained by the substitution reaction experiment. In addition,
In the substitution reaction, the release of hydrogen ions from the extracted organic phase does not occur, and its pH is adjusted to 4.0 to 4.0 without any particular adjustment.
The range of 5.0 was always maintained and stable.

【0035】[0035]

【表3】 置換後有機相 精製硫酸ニッケル溶液 Ni Co Ca Mg Zn Cu Ni Co Ca Mg Zn Cu (g/l) (g/l) (mg/l)(mg/l)(mg/l)(mg/l)(g/l) (g/l) (mg/l)(mg/l)(mg/l)(mg/l) 6.44 4.85 843 65 38 15 101 3 3 19 <0.1 <0.1 4.94 5.53 793 62 35 15 98.9 4 3 18 <0.1 <0.1 3.07 8.76 558 59 61 26 97.9 4 3 24 <0.1 <0.1 2.74 7.29 776 45 34 14 95.8 7 2 21 <0.1 <0.1 3.60 11.8 552 52 69 41 117 12 7 10 <0.1 <0.1 2.41 8.56 662 52 57 25 97.9 20 3 27 <0.1 <0.1 0.71 10.9 457 30 62 25 90.7 26 5 27 <0.1 <0.1 [Table 3] Organic phase after substitution Purified nickel sulfate solution Ni Co Ca Mg Zn Cu Ni Co Ca Mg Zn Cu (g / l) (g / l) (mg / l) (mg / l) (mg / l) (mg / l) (g / l) (g / l) (mg / l) (mg / l) (mg / l) (mg / l) 6.44 4.85 843 65 38 15 101 3 3 19 <0.1 <0.1 4.94 5.53 793 62 35 15 98.9 4 3 18 <0.1 <0.1 3.07 8.76 558 59 61 26 97.9 4 3 24 <0.1 <0.1 2.74 7.29 776 45 34 14 95.8 7 2 21 <0.1 <0.1 3.60 11.8 552 52 69 41 117 12 7 10 <0.1 <0.1 2.41 8.56 662 52 57 25 97.9 20 3 27 <0.1 <0.1 0.71 10.9 457 30 62 25 90.7 26 5 27 <0.1 <0.1

【0036】表3の結果から、置換工程により大部分の
不純物は有機相中に移行し、不純物含有量の少ない精製
硫酸ニッケル溶液を得ることができることが分かった。
また、不純物のうちコバルトの置換率は著しく大きい
が、精製硫酸ニッケル溶液中でのコバルト濃度を10m
g/リットル以下にするためには、有機相中のニッケル
濃度が少なくとも3g/リットルになるように調整する
必要があることが分かった。表4に、置換工程により得
られた精製硫酸ニッケル溶液中のコバルト濃度を基準と
して、置換すべき不純物の総量に対して必要なニッケル
量を置換後の有機相のニッケル濃度から推定した結果を
示す。この結果から、粗硫酸ニッケル溶液中の不純物を
効果的に置換するためのニッケル保持有機相中の必要ニ
ッケル当量は1.3モル以上であると判断される。
From the results shown in Table 3, it was found that most of the impurities were transferred into the organic phase by the substitution step, and a purified nickel sulfate solution having a small impurity content could be obtained.
Further, although the substitution rate of cobalt among the impurities is remarkably large, the cobalt concentration in the purified nickel sulfate solution is 10 m
It has been found that in order to reduce the concentration to less than g / liter, it is necessary to adjust the nickel concentration in the organic phase to at least 3 g / liter. Table 4 shows the results of estimating the required amount of nickel with respect to the total amount of impurities to be replaced from the nickel concentration of the organic phase after replacement, based on the cobalt concentration in the purified nickel sulfate solution obtained in the replacement step. . From this result, it is determined that the necessary nickel equivalent in the nickel-supporting organic phase for effectively replacing impurities in the crude nickel sulfate solution is 1.3 mol or more.

【0037】[0037]

【表4】 必要ニッケル当量 精製硫酸ニッケル (Ni+不純物)/不純物 溶液中のCo濃度 (Mol/Mol) (mg/l) 2.03 3 1.71 4 1.31 4 1.31 7 1.28 12 1.25 20 1.06 26 [Table 4] Required nickel equivalent Purified nickel sulfate (Ni + impurity) / impurity Co concentration in solution (Mol / Mol) (mg / l) 2.03 3 1.71 4 1.31 4 1.31 7 1.28 12 1.25 20 1.06 26

【0038】実施例3 置換工程で粗硫酸ニッケル溶液中の不純物の効率的な除
去を行うためには、ニッケル保持有機相中のニッケル量
の管理以外に、水相と有機相の相分離性の管理が必要で
ある。有機相中のコバルト濃度が過度に高くなると有機
相の粘性が大きくなり相分離性が低くなることが知られ
ているので、本実施例では相分離性に及ぼす有機相中の
コバルト濃度の影響について実験を行った。実験には実
施例1に用いた酸性有機抽出剤を用いてコバルト濃度を
変化させた有機相を調製し、これと実施例2により得ら
れた精製硫酸ニッケル溶液を1:1の割合で混合したも
のを400ミリリットルを回転数1200rpmの回転
撹拌機付き容器び装入し、35℃で20分間撹拌した
後、静置して有機相と水相の相分離時間を測定した。こ
の結果を表5に示す。表5の結果から、有機相中のコバ
ルト濃度が11g/リットルになるまでは比較的短時間
で順調に相分離を行うことができるが、これを超えると
急激に相分離時間が増大し、効率的な置換反応を行うこ
とができなくなることが分かった。
Example 3 In order to efficiently remove impurities in the crude nickel sulfate solution in the replacement step, in addition to controlling the amount of nickel in the nickel-retaining organic phase, the phase separation property between the aqueous phase and the organic phase was determined. Management is required. It is known that if the concentration of cobalt in the organic phase is excessively high, the viscosity of the organic phase is increased and the phase separation property is lowered. Therefore, in this example, the effect of the cobalt concentration in the organic phase on the phase separation property is considered. An experiment was performed. In the experiment, an organic phase was prepared in which the concentration of cobalt was changed using the acidic organic extractant used in Example 1, and this was mixed with the purified nickel sulfate solution obtained in Example 2 at a ratio of 1: 1. 400 ml of the mixture was placed in a container equipped with a rotary stirrer having a rotation speed of 1200 rpm, stirred at 35 ° C. for 20 minutes, and then allowed to stand to measure a phase separation time between an organic phase and an aqueous phase. Table 5 shows the results. From the results shown in Table 5, the phase separation can be smoothly performed in a relatively short time until the cobalt concentration in the organic phase becomes 11 g / liter. It was found that it was not possible to perform a typical substitution reaction.

【0039】[0039]

【表5】 置換4段目有機相 置換4段目水相 相分離時間 Co濃度 Ni濃度 Co濃度 Ni濃度 (g/l) (g/l) (g/l) (g/l) (秒) 4.85 8.92 0.22 132 90 9.33 0.06 0.015 109 81 11.8 3.60 0.010 117 5400 [Table 5] 4th stage organic phase 4th stage aqueous phase Phase separation time Co concentration Ni concentration Co concentration Ni concentration (g / l) (g / l) (g / l) (g / l) (sec) 4.85 8.92 0.22 132 90 9.33 0.06 0.015 109 81 11.8 3.60 0.010 117 5400

【0040】実施例4 この実施例では、図1に示された工程順に従って粗硫酸
ニッケル溶液の精製およびコバルトの回収を含めた総合
的な連続精製試験を行った。抽出、洗浄、置換の各工程
においては、それぞれこれまでの実施例に使用したミキ
サーセトラーと同仕様、同段数の多段向流連続ミキサー
セトラーを用い、それぞれの温度条件も同様にし、同様
の手順で粗硫酸ニッケル溶液の精製を行った。表6に各
工程で使用した多段向流ミキサーセトラーの段数、各工
程における反応時のpHおよび各工程においてpH調整
のために使用された薬品(但し、抽出工程では中和剤の
濃度)について示した。また表7には、各工程における
有機相、水相の液組成を流量とともに示した。
Example 4 In this example, a comprehensive continuous purification test including purification of a crude nickel sulfate solution and recovery of cobalt was performed according to the process sequence shown in FIG. In each of the extraction, washing, and replacement steps, a multistage countercurrent continuous mixer settler of the same specification and the same number of stages as the mixer settler used in the previous examples was used, and the same temperature conditions were used. The crude nickel sulfate solution was purified. Table 6 shows the number of stages of the multistage countercurrent mixer settler used in each step, the pH at the time of the reaction in each step, and the chemicals used for pH adjustment in each step (however, the concentration of the neutralizing agent in the extraction step). Was. Table 7 shows the liquid compositions of the organic phase and the aqueous phase in each step together with the flow rates.

【0041】[0041]

【表6】 工程 段数 pH pH調整用薬品 抽出 2 6.9-7.0 200g/lNaOH 洗浄 3 無調整 − 置換 4 無調整 − Ni逆抽出 3 3.9-4.0 3N-H2 SO4 Co回収 2 1.8-2.0 6N-HCl 有機相洗浄 1 0-1.0 3N-H2 SO4 最終逆抽出 1 <0 3N-H2 SO4 [Table 6] Step Number of steps pH Extraction of chemicals for pH adjustment 2 6.9-7.0 200g / l NaOH washing 3 No adjustment-Substitution 4 No adjustment-Ni back extraction 3 3.9-4.0 3N-H 2 SO 4 Co recovery 2 1.8-2.0 6N-HCl Organic phase washing 1 0-1.0 3N-H 2 SO 4 Final back extraction 1 <0 3N-H 2 SO 4

【0042】[0042]

【表7】 工程液 流量 Ni Co Ca Mg Cu Zn Na NH3 (l/hr) (g/l)(g/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l) 抽出硫酸Ni溶液 11.9 16.1 0.06 89 82 52 3 875 180 洗浄液 8.0 10.3 - - - - - 78 - 逆抽出有機相 12.7 - 0.002 - - - - - - 抽出残液 20.9 0.01 - - - - - 10100 102 洗浄後有機相 12.7 20.7 0.064 84 97 49 69 3 1 希釈後有機相 11.8 79.4 15.4 600 54 134 34 27 20 洗浄後有機相 10.0 6.54 0.021 27 31 16 22 1 - 置換硫酸Ni溶液 9.5 20.7 0.064 84 97 49 69 3 1 精製硫酸Ni溶液 11.8 96.1 0.005 2 34 - - 30 20 置換後有機相 19.5 3.35 9.33 415 75 80 66 - - Ni回収液 4.8 13.5 8.9 276 78 - - - - Ni回収後有機相 19.5 0.01 8.2 346 55 80 66 - - 塩化Co液 1.7 0.02 45.2 379 2300 - - 2100 - Co回収液 2.2 0.05 100 2900 2300 557 14 1700 - Co回収後有機相 19.5 - 0.09 54 - 23 64 - - 有機洗浄後液 3.9 - 4.3 82 - - - - - 有機洗浄後有機相 19.5 - 0.035 54 - 6 64 - - 最終逆抽出液 3.0 - 0.23 380 - 44 451 - - 注:−は<0.001g/l [Table 7]  Process liquid flow rate Ni Co Ca Mg Cu Zn Na NHThree (l / hr) (g / l) (g / l) (mg / l) (mg / l) (mg / l) (mg / l) (mg / l) (mg / l) Extracted sulfuric acid Ni solution 11.9 16.1 0.06 89 82 52 3 875 180 Wash solution 8.0 10.3-----78-Reverse extraction organic phase 12.7-0.002------Extract residue 20.9 0.01-----10 100 102 After washing Organic phase 12.7 20.7 0.064 84 97 49 69 3 1 Organic phase after dilution 11.8 79.4 15.4 600 54 134 34 27 20 Organic phase after washing 10.0 6.54 0.021 27 31 16 22 1-Ni-substituted sulfate solution 9.5 20.7 0.064 84 97 49 69 3 1 Purified Ni sulfate solution 11.8 96.1 0.005 2 34--30 20 Replaced organic phase 19.5 3.35 9.33 415 75 80 66--Ni recovered liquid 4.8 13.5 8.9 276 78----Ni recovered organic phase 19.5 0.01 8.2 346 55 80 66 --Co chloride solution 1.7 0.02 45.2 379 2300--2100-Co recovery solution 2.2 0.05 100 2900 2300 557 14 1700-Organic phase after Co recovery 19.5-0.09 54-23 64--Liquid after organic washing 3.9-4.3 82-- ---Organic phase after organic washing 19.5-0.035 54-6 64--Final back extract 3.0-0.23 380-44 451--  Note:-is <0.001g / l

【0043】抽出工程では、抽出pHを実施例同様の7
付近とし、20%PC−88A酸性有機抽出剤を用い
て、粗硫酸ニッケル溶液中のニッケルを1.13当量で
抽出保持させた。洗浄後のニッケル保持有機相は、その
一部をし最終逆抽出工程から得られた清浄化有機相で希
釈し、その中に含まれるコバルト濃度を30mg/リッ
トルに調整して、置換工程における1段目のミキサーセ
トラーに流量10リットル/hrで導入し、残部の洗浄
後ニッケル保持有機相は3段目のミキサーに導入した。
In the extraction step, the extraction pH was adjusted to 7 as in the example.
Using a 20% PC-88A acidic organic extractant, nickel in the crude nickel sulfate solution was extracted and held at 1.13 equivalents. The nickel-retained organic phase after the washing was partly diluted with the cleaned organic phase obtained from the final back-extraction step, and the concentration of cobalt contained therein was adjusted to 30 mg / liter, and the nickel-retained organic phase in the replacement step was removed. The mixture was introduced into the second-stage mixer settler at a flow rate of 10 L / hr, and after washing the remainder, the nickel-retaining organic phase was introduced into the third-stage mixer.

【0044】置換工程での反応後4段目のミキサーセト
ラーから得られた有機相中のニッケルと不純物濃度から
計算すると、置換工程に供給されたニッケル量は、置換
工程で除去される不純物量の1.3当量以上であること
が分かる。置換反応での反応後4段目のミキサーセトラ
ーから精製硫酸ニッケル溶液が得られる。本発明による
不純物精製度を表すために、表8に得られた精製硫酸ニ
ッケル溶液中と精製前の粗硫酸ニッケル溶液中とにおけ
る各不純物のNiに対する比率を示した。
Calculating from the nickel and the impurity concentration in the organic phase obtained from the fourth stage mixer settler after the reaction in the substitution step, the amount of nickel supplied to the substitution step is the amount of the impurity removed in the substitution step. It turns out that it is 1.3 equivalent or more. After the substitution reaction, a purified nickel sulfate solution is obtained from the fourth stage mixer settler. In order to express the degree of impurity purification according to the present invention, Table 8 shows the ratio of each impurity to Ni in the purified nickel sulfate solution obtained and in the crude nickel sulfate solution before purification.

【0045】 [0045]

【表8】 Ni比(ppm) Co Ca Mg Cu zn Na NH3 精製前 1.5x105 6.7x103 1.3x103 1.8x103 361 9.4x103 2.0x103 精製後 52 21 354 <10 <10 312 208 [Table 8] Ni ratio (ppm) Co Ca Mg Cu zn Na NH 3 Before purification 1.5x10 5 6.7x10 3 1.3x10 3 1.8x10 3 361 9.4x10 3 2.0x10 3 After purification 52 21 354 <10 <10 312 208

【0046】置換工程で得られた有機相中のニッケルを
回収するために行われるニッケル選択逆抽出工程は、3
段向流ミキサーセトラーを用いて行った。逆抽出液とし
て蒸留水を硫酸でpHを4.0付近に調整した3N硫酸
を用い、有機相中に残留するニッケル分を硫酸ニッケル
として逆抽出液中に抽出することができた。このニッケ
ル選択逆抽出工程で重要なことは、ニッケル回収後の有
機相にニッケルを残さずに十分に回収し、殆どニッケル
を含まない有機相として次のコバルト回収工程に送るこ
とである。これは、次のコバルト回収工程でコバルトを
塩化コバルトとして回収するに際し、回収液中にニッケ
ルが混入すると得られた塩化コバルトをさらに電解精製
してコバルト採集を行う場合に妨げになるからである。
表7によれば、本発明によるニッケル選択逆抽出工程で
得られた有機相中のNi/Coは0.001程度になっ
ており、十分に満足し得る結果が得られていることが分
かる。。ニッケル選択逆抽出によって得られた硫酸ニッ
ケル溶液は、同時に抽出される若干量のの不純物が含ま
れるので精製のために置換工程に還流させる。
The nickel selective back-extraction step performed for recovering nickel in the organic phase obtained in the substitution step includes three steps:
This was performed using a stepwise countercurrent mixer settler. Using 3N sulfuric acid in which distilled water was adjusted to a pH of about 4.0 with sulfuric acid as a back extract, nickel remaining in the organic phase could be extracted into the back extract as nickel sulfate. What is important in the nickel selective back-extraction step is to sufficiently recover nickel without leaving nickel in the organic phase after nickel recovery, and send it to the next cobalt recovery step as an organic phase containing almost no nickel. This is because, when cobalt is recovered as cobalt chloride in the next cobalt recovery step, if nickel is mixed in the recovery liquid, the obtained cobalt chloride is further electrolytically purified to prevent cobalt.
According to Table 7, Ni / Co in the organic phase obtained in the nickel selective back-extraction step according to the present invention is about 0.001, and it can be seen that sufficiently satisfactory results have been obtained. . The nickel sulphate solution obtained by the nickel selective back-extraction contains some impurities that are extracted simultaneously and is therefore refluxed to the displacement step for purification.

【0047】ニッケル逆抽出工程を経た有機相は次のコ
バルト回収工程に送り、該工程で有機相中に含まれるコ
バルトの分離回収を行った。該工程ではニッケル回収後
の有機相を逆抽出液と反応させ、6N塩酸でpHを1.
4〜2.0に調整し、有機相中のコバルトを45g/リ
ットル程度の濃度の塩化コバルト液としてその大部分を
回収することができた。本工程においてコバルトを塩化
コバルトとして回収したのは、塩化コバルトの電解精製
を想定したことによるもので、硝酸を用いて硝酸コバル
トとして回収してもよい。なお、塩化コバルトとして回
収する場合には、100g/リットルの濃度まで濃縮す
ることができるので、その後のコバルト精製工程を経済
的に行うことができる。
The organic phase after the nickel back extraction step was sent to the next cobalt recovery step, in which cobalt contained in the organic phase was separated and recovered. In this step, the organic phase after nickel recovery was reacted with the back extract, and the pH was adjusted to 1 with 6N hydrochloric acid.
The concentration was adjusted to 4 to 2.0, and most of the cobalt in the organic phase could be recovered as a cobalt chloride solution having a concentration of about 45 g / liter. The reason why cobalt was recovered as cobalt chloride in this step is based on the assumption of electrolytic purification of cobalt chloride, and may be recovered as cobalt nitrate using nitric acid. In the case of recovery as cobalt chloride, the concentration can be reduced to 100 g / liter, so that the subsequent cobalt purification step can be performed economically.

【0048】次に、コバルト回収後の有機相を有機相洗
浄工程で蒸留水と硫酸により洗浄するが、これは有機相
に含まれる塩素イオンを除去するために行われるもので
ある。このときに有機相中に残留する少量のコバルトや
カルシウムの一部が、洗浄液中に逆抽出されるが、中和
などの操作を行うことにより、コバルトをカルシウムと
分離して回収することも可能である。さらに最終逆抽出
工程として洗浄後の有機相を3Nの硫酸と反応させて、
銅、亜鉛および残留するコバルト、カルシウムの逆抽出
を行い、これらの元素を有機相から分離除去することが
できた。有機相中に鉄が含まれるときは同様にして有機
相から分離除去することができることは勿論である。な
お、この逆抽出液からコバルトを塩素酸化することで水
酸化コバルトとして回収することも可能である。また最
終逆抽出工程で得られた不純物の浄化された有機相は、
初めの抽出工程に還流させて、粗硫酸ニッケル溶液の抽
出に用いる酸性有機抽出剤として使用することができ
る。
Next, the organic phase after the recovery of cobalt is washed with distilled water and sulfuric acid in an organic phase washing step, which is performed to remove chloride ions contained in the organic phase. At this time, a small amount of cobalt and calcium remaining in the organic phase is back-extracted into the washing solution.However, by performing operations such as neutralization, cobalt can be separated and recovered from calcium. It is. Further, as a final back-extraction step, the washed organic phase is reacted with 3N sulfuric acid,
Back extraction of copper, zinc and residual cobalt and calcium was performed, and these elements could be separated and removed from the organic phase. When iron is contained in the organic phase, it can be separated and removed from the organic phase in the same manner. In addition, it is also possible to recover cobalt as cobalt hydroxide by oxidizing cobalt from the back extract. The purified organic phase of impurities obtained in the final back extraction step is
It can be refluxed in the first extraction step and used as an acidic organic extractant for extracting the crude nickel sulfate solution.

【0049】[0049]

【発明の効果】以上説明したように、本発明によるとき
は、有機酸性溶媒抽出法と置換法とを併用することによ
り、従来溶媒抽出法のみの適用では、困難であったナト
リウムおよびアンモニアの混入のないな精製硫酸ニッケ
ル溶液を中和剤の使用量や廃液処理費を節減しながら容
易に得ることができ、かつコバルト含有量の多い粗硫酸
ニッケル溶液から効果的にコバルトを回収することがで
きるので経済的に極めて有効である。
As described above, according to the present invention, by using both the organic acidic solvent extraction method and the substitution method, it is difficult to mix sodium and ammonia with the conventional solvent extraction method alone. It is possible to easily obtain a purified nickel sulfate solution without using a neutralizing agent and to reduce wastewater treatment cost, and to effectively recover cobalt from a crude nickel sulfate solution having a high cobalt content. Therefore, it is extremely effective economically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による高純度硫酸ニッケル精製とコバル
ト回収工程の概略を示す図である。
FIG. 1 is a view schematically showing a high-purity nickel sulfate refining and cobalt recovery step according to the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸性有機抽出剤によりナトリウム、アン
モニアを多く含む粗硫酸ニッケル溶液からニッケルを抽
出してニッケル保持有機相を得る抽出工程と、該抽出工
程で得られたニッケル保持有機相をニッケル含有洗浄液
で洗浄する工程と、該洗浄工程で得られた洗浄後のニッ
ケル保持有機相をコバルトを多く含む硫酸ニッケル水溶
液と反応させ、該ニッケル保持有機相中のニッケルと前
記粗硫酸ニッケル水溶液中のコバルトなどの不純物とを
置換させる工程とよりなり、該置換により精製硫酸ニッ
ケル溶液を得るとともにコバルトの濃縮した有機相を得
ることを特徴とする硫酸ニッケルの精製方法。
1. An extraction step in which nickel is extracted from a crude nickel sulfate solution rich in sodium and ammonia with an acidic organic extractant to obtain a nickel-retaining organic phase, and the nickel-retaining organic phase obtained in the extraction step contains nickel. A step of washing with a washing solution, and reacting the washed nickel-retaining organic phase obtained in the washing step with an aqueous solution of nickel sulfate containing a large amount of cobalt, wherein nickel in the nickel-retaining organic phase and cobalt in the crude nickel sulfate aqueous solution are reacted. A method for purifying nickel sulfate, comprising the steps of: obtaining a purified nickel sulfate solution and obtaining a cobalt-concentrated organic phase by the replacement.
【請求項2】 前記抽出工程で得られるニッケル保持有
機相のニッケル含有量を、酸性有機剤の保有するニッケ
ル保持化学量論量よりも多くすることを特徴とする請求
項1記載の硫酸ニッケルの精製方法。
2. The nickel sulfate according to claim 1, wherein the nickel content of the nickel-retaining organic phase obtained in the extraction step is larger than the nickel-retaining stoichiometry of the acidic organic agent. Purification method.
【請求項3】 前記置換工程で得られた不純物を含む抽
出有機相を、希硫酸によりニッケルを選択的に逆抽出す
るニッケル選択逆抽出工程に送り、該ニッケル選択逆抽
出工程で得られた硫酸ニッケル溶液を前記置換工程にお
いて使用する不純物を含む硫酸ニッケル溶液として還流
させることを特徴とする請求項1記載の硫酸ニッケルの
精製方法。
3. The extracted organic phase containing impurities obtained in the substitution step is sent to a nickel selective back extraction step in which nickel is selectively back extracted with dilute sulfuric acid, and the sulfuric acid obtained in the nickel selective back extraction step is transferred to the nickel selective back extraction step. 2. The method for purifying nickel sulfate according to claim 1, wherein the nickel solution is refluxed as a nickel sulfate solution containing impurities used in the substitution step.
【請求項4】 前記ニッケル選択抽出工程で得られた有
機相を塩酸によりコバルトを逆抽出するコバルト回収工
程に送り、該工程でコバルトを塩酸コバルトとして回収
することを特徴とする請求項3記載の硫酸ニッケルの精
製方法。
4. The method according to claim 3, wherein the organic phase obtained in the nickel selective extraction step is sent to a cobalt recovery step in which cobalt is back-extracted with hydrochloric acid, and the cobalt is recovered as cobalt hydrochloride in the step. A method for purifying nickel sulfate.
【請求項5】 コバルト回収後のコバルト以外の不純物
を含む有機相を洗浄後、硫酸を用いてコバルト以外の不
純物を硫酸中に逆抽出する不純物逆抽出工程に送り、前
記有機相中の該不純物を硫酸中に除去した後、該不純物
逆抽出工程で得られた不純物を含まない有機相の一部を
抽出工程における酸性有機抽出剤として還流することを
特徴とする請求項1記載の硫酸ニッケルの精製方法。
5. After washing the organic phase containing impurities other than cobalt after recovering cobalt, the organic phase is sent to an impurity back-extraction step of back-extracting impurities other than cobalt into sulfuric acid using sulfuric acid. 2. The nickel sulfate according to claim 1, wherein a portion of the impurity-free organic phase obtained in the impurity back-extraction step is refluxed as an acidic organic extractant in the extraction step. Purification method.
【請求項6】 前記不純物逆抽出工程で得られた不純物
を含まない有機相の残部を洗浄工程で得られたニッケル
保持有機相の希釈に使用することを特徴とする請求項5
記載の硫酸ニッケルの精製方法。
6. The method according to claim 5, wherein the remainder of the organic phase containing no impurities obtained in the impurity back-extraction step is used for diluting the nickel-retaining organic phase obtained in the washing step.
A method for purifying nickel sulfate as described above.
JP12634997A 1997-04-30 1997-04-30 Purification method of nickel sulfate containing cobalt Expired - Lifetime JP3440752B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12634997A JP3440752B2 (en) 1997-04-30 1997-04-30 Purification method of nickel sulfate containing cobalt
US09/067,020 US6149885A (en) 1997-04-30 1998-04-28 Method for purifying a nickel sulfate solution by solvent extraction
CA002236125A CA2236125C (en) 1997-04-30 1998-04-29 Method for purifying nickel sulfate
GB9809290A GB2324792B (en) 1997-04-30 1998-04-30 Method of purifying nickel sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12634997A JP3440752B2 (en) 1997-04-30 1997-04-30 Purification method of nickel sulfate containing cobalt

Publications (2)

Publication Number Publication Date
JPH10310437A true JPH10310437A (en) 1998-11-24
JP3440752B2 JP3440752B2 (en) 2003-08-25

Family

ID=14932983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12634997A Expired - Lifetime JP3440752B2 (en) 1997-04-30 1997-04-30 Purification method of nickel sulfate containing cobalt

Country Status (1)

Country Link
JP (1) JP3440752B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310435A (en) * 1997-04-30 1998-11-24 Sumitomo Metal Mining Co Ltd Method for refining high-purity nickel sulfate
JPH10310436A (en) * 1997-04-30 1998-11-24 Sumitomo Metal Mining Co Ltd Method of purifying nickel sulfate by acidic extraction solvent
JP2013100204A (en) * 2011-11-09 2013-05-23 Sumitomo Metal Mining Co Ltd Solvent extraction method for obtaining high purity nickel sulfate
WO2013077296A1 (en) 2011-11-22 2013-05-30 住友金属鉱山株式会社 Method for producing high-purity nickel sulfate
WO2013145909A1 (en) 2012-03-29 2013-10-03 住友金属鉱山株式会社 Method for producing high-purity nickel sulfate
JP2013253273A (en) * 2012-06-05 2013-12-19 Sumitomo Metal Mining Co Ltd Method for recovering nickel
WO2014115686A1 (en) 2013-01-25 2014-07-31 住友金属鉱山株式会社 Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
JP2015145820A (en) * 2014-02-03 2015-08-13 住友金属鉱山株式会社 Quantitative method for lipid-soluble phosphorus compound
JP2015218075A (en) * 2014-05-15 2015-12-07 住友金属鉱山株式会社 Method for producing high purity nickel sulfate aqueous solution
JP2021095600A (en) * 2019-12-16 2021-06-24 住友金属鉱山株式会社 Manufacturing method of nickel aqueous solution
CN115650319A (en) * 2022-10-22 2023-01-31 兰州大学 Method for synchronously and efficiently removing copper ions and cobalt ions from nickel sulfate solution
WO2023118037A1 (en) 2021-12-20 2023-06-29 Umicore Process for preparing a high-purity nickel sulphate solution
WO2024042115A1 (en) 2022-08-24 2024-02-29 Umicore Process for preparing a high-purity nickel sulphate solution

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438273A (en) * 1977-08-31 1979-03-22 Daihachi Chem Ind Method of extracting metals from aqueous solution
JPS5518520A (en) * 1978-07-22 1980-02-08 Nippon Mining Co Ltd Regenerating method for organic solvent
JPS5684323A (en) * 1979-12-06 1981-07-09 Sumitomo Metal Mining Co Ltd Removing method for cobalt from aqueous nickel sulfate solution
JPS57104638A (en) * 1980-12-23 1982-06-29 Sumitomo Metal Mining Co Ltd Method for recovery of nickel and cobalt from scraps containing nickel and cobalt
JPS5855087A (en) * 1981-09-26 1983-04-01 Sumitomo Metal Mining Co Ltd Removing method for cobalt from aqueous nickel sulfate solution
JPS5879830A (en) * 1981-11-06 1983-05-13 Mitsubishi Metal Corp Purification of nickel sulfate aqueous solution
JPH10310436A (en) * 1997-04-30 1998-11-24 Sumitomo Metal Mining Co Ltd Method of purifying nickel sulfate by acidic extraction solvent
JPH10310434A (en) * 1997-04-30 1998-11-24 Sumitomo Metal Mining Co Ltd Solvent extraction method of nickel sulfate
JPH10310435A (en) * 1997-04-30 1998-11-24 Sumitomo Metal Mining Co Ltd Method for refining high-purity nickel sulfate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438273A (en) * 1977-08-31 1979-03-22 Daihachi Chem Ind Method of extracting metals from aqueous solution
JPS5518520A (en) * 1978-07-22 1980-02-08 Nippon Mining Co Ltd Regenerating method for organic solvent
JPS5684323A (en) * 1979-12-06 1981-07-09 Sumitomo Metal Mining Co Ltd Removing method for cobalt from aqueous nickel sulfate solution
JPS57104638A (en) * 1980-12-23 1982-06-29 Sumitomo Metal Mining Co Ltd Method for recovery of nickel and cobalt from scraps containing nickel and cobalt
JPS5855087A (en) * 1981-09-26 1983-04-01 Sumitomo Metal Mining Co Ltd Removing method for cobalt from aqueous nickel sulfate solution
JPS5879830A (en) * 1981-11-06 1983-05-13 Mitsubishi Metal Corp Purification of nickel sulfate aqueous solution
JPH10310436A (en) * 1997-04-30 1998-11-24 Sumitomo Metal Mining Co Ltd Method of purifying nickel sulfate by acidic extraction solvent
JPH10310434A (en) * 1997-04-30 1998-11-24 Sumitomo Metal Mining Co Ltd Solvent extraction method of nickel sulfate
JPH10310435A (en) * 1997-04-30 1998-11-24 Sumitomo Metal Mining Co Ltd Method for refining high-purity nickel sulfate

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310436A (en) * 1997-04-30 1998-11-24 Sumitomo Metal Mining Co Ltd Method of purifying nickel sulfate by acidic extraction solvent
JPH10310435A (en) * 1997-04-30 1998-11-24 Sumitomo Metal Mining Co Ltd Method for refining high-purity nickel sulfate
JP2013100204A (en) * 2011-11-09 2013-05-23 Sumitomo Metal Mining Co Ltd Solvent extraction method for obtaining high purity nickel sulfate
WO2013077296A1 (en) 2011-11-22 2013-05-30 住友金属鉱山株式会社 Method for producing high-purity nickel sulfate
US9017640B2 (en) 2011-11-22 2015-04-28 Sumitomo Metal Mining Co., Ltd. Method for producing high-purity nickel surface
WO2013145909A1 (en) 2012-03-29 2013-10-03 住友金属鉱山株式会社 Method for producing high-purity nickel sulfate
US9702023B2 (en) 2012-03-29 2017-07-11 Sumitomo Metal Mining Co., Ltd. Method for producing high-purity nickel sulfate
JP2013253273A (en) * 2012-06-05 2013-12-19 Sumitomo Metal Mining Co Ltd Method for recovering nickel
US9567239B2 (en) 2013-01-25 2017-02-14 Sumitomo Metal Mining Co., Ltd. Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
WO2014115686A1 (en) 2013-01-25 2014-07-31 住友金属鉱山株式会社 Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
JP2015145820A (en) * 2014-02-03 2015-08-13 住友金属鉱山株式会社 Quantitative method for lipid-soluble phosphorus compound
JP2015218075A (en) * 2014-05-15 2015-12-07 住友金属鉱山株式会社 Method for producing high purity nickel sulfate aqueous solution
JP2021095600A (en) * 2019-12-16 2021-06-24 住友金属鉱山株式会社 Manufacturing method of nickel aqueous solution
WO2023118037A1 (en) 2021-12-20 2023-06-29 Umicore Process for preparing a high-purity nickel sulphate solution
WO2024042115A1 (en) 2022-08-24 2024-02-29 Umicore Process for preparing a high-purity nickel sulphate solution
CN115650319A (en) * 2022-10-22 2023-01-31 兰州大学 Method for synchronously and efficiently removing copper ions and cobalt ions from nickel sulfate solution

Also Published As

Publication number Publication date
JP3440752B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
CA2236125C (en) Method for purifying nickel sulfate
JP5686258B2 (en) Solvent extraction method for obtaining high purity nickel sulfate
CN1713943B (en) Production of pure molybdenum oxide from low grade molybdenite concentrates
JP3440752B2 (en) Purification method of nickel sulfate containing cobalt
CN103060562B (en) Purification method of inorganic highly-acidic nickel salt solution
KR101021180B1 (en) Method for producing high purity cobalt surfate
RU2726618C1 (en) Method of producing solutions containing nickel or cobalt
PL162384B1 (en) Method for solvent abstraction in copper recovery
JP7251406B2 (en) Method for producing cobalt aqueous solution
CN113120941A (en) Method for extracting high-purity scandium oxide from scandium-containing nickel cobalt hydroxide in short process
US5888462A (en) Method of solvent extraction of nickel sulfate solutions
EA004600B1 (en) Process for electrolytic production of highly pure zinc or zinc compounds from primary and secondary zinc raw material
JP3546912B2 (en) Purification method of nickel sulfate by acidic organic extractant
JP3546911B2 (en) Purification method of high purity nickel sulfate
CN112048615A (en) Method for recovering sulfate solution from waste ternary batteries
JP4259165B2 (en) Purification method of aqueous nickel sulfate solution containing cobalt and calcium
TWI811993B (en) Manufacturing method of cobalt sulfate
EP0189831B1 (en) Cobalt recovery method
JP7360091B2 (en) Solvent extraction method and method for producing cobalt aqueous solution
JP3661911B2 (en) Method for producing high purity cobalt solution
CN117642519A (en) Production of high purity nickel and cobalt compounds
EP3808861B1 (en) An improved process for the recovery of zinc from zinc-bearing raw materials
JP7389338B2 (en) Method for producing nickel aqueous solution
JP3634747B2 (en) Separation and purification method of tantalum and niobium
CN115893498A (en) Preparation method of battery-grade manganese sulfate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 11

EXPY Cancellation because of completion of term