JPH04304249A - Synthetic rubber composition - Google Patents

Synthetic rubber composition

Info

Publication number
JPH04304249A
JPH04304249A JP9265791A JP9265791A JPH04304249A JP H04304249 A JPH04304249 A JP H04304249A JP 9265791 A JP9265791 A JP 9265791A JP 9265791 A JP9265791 A JP 9265791A JP H04304249 A JPH04304249 A JP H04304249A
Authority
JP
Japan
Prior art keywords
weight
parts
ring
nitrile rubber
synthetic rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9265791A
Other languages
Japanese (ja)
Inventor
Kazuyasu Higashiyama
東山 和康
Hiroaki Furukawa
博章 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP9265791A priority Critical patent/JPH04304249A/en
Priority to EP19920100256 priority patent/EP0494663A3/en
Publication of JPH04304249A publication Critical patent/JPH04304249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To obtain a synthetic rubber composition having a high loss factor and an excellent ability to absorb vibtational energy by mixing a nitrile rubber with a specified condensed polycyclic compound and/or a specified ring assembly in a specified ratio. CONSTITUTION:This composition is prepared by mixing 100 pts.wt. nitrile rubber (e.g. butadiene/acrylonitrile copolymer) with 5-100 pts.wt. condensed polycyclic compound having at least three rings (e.g. phenanthrene) and/or a ring assembly having at least three ring systems (e.g. 1,2-disphenylbenzene).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は精密電気電子部品、音響
機器、自動車などの分野において振動を制御することに
より、動作反応速度や測定精度を向上させたり、音質を
改良させたり、快適性を向上させる目的で使用される振
動エネルギ−吸収性能の優れた合成ゴム組成物に関する
ものである。
[Industrial Application Field] The present invention improves motion response speed and measurement accuracy, improves sound quality, and improves comfort by controlling vibration in fields such as precision electrical and electronic components, audio equipment, and automobiles. The present invention relates to a synthetic rubber composition with excellent vibration energy absorption performance, which is used for the purpose of improving vibration energy absorption performance.

【0002】0002

【従来の技術】従来、振動エネルギ−吸収材としてはブ
チルゴムが最もよく使用されている。一般に振動エネル
ギ−吸収材の一次評価はその材料の粘弾性測定により求
められる貯蔵弾性率(E′)と損失係数(tanδ=損
失弾性率/貯蔵弾性率(E″))でなされる。
2. Description of the Related Art Conventionally, butyl rubber has been most commonly used as a vibration energy absorbing material. Generally, the primary evaluation of a vibration energy absorbing material is made by the storage modulus (E') and loss coefficient (tan δ = loss modulus/storage modulus (E'')) determined by measuring the viscoelasticity of the material.

【0003】振動エネルギ−吸収材として設計するため
には損失係数は大きければ大きいほど、また貯蔵弾性率
は使用される形態によって最適値が存在する。これら2
つの因子は通常温度依存性が大きい。すなわち貯蔵弾性
率は温度が高くなるにつれて徐々に低下し、通常ガラス
転移点を越えた温度域から急激に低下する。また、損失
係数はガラス転移点を越えた温度域で最も高い値を示す
が、その前後の温度域では低下する傾向が一般的である
[0003] In order to design a material as a vibration energy absorber, the larger the loss coefficient is, the more optimal the storage modulus is depending on the form in which it is used. These 2
Two factors are usually highly temperature dependent. That is, the storage modulus gradually decreases as the temperature increases, and usually decreases rapidly from a temperature range exceeding the glass transition point. Furthermore, although the loss coefficient shows the highest value in the temperature range exceeding the glass transition point, it generally tends to decrease in the temperature range around the glass transition point.

【0004】従って、従来よりこのような振動エネルギ
−吸収材に求められる基準としては、まず材料が用いら
れる温度域で高い損失係数を有することであった。一方
、貯蔵弾性率については無機,金属の充填材や軟化剤あ
るいはゴム等を添加することによりかなりの幅でその値
を調製することができるため最適値に合わせることが可
能であった。それゆえ、ブチルゴムは損失係数が最大で
tanδ=1.4という優れた値を示している。
[0004] Accordingly, the standard required for such vibration energy absorbing materials has been that the material has a high loss coefficient in the temperature range in which it is used. On the other hand, the storage modulus can be adjusted over a wide range of values by adding inorganic or metal fillers, softeners, rubber, etc., so it has been possible to adjust it to the optimum value. Therefore, butyl rubber exhibits an excellent value of maximum loss coefficient of tan δ = 1.4.

【0005】また、最近ではポリノルボルネンや特殊な
ウレタン系エラストマ−などが振動エネルギ−吸収剤が
より高性能であることが見出だされ注目されている。と
ころがこれらの素材はブチルゴムと比較して加工性・経
済性に難があり、使用範囲が限られていた。
[0005] Recently, it has been discovered that polynorbornene and special urethane elastomers have higher performance as vibration energy absorbers, and are attracting attention. However, these materials have difficulty in processability and economy compared to butyl rubber, and their range of use has been limited.

【0006】一方、ニトリルゴムは合成ゴムの中でも特
に耐油性に優れていることを最大の特徴としている。し
かし、これはブチルゴムのような振動エネルギ−吸収材
としての使われ方はほとんどされていないのが現状であ
る。
On the other hand, nitrile rubber is characterized by its particularly excellent oil resistance among synthetic rubbers. However, at present, it is hardly used as a vibration energy absorbing material like butyl rubber.

【0007】[0007]

【発明が解決しようとする課題】本発明はニトリルゴム
の有する特徴を生かしながら振動エネルギ−吸収性能を
有する合成ゴム組成物を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a synthetic rubber composition that has vibration energy absorption performance while taking advantage of the characteristics of nitrile rubber.

【0008】[0008]

【課題を解決するための手段】上記のような現状に鑑み
、本発明者らは鋭意検討を重ねた結果、本発明を完成す
るに至った。
[Means for Solving the Problems] In view of the above-mentioned current situation, the inventors of the present invention have made extensive studies and have completed the present invention.

【0009】すなわち、本発明はニトリルゴム100重
量部に対して3個以上の環から成る縮合多環式化合物、
及び/または3個以上の環系から成る環集合5〜100
重量部から成る合成ゴム組成物、さらには本組成物から
成る振動エネルギ−吸収材に関する。以下、その詳細に
ついて説明する。
That is, the present invention provides a fused polycyclic compound comprising three or more rings based on 100 parts by weight of nitrile rubber,
and/or ring sets 5 to 100 consisting of 3 or more ring systems
The present invention relates to a synthetic rubber composition comprising parts by weight, and further to a vibration energy absorbing material comprising the present composition. The details will be explained below.

【0010】本発明で用いるニトリルゴムとは、ブタジ
エン−アクリロニトリル共重合体であり、一般にNBR
と称されるものをさす。しかし、結合アクリロニトリル
量60%以上になると硬くなり、7%以下になると油中
で膨潤するようになる。よってゴム状で耐油性を有する
15〜50%のアクリロニトリル量からなる共重合体が
好ましい。また、重合反応は乳化重合で行い、重合温度
は低温で得られるコ−ルドラバ−から常温以上で得られ
るホットラバ−まで特に問題なく使用できる。また、重
合度の目安となるム−ニ−粘度(ML1+4 (100
℃))は20〜90のものが好ましい。さらには、NB
Rと少量のメタクリル酸などのアクリルモノマ−との共
重合体(一般にカルボキシル化ニトリルゴムと称する)
、ビニルピリジンとの三元共重合体など第三成分との共
重合体も含まれる。
The nitrile rubber used in the present invention is a butadiene-acrylonitrile copolymer, and is generally NBR.
Refers to what is called. However, if the amount of bound acrylonitrile exceeds 60%, it will become hard, and if it becomes less than 7%, it will swell in oil. Therefore, a rubbery, oil-resistant copolymer containing 15 to 50% acrylonitrile is preferred. Further, the polymerization reaction is carried out by emulsion polymerization, and the polymerization temperature ranges from cold rubber obtained at low temperatures to hot rubber obtained at room temperature or higher, and can be used without any particular problem. In addition, the Mooney viscosity (ML1+4 (100
C)) is preferably 20 to 90. Furthermore, N.B.
Copolymer of R and a small amount of acrylic monomer such as methacrylic acid (commonly referred to as carboxylated nitrile rubber)
Also included are copolymers with a third component, such as terpolymers with vinylpyridine.

【0011】また、本発明で用いる縮合多環式化合物と
は3個以上の環から構成された縮合多環式炭化水素、縮
合複素環式化合物である。3個以上の環であれば、どの
ような構成であっても問題はないが、特に環数が多いほ
うが好ましい。
Further, the fused polycyclic compound used in the present invention is a fused polycyclic hydrocarbon or a fused heterocyclic compound composed of three or more rings. There is no problem with any structure as long as there are three or more rings, but it is particularly preferable to have a large number of rings.

【0012】一方、本発明で用いる環集合とは、3個以
上の環系(単環または縮合環)が単結合または二重結合
で直接結合し、このような直接環集合の数が含まれてい
る環系の数より1だけ少ないものをいう。環系は環式炭
化水素系であってもよいし、複素環系であってもよい。 また、3個以上の環系であればどのような構成であって
も問題はないが、特に環系が多いほうが好ましい。
On the other hand, the ring assembly used in the present invention refers to a ring system in which three or more ring systems (single ring or condensed ring) are directly bonded through a single bond or double bond, and the number of such direct ring assembly is included. 1 less than the number of ring systems in the system. The ring system may be a cyclic hydrocarbon system or a heterocyclic ring system. Further, although there is no problem with any structure as long as it has three or more ring systems, it is particularly preferable to have a large number of ring systems.

【0013】これら縮合多環式化合物、及び環集合(以
後、まとめて環状物という)はアルキル基のうち炭素数
が1〜4のもの、水酸基、オキソ基、カルボキシル基、
アミノ基、シアノ基、ニトロ基、ハロゲン基等の官能基
が環と結合していてもよい。また、環状物はニトリルゴ
ムと複合化させることから、十分な分散状態に至らしめ
る必要がある。それ故、環状物の融点はニトリルゴムの
架橋温度よりも低いほうが望ましい。例えば縮合多環式
化合物としてはアセナフチレン、アセナフテン、フェナ
ントレン、9−フェナントロ−ル、フルオレン、アント
ロン、9−フルオレノン、パ−ヒドロフルオレノン、ベ
ンゾフェナントレン、9−アントラセンメタノ−ル、9
,10−ジヒドロアントラセン、ピレン、1,2−ベン
ゾピレン、ジベンゾフェナントレン、ジベンゾスベラン
、3環以上から成るテルペン類、ステロイド、アルカロ
イド、ジベンゾフラン、キサンテン、9−キサンテノ−
ル、キサントン、アクリジン、イベンゾチオフェン、フ
ェナントリジン、1,4−ベンゾキノン、7,8−ベン
ゾキノリン、1,10−フェナントロリン、フェナンジ
ン、フェノキサジン、チアントレン等が挙げられる。 環集合としては、1,2−ジフェニルベンゼン、1,3
−ジフェニルベンゼン、1,3,5−トリフェニルベン
ゼン、1,2,3,4−テトラフェニル−1,3−シク
ロペンタジエン、2,2:6′,2″−テルピリジン等
が挙げられる。こういった環状物のうち1種類、もしく
は2種類以上がニトリルゴムと複合化される。
These fused polycyclic compounds and ring assemblies (hereinafter collectively referred to as cyclic compounds) include alkyl groups having 1 to 4 carbon atoms, hydroxyl groups, oxo groups, carboxyl groups,
A functional group such as an amino group, a cyano group, a nitro group, or a halogen group may be bonded to the ring. Furthermore, since the cyclic material is to be composited with nitrile rubber, it is necessary to achieve a sufficient dispersion state. Therefore, it is desirable that the melting point of the cyclic material be lower than the crosslinking temperature of the nitrile rubber. For example, fused polycyclic compounds include acenaphthylene, acenaphthene, phenanthrene, 9-phenanthrol, fluorene, anthrone, 9-fluorenone, perhydrofluorenone, benzophenanthrene, 9-anthracenemethanol, 9
, 10-dihydroanthracene, pyrene, 1,2-benzopyrene, dibenzophenanthrene, dibenzosuberane, terpenes consisting of 3 or more rings, steroids, alkaloids, dibenzofuran, xanthene, 9-xanteno-
Examples thereof include xanthone, acridine, ibenzothiophene, phenanthridine, 1,4-benzoquinone, 7,8-benzoquinoline, 1,10-phenanthroline, phenandine, phenoxazine, thianthrene, and the like. As a ring assembly, 1,2-diphenylbenzene, 1,3
-diphenylbenzene, 1,3,5-triphenylbenzene, 1,2,3,4-tetraphenyl-1,3-cyclopentadiene, 2,2:6',2''-terpyridine, etc. One or more of the cyclic materials are combined with nitrile rubber.

【0014】環状物の総量として、加工性・経済性の点
からニトリルゴム100重量部に対して5重量部以上1
00重量部以下、さらには10重量部以上50重量部以
下が望ましい。
[0014] From the viewpoint of processability and economy, the total amount of the annular substances is 5 parts by weight or more per 100 parts by weight of nitrile rubber.
00 parts by weight or less, more preferably 10 parts by weight or more and 50 parts by weight or less.

【0015】後に実施例を示すが、たとえばアクリロニ
トリル含有量が33%のニトリルゴムの場合、周波数1
0Hzで動的粘弾性を測定すると、約−2℃で損失係数
の最大値は2.0程度を示すものが、この範囲の添加量
に応じて損失係数の最大値は2.1〜2.9程度を示す
。この現象は緩和現象論の教えるところでは材料内部の
状態の均一化が進み、緩和時間の分布が狭まったと理解
されるが、なぜこのような特定の環状物が特異的に優れ
ているのかは不明である。
An example will be shown later, but for example, in the case of nitrile rubber with an acrylonitrile content of 33%, the frequency 1
When dynamic viscoelasticity is measured at 0 Hz, the maximum value of the loss coefficient is about 2.0 at about -2°C, but the maximum value of the loss coefficient varies from 2.1 to 2.0 depending on the amount added within this range. Shows about 9. According to relaxation phenomenology, this phenomenon is understood to be due to the homogenization of the internal state of the material and the narrowing of the relaxation time distribution, but it is unclear why such a particular ring is uniquely superior. It is.

【0016】本発明による合成ゴム組成物には力学的及
び熱的性質を向上させる目的でカ−ボンブラック,けい
酸,けい酸塩,酸化マグネシウム等の充填材を添加する
ことができる。また、加工性や低温特性を向上させる目
的で炭酸カルシウム等の充填材や有機エステル類、石油
誘導品等の可塑剤を添加することができる。さらに、老
化防止剤、スコ−チ防止剤等のゴムに用いられる添加剤
を使用することもできる。また、必要に応じてEPDM
,ハロゲン化ブチルゴム等の合成ゴム,ポリ塩化ビニル
,石油樹脂等をブレンドすることもできる。
Fillers such as carbon black, silicic acid, silicates, and magnesium oxide may be added to the synthetic rubber composition of the present invention for the purpose of improving mechanical and thermal properties. Furthermore, fillers such as calcium carbonate, and plasticizers such as organic esters and petroleum derivatives may be added for the purpose of improving processability and low-temperature properties. Furthermore, additives used in rubber such as anti-aging agents and anti-scorch agents can also be used. Also, if necessary, EPDM
, synthetic rubber such as halogenated butyl rubber, polyvinyl chloride, petroleum resin, etc. can also be blended.

【0017】本発明の合成ゴム組成物は従来の加硫方法
である硫黄に代表される架橋剤、酸化亜鉛,鉛丹,リサ
−ジ等の加硫助剤,ベンゾチアゾ−ル,ジチオカ−バメ
イト,チウラム等の加硫促進剤を用いた加硫を行うこと
ができる。よって、従来の成形加工法である射出成形、
押出成形、カレンダ−加工等の手法により自由に成形加
工することができる。
The synthetic rubber composition of the present invention can be prepared using conventional vulcanization methods such as crosslinking agents such as sulfur, vulcanization aids such as zinc oxide, red lead, and lithium oxide, benzothiazole, dithiocarbamate, Vulcanization can be performed using a vulcanization accelerator such as thiuram. Therefore, injection molding, which is a conventional molding method,
It can be freely molded using techniques such as extrusion molding and calendering.

【0018】本発明により得られた振動エネルギ−吸収
材は耐油性を必要とする箇所や低温で使用する成形品に
使用できるほか、他の樹脂・合成ゴムとのブレンドによ
り低温での振動吸収性能を向上させる目的でも使用でき
る。さらに自動車や産業機器などの振動の激しい部位に
直接貼り付けて振動を抑制したり、ステンレス鋼板やア
ルミ板等の金属材料を始めとする木材、無機材料等の他
材料と複合して用いることもできる。
The vibration energy absorbing material obtained by the present invention can be used in places that require oil resistance or molded products used at low temperatures, and can also be blended with other resins or synthetic rubbers to improve vibration absorption performance at low temperatures. It can also be used for the purpose of improving. Furthermore, it can be applied directly to parts of automobiles and industrial equipment that experience strong vibrations to suppress vibrations, or it can be used in combination with other materials such as metal materials such as stainless steel plates and aluminum plates, wood, and inorganic materials. can.

【0019】[0019]

【実施例】以下に本発明を実施例を用いて説明するが、
本発明はこれら実施例に限定されるものではない。
[Examples] The present invention will be explained below using examples.
The present invention is not limited to these examples.

【0020】実施例1 ニトリルゴムとしてアクリロニトリル含有量33%のブ
タジエン−アクリロニトリル共重合体(ユ−ロプレンN
33.66,エニケム・エラストメリ製)100重量部
、架橋剤として硫黄1.5重量部、加硫助剤として酸化
亜鉛3重量部、加硫促進剤としてジメチルジチオカルバ
ミン酸亜鉛(ノクセラ−PZ,大内新興化学工業(株)
製)0.7重量部、さらにステアリン酸1重量部、カ−
ボンブラック50重量部、縮合多環式化合物としてフェ
ナントレン10重量部を水冷ロ−ルにて20分間混練し
目的の組成物を得た。
Example 1 Butadiene-acrylonitrile copolymer (Europrene N
33.66, manufactured by Enichem Elastomeri) 100 parts by weight, 1.5 parts by weight of sulfur as a crosslinking agent, 3 parts by weight of zinc oxide as a vulcanization aid, zinc dimethyldithiocarbamate (Noxera-PZ, Ouchi) as a vulcanization accelerator Shinko Chemical Industry Co., Ltd.
) 0.7 parts by weight, further 1 part by weight of stearic acid,
50 parts by weight of bomb black and 10 parts by weight of phenanthrene as a condensed polycyclic compound were kneaded for 20 minutes on a water-cooled roll to obtain the desired composition.

【0021】実施例2 実施例1においてフェナントレンのかわりにピレン10
重量部を用いる以外は全く同一の操作により目的の組成
物を得た。
Example 2 Pyrene 10 was used instead of phenanthrene in Example 1.
The desired composition was obtained by the same procedure except that parts by weight were used.

【0022】実施例3 実施例1においてフェナントレンのかわりに環集合とし
て1,2−ジフェニルベンゼン10重量部を用いる以外
は全く同一の操作により目的の組成物を得た。
Example 3 The desired composition was obtained by the same procedure as in Example 1 except that 10 parts by weight of 1,2-diphenylbenzene was used as the ring assembly instead of phenanthrene.

【0023】実施例4 実施例1においてフェナントレンのかわりに環集合とし
て1,3−ジフェニルベンゼン10重量部を用いる以外
は全く同一の操作により目的の組成物を得た。
Example 4 The desired composition was obtained by the same procedure as in Example 1 except that 10 parts by weight of 1,3-diphenylbenzene was used as a ring assembly instead of phenanthrene.

【0024】実施例5 実施例1においてフェナントレンを30重量部用いる以
外は全く同一の操作により目的の組成物を得た。
Example 5 The desired composition was obtained by the same procedure as in Example 1 except that 30 parts by weight of phenanthrene was used.

【0025】比較例1 実施例1で用いた配合のうち、縮合多環式化合物のみを
除いた系を実施例1と同様の操作により目的の組成物を
得た。
Comparative Example 1 The desired composition was obtained by the same procedure as in Example 1, except that only the fused polycyclic compound was removed from the formulation used in Example 1.

【0026】比較例2 実施例1においてフェナントレンのかわりに2−メチル
ナフタレン10重量部を用いる以外は全く同一の操作に
より目的の組成物を得た。
Comparative Example 2 The desired composition was obtained by the same procedure as in Example 1 except that 10 parts by weight of 2-methylnaphthalene was used instead of phenanthrene.

【0027】比較例3 実施例1においてフェナントレンのかわりにビフェニル
10重量部を用いる以外は全く同一の操作により目的の
組成物を得た。
Comparative Example 3 The desired composition was obtained by the same procedure as in Example 1 except that 10 parts by weight of biphenyl was used instead of phenanthrene.

【0028】[損失係数(tanδ)の評価]実施例・
比較例で得られた組成物を温度180℃のプレス機によ
り5分間100kgf/cm2  加圧で加硫し、厚さ
約200μのシ−トを得た。ここで得られたシ−トを、
非共振型強制振動法に基づく測定装置である粘弾性アナ
ライザ−RSAII(レオメトリックス・ファ−イ−ス
ト製)を用いて昇温速度2℃/min.,測定周波数1
0Hzにより損失係数の測定を行った。この時の損失係
数のピ−ク値、及びその時の温度を表1に示す。
[Evaluation of loss coefficient (tan δ)] Example
The composition obtained in the comparative example was vulcanized using a press at a temperature of 180 DEG C. under a pressure of 100 kgf/cm@2 for 5 minutes to obtain a sheet with a thickness of about 200 .mu.m. The sheet obtained here is
Using a viscoelasticity analyzer RSAII (manufactured by Rheometrics First), which is a measurement device based on a non-resonant forced vibration method, the temperature was increased at a rate of 2°C/min. , measurement frequency 1
The loss factor was measured at 0 Hz. Table 1 shows the peak value of the loss coefficient at this time and the temperature at that time.

【0029】[0029]

【表1】[Table 1]

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
によればニトリルゴムと3個以上の環から成る縮合多環
式化合物、及び/または3個以上の環系から成る環集合
を特定の割合で複合化することによって高い損失係数を
有した振動エネルギ−吸収材が得られる。
As is clear from the above explanation, according to the present invention, a fused polycyclic compound consisting of nitrile rubber and three or more rings, and/or a ring assembly consisting of three or more ring systems can be specified. A vibration energy absorbing material having a high loss coefficient can be obtained by compounding at a ratio of .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ニトリルゴム100重量部に対して3個以
上の環から成る縮合多環式化合物、及び/または3個以
上の環系から成る環集合5〜100重量部から成る合成
ゴム組成物。
Claim 1: A synthetic rubber composition comprising 5 to 100 parts by weight of a fused polycyclic compound comprising three or more rings and/or a ring assembly comprising three or more ring systems based on 100 parts by weight of nitrile rubber. .
【請求項2】請求項1に記載の組成物から成る振動エネ
ルギ−吸収材。
2. A vibration energy absorbing material comprising the composition according to claim 1.
JP9265791A 1991-01-10 1991-04-01 Synthetic rubber composition Pending JPH04304249A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9265791A JPH04304249A (en) 1991-04-01 1991-04-01 Synthetic rubber composition
EP19920100256 EP0494663A3 (en) 1991-01-10 1992-01-09 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9265791A JPH04304249A (en) 1991-04-01 1991-04-01 Synthetic rubber composition

Publications (1)

Publication Number Publication Date
JPH04304249A true JPH04304249A (en) 1992-10-27

Family

ID=14060543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9265791A Pending JPH04304249A (en) 1991-01-10 1991-04-01 Synthetic rubber composition

Country Status (1)

Country Link
JP (1) JPH04304249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020540A (en) * 2000-07-12 2002-01-23 Sumitomo Chem Co Ltd Butadiene polymer composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020540A (en) * 2000-07-12 2002-01-23 Sumitomo Chem Co Ltd Butadiene polymer composition

Similar Documents

Publication Publication Date Title
JP4847978B2 (en) High damping rubber composition and damping member
JP5086386B2 (en) High damping composition
JP6261131B2 (en) High damping composition, seismic damper and seismic isolation bearing
KR101805206B1 (en) High damping composition
JP2013216781A (en) Highly damping composition, and viscoelastic damper
Abdul Kader et al. Acrylic rubber‐fluorocarbon rubber miscible blends: Effect of curatives and fillers on cure, mechanical, aging, and swelling properties
WO1999011704A1 (en) Rubber composition, electric wire coating material, and electric wire
JPH1081787A (en) Vibration-damping member
JPH04304249A (en) Synthetic rubber composition
JP5562181B2 (en) High damping rubber composition and use thereof
JP3740776B2 (en) Damping material composition
EP0481810A2 (en) Rubber composition for laminated vibrationproofing structure
JP3298122B2 (en) Polyvinyl chloride resin composition
JP3180384B2 (en) Vibration energy absorber
JP2004269839A (en) High damping rubber composition for support
JP3517776B2 (en) High damping rubber composition
JPH10219033A (en) Rubber composition for high-attenuation support
JPH02170849A (en) Rubber mixture for tread of vehicle tire
JPH04212844A (en) Rubber composition for earthquakeproof laminate
JPH04304250A (en) Synthetic rubber composition
JPH11153169A (en) High damping rubber composition
JP3339487B2 (en) Polyvinyl chloride resin composition and vibration energy absorbing material comprising the same
JP3132072B2 (en) Synthetic rubber composition
JP2001200103A (en) Vibration damping vtscoelastic material for building
JP2726947B2 (en) Anti-vibration rubber composition