JPH04301706A - Hollow body internal wall surface inspecting device - Google Patents

Hollow body internal wall surface inspecting device

Info

Publication number
JPH04301706A
JPH04301706A JP9175691A JP9175691A JPH04301706A JP H04301706 A JPH04301706 A JP H04301706A JP 9175691 A JP9175691 A JP 9175691A JP 9175691 A JP9175691 A JP 9175691A JP H04301706 A JPH04301706 A JP H04301706A
Authority
JP
Japan
Prior art keywords
hollow body
wall surface
optical system
membrane
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9175691A
Other languages
Japanese (ja)
Inventor
Noriaki Saito
斉藤 憲敬
Masaki Fuse
正樹 布施
Masatoshi Toda
正利 戸田
Shingo Suzuki
信吾 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP9175691A priority Critical patent/JPH04301706A/en
Publication of JPH04301706A publication Critical patent/JPH04301706A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an internal wall surface inspecting device of a hollow body which enables easy measurement of a circumferential dimension of a membrane body affixed onto the internal wall surface of the hollow body irrespective of the material or the color of the membrane even when the inner diameter of the hollow body is below tens of a millimeter. CONSTITUTION:There is provided a photographing optical system 2 of which field of vision is a membrane body affixed onto an internal wall surface of a hollow body 3, and at the same time, an illuminating system 6 to irradiate the light on this membrane body is provided so that the intensity of the reflected light at the side end of the membrane body may be larger than the intensity of the ambient reflected light when seen from this photographing optical system 2. The photographing signals output from the photographing optical system 2 are processed by means of an image processing device 9, and the coordinates of the side end part are calculated, then the circumferential dimension of the membrane body is calculated from these coordinates. The illuminating system 6 is preferably comprised of an optical fiber 7 one end of which is opposite to an inclined surface of the membrane body at a specified angle and by a light source 8 which is connected to the other end of the optical fiber 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、中空体の内壁面に付着
せしめられた、例えば、塗料等の膜体の周方向寸法を測
定する中空体の内壁面検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for inspecting the inner wall surface of a hollow body for measuring the circumferential dimension of a film of paint or the like adhered to the inner wall surface of the hollow body.

【0002】0002

【従来の技術】軸方向に連続的に溶接して製作されたパ
イプ等の中空体は、内部に通す流体の種類によっては溶
接部を塗料で保護しなければならない。また、特殊な例
として、内径が数十ミリメートルの中空体の内壁面に塗
料を塗布するに際して、この中空体を毎分数百メートル
で移動させているので、かかる高速移動中にも内壁面を
検査する必要性があった。
2. Description of the Related Art Hollow bodies such as pipes manufactured by continuous welding in the axial direction must be protected with paint at the welded parts depending on the type of fluid to be passed inside. In addition, as a special example, when applying paint to the inner wall surface of a hollow body with an inner diameter of several tens of millimeters, this hollow body is moved at several hundred meters per minute, so even during such high-speed movement, the inner wall surface is coated. There was a need to inspect it.

【0003】このように、中空体の内壁面を検査する従
来の装置として、例えば、特開昭56−54410号公
報に示されたように、筒体の基端部に接眼レンズを、先
端部に魚眼レンズをそれぞれ取り付け、さらに、筒体の
外筒の軸線に沿って複数本の光ファイバを埋設して、こ
れらの光ファイバの基端部を光源に接続することにより
、有底シリンダの内壁面に傷があるか否かを検査するの
に好適な装置がある。また、特開昭62−298703
号公報に示されたように、桿の先端に取り付けられた反
射鏡を介して、レーザ光を送受する二つのレーザ光送受
信部を基端に設け、これら二つのレーザ光送受信部の受
信々号を演算処理して内壁面に付着した物資の位置と形
状を調べる装置がある。さらに、もう一つの内壁面検査
装置としては、直径が1.8ミリメートルのイメージハ
ンドルの周囲にライトガイドをリング状に取り付けた“
MY SCOPE”(登録商標、株式会社住田光学ガラ
ス製)がある。
As described above, as a conventional apparatus for inspecting the inner wall surface of a hollow body, for example, as shown in Japanese Patent Application Laid-Open No. 56-54410, an eyepiece is attached to the base end of the cylinder, and an eyepiece is attached to the distal end. By attaching a fisheye lens to each of the cylinders, embedding multiple optical fibers along the axis of the outer cylinder of the cylinder, and connecting the base ends of these optical fibers to a light source, the inner wall surface of the bottomed cylinder There is a suitable device for inspecting whether or not there are any flaws. Also, JP-A No. 62-298703
As shown in the publication, two laser beam transmitting/receiving sections for transmitting and receiving laser beams are provided at the base end through a reflecting mirror attached to the tip of the rod, and the receiving and receiving signals of these two laser beam transmitting/receiving sections are There is a device that calculates the position and shape of substances attached to the inner wall surface. Furthermore, as another internal wall surface inspection device, a light guide is attached in a ring shape around an image handle with a diameter of 1.8 mm.
MY SCOPE” (registered trademark, manufactured by Sumita Optical Glass Co., Ltd.).

【0004】0004

【発明が解決しようとする課題】上述した従来の検査装
置のうち、特開昭56−54410号および特開昭62
−298703号の各公報に示された装置はいずれも直
径が大きく、内径が数十ミリメートルの中空体には適用
し難かった。一方、“MY SCOPE”は比較的直径
が小さいため、内径が数十ミリメートルの中空体でも内
壁の検査は可能である。 しかし、照明に散乱光を用いるため、無色透明の塗料の
幅を測定することはできなかった。すなわち、塗料の周
辺部と中間部とで表面状態に差がないため、その幅を測
定することは不可能であった。
Problems to be Solved by the Invention Among the conventional inspection devices mentioned above, Japanese Patent Laid-Open No. 56-54410 and Japanese Patent Laid-open No. 62
The devices shown in each publication of No. 298703 had a large diameter and were difficult to apply to a hollow body with an inner diameter of several tens of millimeters. On the other hand, since "MY SCOPE" has a relatively small diameter, it is possible to inspect the inner wall of a hollow body with an inner diameter of several tens of millimeters. However, since scattered light was used for illumination, it was not possible to measure the width of the colorless and transparent paint. That is, since there is no difference in the surface condition between the peripheral part and the middle part of the paint, it was impossible to measure the width thereof.

【0005】本発明は上記の問題点を解決するためにな
されたもので、被検査物体の内矩寸法が数十ミリメート
ル以下であっても、中空体の内壁面に付着せしめられた
膜体の周方向寸法を、膜体の材質や色彩に拘らず容易に
測定することのできる中空体の内壁面検査装置を得るこ
とを目的とする。
The present invention has been made to solve the above problems, and even if the inner rectangular dimension of the object to be inspected is several tens of millimeters or less, the film attached to the inner wall surface of the hollow body can be It is an object of the present invention to provide an inner wall surface inspection device for a hollow body that can easily measure the circumferential dimension regardless of the material and color of the membrane body.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するため中空体の内壁面に付着せしめられた膜体の周
方向寸法を測定する中空体の内壁面検査装置において、
前記膜体を視野とする撮像光学系と、前記膜体を照射し
前記撮像光学系から見て、前記側端部における反射光強
度が前記側端部以外の部分における反射光強度により大
きくなるような位置に配された照明系と、前記撮像光学
系から出力される映像信号を処理して前記側端部の座標
を演算すると共に、これらの座標から前記膜体の周方向
寸法を演算する画像処理装置とを備えたものである。こ
の場合、照明系として、一端部が膜体の傾斜面に所定の
角度で対向する光ファイバと、この光ファイバの他端に
接続された光源とで構成したものを用いると好都合であ
る。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a hollow body inner wall surface inspection device for measuring the circumferential dimension of a membrane attached to the inner wall surface of a hollow body.
an imaging optical system whose field of view is the film body; and an imaging optical system that irradiates the film body so that, when viewed from the imaging optical system, the intensity of reflected light at the side edge portion is greater than the intensity of reflected light at a portion other than the side edge portion. An image in which coordinates of the side end portion are calculated by processing video signals output from an illumination system arranged at a position and the imaging optical system, and a circumferential dimension of the membrane body is calculated from these coordinates. It is equipped with a processing device. In this case, it is convenient to use an illumination system consisting of an optical fiber whose one end faces the inclined surface of the film body at a predetermined angle, and a light source connected to the other end of this optical fiber.

【0007】[0007]

【作用】図4に示すように、軸方向に伸長する円筒状中
空体3の軸方向溶接部3aを保護するために塗料が塗ら
れたものとする。この塗料が十分な保護機能を持ってい
るか否かを確認するためには塗膜11の厚さtおよび幅
Wを測定する必要がある。この場合、厚さtについては
本発明に直接関係しないので説明を省略するが、内径D
が数十ミリメートルの中空体3に対して幅Wを数分の1
ミリメートルの精度で測定することが要求される場合が
ある。
[Operation] As shown in FIG. 4, it is assumed that paint is applied to protect the axially welded portion 3a of the cylindrical hollow body 3 extending in the axial direction. In order to confirm whether this paint has a sufficient protective function, it is necessary to measure the thickness t and width W of the paint film 11. In this case, the thickness t is not directly related to the present invention, so its explanation will be omitted, but the inner diameter D
is a fraction of the width W for the hollow body 3 of several tens of millimeters.
Measurements with millimeter accuracy may be required.

【0008】この場合、塗膜11は、塗料の材質、塗布
方法に違いはあっても通常はその側端部に傾斜面11a
を有する。本発明は、この傾斜面11aを塗膜11の幅
測定に利用したもので、図5に示すように、膜体として
の塗膜11を視野とする撮像光学系2を設けると共に、
この撮像光学系2から見て側端部の反射光強度がその周
囲における反射光強度より大きくなるように、位置P1
,P2から塗膜11を照射する照明系を設けている。撮
像光学系2から出力される映像信号を処理して塗膜11
の周方向寸法、すなわち、幅Wを演算する。ここで、撮
像光学系2が中空体3の中心部を広く占有することを考
慮すると、その周囲の空間は極めて狭くなる。そこで、
中空体3の外部に光源を配置し、その光を光ファイバで
導入すると共に、位置P1,P2から塗膜11を照射す
るようにすれば、かかる狭い空間からであっても、側端
部の傾斜面11aを都合よく照射することができる。こ
の結果、中空体3の内径が数十ミリメートル以下であっ
ても、塗膜11の周方向寸法を、膜体の材質に拘わらず
容易に測定することができる。
In this case, the coating film 11 usually has an inclined surface 11a at its side end, although there are differences in the material of the coating material and the coating method.
has. The present invention utilizes this inclined surface 11a to measure the width of the coating film 11, and as shown in FIG. 5, an imaging optical system 2 whose visual field is the coating film 11 as a film body is provided,
The position P1 is set so that the intensity of reflected light at the side end is greater than the intensity of reflected light around the side edge when viewed from the imaging optical system 2.
, P2 is provided to illuminate the coating film 11. A coating film 11 is formed by processing the video signal output from the imaging optical system 2.
The circumferential dimension of , that is, the width W is calculated. Here, considering that the imaging optical system 2 occupies a large area at the center of the hollow body 3, the space around it becomes extremely narrow. Therefore,
If a light source is placed outside the hollow body 3, the light is introduced through an optical fiber, and the coating film 11 is irradiated from positions P1 and P2, even from such a narrow space, the side edges can be illuminated. The inclined surface 11a can be conveniently irradiated. As a result, even if the inner diameter of the hollow body 3 is several tens of millimeters or less, the circumferential dimension of the coating film 11 can be easily measured regardless of the material of the film body.

【0009】[0009]

【実施例】図1は本発明の一実施例の概略構成図である
。同図において、加工部1は円柱状に形成されており、
これと軸芯が一致するように中空体3が加工部1に外接
して矢印Xで示す軸方向に高速移動する。中空体3は当
初平板状物であり、加工部1の左端に近づくにつれて円
筒状になるようまるめられ、加工部1に達した時は完全
な円筒状物となる。この加工部1によって、まず切目の
溶接が行われ、次に図4に示すように、中空体3の内壁
面の溶接部3aを覆うように樹脂コーティングによる塗
膜11が付着される。加工部1自体の基本的構成は従来
と同様であるので詳述しない。加工部1の図中右側の先
端には外径形状がやはり円柱状をなす撮像光学系2が取
り付けられており、中空体3の塗膜11を視野とするよ
うに取り付けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram of an embodiment of the present invention. In the figure, the processed part 1 is formed in a cylindrical shape,
The hollow body 3 circumscribes the processing portion 1 and moves at high speed in the axial direction indicated by the arrow X so that the axis coincides with this. The hollow body 3 is initially a flat plate-like object, and as it approaches the left end of the processing section 1, it is rounded into a cylindrical shape, and when it reaches the processing section 1, it becomes a completely cylindrical object. First, welding of the incision is performed using this processed portion 1, and then, as shown in FIG. 4, a resin coating film 11 is applied so as to cover the welded portion 3a on the inner wall surface of the hollow body 3. The basic configuration of the processing section 1 itself is the same as the conventional one, so it will not be described in detail. An imaging optical system 2 having a cylindrical outer diameter is attached to the right end of the processing section 1 in the figure, and is attached so that the coating film 11 of the hollow body 3 is the field of view.

【0010】ここで、加工部1の中心部には長孔1aが
形成されており、この長孔1aに撮像光学系2の電源線
および信号線と、照明系6を構成する直径1mmの光フ
ァイバ7(三菱レイヨン製エスカ(登録商標)SK40
)が通されている。この光ファイバ7の基端部には同じ
く照明系6を構成する、例えば、ハロゲンランプ等の光
源8が結合されており、これらの光ファイバ7の先端は
、図2に示すように、塗膜11の傾斜面11aでの反射
光強度が最大となる角度、例えば、幅が8mmの塗膜1
1に対してはα=33.5度の傾きで、溶接部3aから
横軸方向に△X=10mm、縦軸方向に△Y=10mm
離隔して対向するように撮像光学系2に取り付けられて
いる。
Here, a long hole 1a is formed in the center of the processing section 1, and a power line and a signal line of the imaging optical system 2 and a light beam having a diameter of 1 mm constituting the illumination system 6 are connected to the long hole 1a. Fiber 7 (Mitsubishi Rayon Esca (registered trademark) SK40
) has been passed. A light source 8 such as a halogen lamp, which also constitutes the illumination system 6, is coupled to the base end of the optical fiber 7, and the tips of these optical fibers 7 are coated with a coating film, as shown in FIG. The angle at which the reflected light intensity on the inclined surface 11a of No. 11 is maximum, for example, the coating film 1 with a width of 8 mm.
For 1, the inclination is α = 33.5 degrees, △X = 10 mm in the horizontal axis direction and △Y = 10 mm in the vertical axis direction from the welding part 3a.
They are attached to the imaging optical system 2 so as to face each other at a distance.

【0011】また、図1に示すように中空体3を除去し
たときに、光ファイバ7の先端から投射される光を受け
て作動する光電スイッチ4,5が設けられ、このうちの
一方の光電スイッチ4は光が遮断されときに検査開始信
号を出力するもので、他方の光電スイッチ5は光を受け
たときに検査終了信号を出力するものである。これらの
光電スイッチ4,5は、前述の撮像光学系2と共に画像
処理装置9に接続される。この画像処理装置9は光電ス
イッチ4の検査開始の信号を受信してから光電スイッチ
5の検査終了の信号を受信するまでに入力された撮像光
学系2の映像信号を処理して塗膜11の幅Bを測定し、
測定結果をコンピュータ10に渡すようになっている。 コンピュータ10は幅Bに対する測定結果の良否を判定
し、許容範囲を超えた場合に、警報表示する構成になっ
ている。
Further, as shown in FIG. 1, when the hollow body 3 is removed, photoelectric switches 4 and 5 are provided which are activated by receiving the light projected from the tip of the optical fiber 7. The switch 4 outputs an inspection start signal when light is interrupted, and the other photoelectric switch 5 outputs an inspection end signal when it receives light. These photoelectric switches 4 and 5 are connected to an image processing device 9 together with the above-mentioned imaging optical system 2. This image processing device 9 processes the video signal of the imaging optical system 2 that is input from the time when the signal to start the inspection of the photoelectric switch 4 to the time when the signal to finish the inspection from the photoelectric switch 5 is received. Measure the width B,
The measurement results are passed to the computer 10. The computer 10 is configured to determine the quality of the measurement results for the width B, and to display an alarm if the measurement results exceed the permissible range.

【0012】上記のように構成された本実施例の動作を
、図3をも参照して説明する。中空体3が撮像光学系2
から離れていたとすれば、光ファイバ7の先端からそれ
ぞれ光が投射され、光電スイッチ4,5はこれらを受光
する。いま、中空体3を図1中のX矢印方向に移動させ
て図1に示した状態にすれば、光ファイバ7から投射さ
れる光は遮られる。画像処理装置9は光電スイッチ4の
入射光が遮られたときに画像処理を開始する。そして、
中空体3をさらにX矢印方向に移動させると、光電スイ
ッチ4,5は再び光ファイバ7の投射光を受光する。画
像処理装置9は光電スイッチ5の受光時に画像処理を終
了する。
The operation of this embodiment configured as described above will be explained with reference to FIG. 3 as well. The hollow body 3 is the imaging optical system 2
If they are separated from each other, light is projected from the tip of the optical fiber 7, and the photoelectric switches 4 and 5 receive these lights. Now, if the hollow body 3 is moved in the direction of the X arrow in FIG. 1 to the state shown in FIG. 1, the light projected from the optical fiber 7 will be blocked. The image processing device 9 starts image processing when the incident light of the photoelectric switch 4 is interrupted. and,
When the hollow body 3 is further moved in the direction of the X arrow, the photoelectric switches 4 and 5 receive the projected light from the optical fiber 7 again. The image processing device 9 finishes image processing when the photoelectric switch 5 receives light.

【0013】画像処理装置9の画像処理中、光ファイバ
7の先端から投射された光は中空体3の内壁に塗られた
塗膜11を照射し、撮像光学系2はこれを撮影してその
映像信号を画像処理装置9に送り込む。この場合、図3
(a)に示すように、撮像光学系2は塗膜11の横幅方
向の領域Aを撮影する。このとき、撮像光学系2から見
て、傾斜面11aでの反射光強度がその周囲の反射光強
度より大きくなる位置に光ファイバ7の先端が配置され
ている。従って、撮像光学系2の出力信号レベルは、図
3(b)に示すように、側端部としての傾斜面11aに
対応する部位が最大となり、溶接部3aに対応する中心
部がこれよりも僅かに小さく対称な山形をなす。
During image processing by the image processing device 9, the light projected from the tip of the optical fiber 7 illuminates the coating film 11 applied to the inner wall of the hollow body 3, and the imaging optical system 2 photographs this and records it. The video signal is sent to the image processing device 9. In this case, Figure 3
As shown in (a), the imaging optical system 2 photographs a region A in the width direction of the coating film 11. At this time, the tip of the optical fiber 7 is placed at a position where the intensity of reflected light on the inclined surface 11a is greater than the intensity of reflected light around the inclined surface 11a, as viewed from the imaging optical system 2. Therefore, as shown in FIG. 3(b), the output signal level of the imaging optical system 2 is maximum at the portion corresponding to the inclined surface 11a as the side edge portion, and is higher at the center portion corresponding to the welded portion 3a. It forms a slightly small and symmetrical mountain shape.

【0014】このような映像号が送り込まれると、画像
処理装置9は、図示したように溶接部3aに対して対称
な矩形波を閾値として二値化し、図3(c)に示すよう
な二値化データを得る。続いて、これらのデータに対し
てランレングス符号化処理を実行してレベルが変化する
始点と終点の組合せ(s1 ,e1)、(s2 ,e2
)を求め、これらのデータから塗膜11の幅Bを演算す
る。
When such a video signal is sent, the image processing device 9 binarizes it using a rectangular wave symmetrical to the welding part 3a as a threshold as shown in the figure, and generates a binary signal as shown in FIG. 3(c). Obtain valued data. Next, run-length encoding processing is performed on these data to determine the combinations of start and end points (s1, e1) and (s2, e2) whose levels change.
) and calculate the width B of the coating film 11 from these data.

【0015】そして、画像処理装置9で演算された幅B
に関するデータは逐次コンピュータ10に送り込まれ、
加工部1での塗膜11の制御に供され、幅が不適当なと
きに必要な措置をとるべく警報表示する。因みに、内径
が数十ミリメートルの中空体の内壁に付着させた約10
ミリメートルの塗料の幅を数分の1ミリメートルの精度
にて測定することができた。
Then, the width B calculated by the image processing device 9
Data regarding is sequentially sent to the computer 10,
It is used to control the coating film 11 in the processing section 1, and displays an alarm so that necessary measures can be taken when the width is inappropriate. By the way, about 10
It was possible to measure the width of millimeter paint with an accuracy of a fraction of a millimeter.

【0016】かくして、この実施例によれば、撮像光学
系2から見て、傾斜面11aでの反射光強度が傾斜面以
外での反射光強度より大きくなる位置に光ファイバ7の
先端を配置しているため、塗料が無色透明であってもそ
の材質に拘らず塗膜11の幅を確実に測定することがで
きる。
Thus, according to this embodiment, the tip of the optical fiber 7 is placed at a position where the intensity of the reflected light on the inclined surface 11a is greater than the intensity of reflected light on other surfaces, as viewed from the imaging optical system 2. Therefore, even if the paint is colorless and transparent, the width of the coating film 11 can be reliably measured regardless of its material.

【0017】また、加工部1の先端部に撮像光学系2を
固定し、この撮像光学系2の電源線および信号線と、照
明系6を構成する光ファイバ7とを併せて加工部1の軸
心部に形成した長孔1aに通すようにしたので、内径が
数十ミリメートルの中空体3であっても、さらに、この
中空体3が軸方向に高速(数百メートル/分)で移動し
ても塗膜11の幅を測定することができる。
Further, an imaging optical system 2 is fixed to the tip of the processing section 1, and the power line and signal line of the imaging optical system 2 and the optical fiber 7 constituting the illumination system 6 are connected to the processing section 1. Since it passes through the elongated hole 1a formed in the axial center, even if the hollow body 3 has an inner diameter of several tens of millimeters, the hollow body 3 can move at high speed (several hundred meters/minute) in the axial direction. However, the width of the coating film 11 can be measured.

【0018】さらにまた、側端部の反射光強度が周囲の
反射光強度より大きくなるように塗膜11を照射するよ
うに光ファイバ7を配置し、その映像信号を画像処理す
ることにより、幅を数分の1ミリメートルの精度にて測
定することができた。
Furthermore, by arranging the optical fiber 7 so as to irradiate the coating film 11 so that the intensity of reflected light at the side end is greater than the intensity of reflected light at the surrounding area, and by image processing the video signal, the width can be adjusted. could be measured with an accuracy of a fraction of a millimeter.

【0019】なお、上記実施例では中空体3の内壁面に
塗布された塗膜の幅を測定する例を示したが、本発明の
内壁面検査装置はこれに限定されるものではなく、塗膜
以外の、例えば、液状、ゲル状、ゴム状等、どのような
膜体でも中空体の内壁面に付着されたものであれば、同
様にしてその幅を高精度にて測定することができる。
Although the above embodiment shows an example of measuring the width of the coating film applied to the inner wall surface of the hollow body 3, the inner wall surface inspection apparatus of the present invention is not limited to this, and the width of the coating film applied to the inner wall surface of the hollow body 3 is measured. The width of any membrane other than a membrane, such as liquid, gel, rubber, etc., can be measured with high precision in the same way as long as it is attached to the inner wall surface of a hollow body. .

【0020】[0020]

【発明の効果】以上の説明によって明らかなように、本
発明によれば、中空体の内壁面に付着された膜体を視野
とする撮像光学系を設けると共に、この撮像光学系から
見て側端部の反射光強度が周囲における反射光強度より
大きくなる位置から膜体を照射する照明系を設け、撮像
光学系から出力される映像信号を処理して塗膜の周方向
寸法、すなわち、幅を演算するようにしたので、中空体
の内径が数十ミリメートル以下であっても、膜体の周方
向寸法を、膜体の材質に拘らず容易に測定することがで
きるという効果がある。
As is clear from the above description, according to the present invention, an imaging optical system whose field of view is a film attached to the inner wall surface of a hollow body is provided, and when viewed from the imaging optical system, An illumination system is provided that illuminates the film body from a position where the intensity of reflected light at the edge is greater than the intensity of reflected light at the surrounding area, and the video signal output from the imaging optical system is processed to determine the circumferential dimension of the coating film, that is, the width. is calculated, the effect is that even if the inner diameter of the hollow body is several tens of millimeters or less, the circumferential dimension of the membrane can be easily measured regardless of the material of the membrane.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の概略構成図である。FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.

【図2】本発明の一実施例の主要素の詳細な構成を示す
説明図である。
FIG. 2 is an explanatory diagram showing a detailed configuration of main elements of an embodiment of the present invention.

【図3】本発明の一実施例の動作を説明するために撮像
位置と映像信号との関係を示す説明図である。
FIG. 3 is an explanatory diagram showing the relationship between an imaging position and a video signal in order to explain the operation of an embodiment of the present invention.

【図4】本発明の適用対象である中空体の横断面図であ
る。
FIG. 4 is a cross-sectional view of a hollow body to which the present invention is applied.

【図5】本発明の原理を説明するために光の反射状態を
示す説明図である。
FIG. 5 is an explanatory diagram showing the state of light reflection for explaining the principle of the present invention.

【符号の説明】[Explanation of symbols]

1  加工部 2  撮像光学系 3  中空体 6  照明系 7  光ファイバ 8  光源 9  画像処理装置 10  コンピュータ 11  塗膜 1 Processing department 2 Imaging optical system 3 Hollow body 6. Lighting system 7 Optical fiber 8 Light source 9 Image processing device 10 Computer 11 Coating film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  中空体の内壁面に付着せしめられた膜
体の周方向寸法を測定する中空体の内壁面検査装置にお
いて、前記膜体を視野とする撮像光学系と、前記膜体を
照射し前記撮像光学系から見て、前記側端部における反
射光強度が前記側端部以外の部分における反射光強度よ
り大きくなるような位置に配された照明系と、前記撮像
光学系から出力される映像信号を処理して前記側端部の
座標を演算すると共に、これらの座標から前記膜体の周
方向寸法を演算する画像処理装置とを備えたことを特徴
とする中空体の内壁面検査装置。
1. A hollow body inner wall surface inspection device for measuring the circumferential dimension of a film attached to the inner wall surface of a hollow body, comprising: an imaging optical system with the film as a field of view; and an illumination system disposed at a position such that the intensity of reflected light at the side edge is greater than the intensity of reflected light at a portion other than the side edge when viewed from the imaging optical system; an image processing device that processes a video signal of the membrane body to calculate the coordinates of the side end, and calculates the circumferential dimension of the membrane body from these coordinates. Device.
【請求項2】  前記照明系は、一端部が前記膜体の傾
斜面に所定の角度で対向する光ファイバおよびこの光フ
ァイバの他端に接続された光源からなる請求項1記載の
中空体の内壁面検査装置。
2. The hollow body according to claim 1, wherein the illumination system comprises an optical fiber whose one end faces the inclined surface of the film body at a predetermined angle, and a light source connected to the other end of the optical fiber. Internal wall surface inspection device.
JP9175691A 1991-03-29 1991-03-29 Hollow body internal wall surface inspecting device Withdrawn JPH04301706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9175691A JPH04301706A (en) 1991-03-29 1991-03-29 Hollow body internal wall surface inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9175691A JPH04301706A (en) 1991-03-29 1991-03-29 Hollow body internal wall surface inspecting device

Publications (1)

Publication Number Publication Date
JPH04301706A true JPH04301706A (en) 1992-10-26

Family

ID=14035387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9175691A Withdrawn JPH04301706A (en) 1991-03-29 1991-03-29 Hollow body internal wall surface inspecting device

Country Status (1)

Country Link
JP (1) JPH04301706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045265A (en) * 2002-07-12 2004-02-12 Ricoh Co Ltd Inner surface inspection method and apparatus of cylindrical body for electrophotograph

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045265A (en) * 2002-07-12 2004-02-12 Ricoh Co Ltd Inner surface inspection method and apparatus of cylindrical body for electrophotograph

Similar Documents

Publication Publication Date Title
US5640962A (en) Process and device for determining the topography of a reflecting surface
US7385710B1 (en) Measuring device
US5627638A (en) Method and apparatus for detecting defects in lenses
EP0856728B1 (en) Optical method and apparatus for detecting defects
WO1998051993A1 (en) Height-measuring device
DE3879224D1 (en) DEVICE FOR OPTICALLY SCANNING THE SURFACE OF AN OBJECT.
SE8502977D0 (en) INSTRUMENTS FOR SEATING SURFACE TOPOGRAPHY
KR950016899A (en) Processes and apparatus for optical inspection of the transparent part of the container, especially the agar part of the bottle
JPH0418602B2 (en)
KR960014919A (en) Optical inspection method and optical inspection device
WO1998052025A1 (en) Surface inspection instrument and surface inspection method
PT1288613E (en) Transparent container sidewall thickness measurement with a line-shaped light beam
ATE88560T1 (en) ARRANGEMENT FOR THE OPTICAL DETECTION OF SPATIAL UNEVENNESSES IN THE STRUCTURE OF AN OBJECT TO BE EXAMINED.
US4934813A (en) Apparatus for inspecting an inner surface of a pipe including means for preventing halation
JPH04301706A (en) Hollow body internal wall surface inspecting device
JPH05149885A (en) In-pipe inspection device
JP3454547B2 (en) Internal scanner device
JPH03276005A (en) Shape measuring device
RU2369999C1 (en) Laser positioner for x-ray emitter
JP3920713B2 (en) Optical displacement measuring device
RU2237984C1 (en) Laser x-radiation localizer
RU94020463A (en) Reflectometer
JPH06242024A (en) Defect inspection system for sheet material
JPH0642924A (en) Visual observation apparatus
JPH06347411A (en) Minute defect and dirt detecting device and method for surface of translucent body or transparent body

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514