RU94020463A - Reflectometer - Google Patents

Reflectometer

Info

Publication number
RU94020463A
RU94020463A RU94020463/25A RU94020463A RU94020463A RU 94020463 A RU94020463 A RU 94020463A RU 94020463/25 A RU94020463/25 A RU 94020463/25A RU 94020463 A RU94020463 A RU 94020463A RU 94020463 A RU94020463 A RU 94020463A
Authority
RU
Russia
Prior art keywords
diaphragm
optical
lens
inspected
plane
Prior art date
Application number
RU94020463/25A
Other languages
Russian (ru)
Other versions
RU2091762C1 (en
Inventor
А.А. Шаров
О.В. Понин
С.П. Белоусов
Original Assignee
Производственное объединение "Лыткаринский завод оптического стекла"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Производственное объединение "Лыткаринский завод оптического стекла" filed Critical Производственное объединение "Лыткаринский завод оптического стекла"
Priority to RU94020463A priority Critical patent/RU2091762C1/en
Publication of RU94020463A publication Critical patent/RU94020463A/en
Application granted granted Critical
Publication of RU2091762C1 publication Critical patent/RU2091762C1/en

Links

Abstract

FIELD: measurement technology. SUBSTANCE: invention relates to device determining reflection capability of mirrorlike surfaces. It may be used to inspect quality of antireflection, reflecting and semi-transparent coats applied to surfaces of optical parts. Invention ensures identical inspection of reflecting capability of surfaces with different radii of curvature and enhances accuracy of measurements. Pencil of rays from light source supplied from stabilized power supply unit illuminates through condenser input butt of transmitting fibre-optical bundle which passes light on to diaphragm illuminating it uniformly. Lens which optical axis is directed along normal to inspected optical surface is placed behind diaphragm, Object plane of lens coincides with plane of diaphragm and image plane - with vertex of inspected surface. This coincidence is provided with the aid of focusing device moving front part of reflectometer relative to inspected surface. Thus diaphragm is pictured on elementary section of surface which is smaller than curvature radius of inspected optical surface and can be considered as flat one. Rays reflected from surface in reverse path through lens form autocollimation image of diaphragm with scale 1:1 over diaphragm proper. Light reflected by surface goes to input butt of receiving bundle then to photodetector. By amplitude of electric signal of it one evaluates reflecting capability of inspected optical surface. EFFECT: identical sensitive inspection of reflecting capability of surfaces with different radii of curvature, enhanced accuracy of measurements. 6 cl, 4 dwg

Claims (1)

Изобретение относится к измерительной технике, а именно к устройствам для определения отражающей способности зеркально отражающих поверхностей. Изобретение может быть использовано для контроля качества просветляющих, отражающих и полупрозрачных покрытий, нанесенных на поверхности оптических деталей. Изобретение обеспечивает одинаково чувствительный контроль отражающей способности поверхностей с различными радиусами кривизны и повышает точность измерения. Пучок лучей от источника света, работающего от стабилизированного блока питания, освещает через конденсор входной торец передающего волоконно-оптического жгута, который передает свет на диафрагму, равномерно освещая ее. За диафрагмой расположен объектив, оптическая ось которого направлена по нормали к исследуемой оптической поверхности Плоскость предметов объектива совпадает с плоскостью диафрагмы, а плоскость изображений - с вершиной исследуемой поверхности. Это совпадение обеспечивается при помощи фокусирующего устройства, перемещающего друг относительно друга переднюю часть рефлектометра, и исследуемую поверхность. Таким образом, диафрагма изображается на элементарном участке поверхности, который при размере изображения диафрагмы много меньшем радиуса кривизны исследуемой оптической поверхности, можно рассматривать как плоский. Отраженные от поверхности лучи в обратном ходе через объектив формируют автоколлимационное изображение диафрагмы в масштабе 1: 1 на самой диафрагме. Свет, отраженный поверхностью, поступает на входной торец приемного жгута, а затем на фотоприемник, по амплитуде электрического сигнала которого судят об отражающей способности исследуемой оптической поверхности. 5 з. п. ф-лы, 4 ил.The invention relates to measuring technique, namely to devices for determining the reflectivity of specularly reflective surfaces. The invention can be used to control the quality of antireflective, reflective and translucent coatings deposited on the surface of optical parts. The invention provides equally sensitive control of the reflectivity of surfaces with different radii of curvature and increases the accuracy of the measurement. A beam of rays from a light source operating from a stabilized power supply, illuminates through the condenser the input end of the transmitting fiber optic bundle, which transmits light to the diaphragm, uniformly illuminating it. A lens is located behind the diaphragm, the optical axis of which is directed normal to the investigated optical surface. The plane of the objects of the lens coincides with the plane of the diaphragm, and the plane of the images coincides with the top of the studied surface. This coincidence is ensured by a focusing device moving the front of the OTDR relative to each other and the surface under study. Thus, the diaphragm is depicted on an elementary surface section, which, when the size of the diaphragm is much smaller than the radius of curvature of the investigated optical surface, can be considered flat. The rays reflected from the surface in reverse through the lens form an autocollimation image of the diaphragm in a 1: 1 scale on the diaphragm itself. The light reflected by the surface enters the input end of the receiving harness, and then to the photodetector, the amplitude of the electrical signal of which is used to judge the reflectivity of the investigated optical surface. 5 s P. f-ly, 4 ill.
RU94020463A 1994-06-01 1994-06-01 Reflectometer RU2091762C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94020463A RU2091762C1 (en) 1994-06-01 1994-06-01 Reflectometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94020463A RU2091762C1 (en) 1994-06-01 1994-06-01 Reflectometer

Publications (2)

Publication Number Publication Date
RU94020463A true RU94020463A (en) 1996-06-27
RU2091762C1 RU2091762C1 (en) 1997-09-27

Family

ID=20156691

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94020463A RU2091762C1 (en) 1994-06-01 1994-06-01 Reflectometer

Country Status (1)

Country Link
RU (1) RU2091762C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477838C1 (en) * 2011-10-28 2013-03-20 Общество с ограниченной ответственностью "ПетроФайбер" Coherent optical reflectometer for detecting vibration action

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007887A1 (en) 2000-02-21 2001-08-23 Giesecke & Devrient Gmbh Method and device for checking the authenticity of printed objects
GB0917150D0 (en) * 2009-09-30 2009-11-11 Qinetiq Ltd Phase based sensing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477838C1 (en) * 2011-10-28 2013-03-20 Общество с ограниченной ответственностью "ПетроФайбер" Coherent optical reflectometer for detecting vibration action

Also Published As

Publication number Publication date
RU2091762C1 (en) 1997-09-27

Similar Documents

Publication Publication Date Title
CA2206212A1 (en) Phase shifting diffraction interferometer
RU2007115154A (en) OPTICAL MEASURING DEVICE FOR MEASURING CHARACTERISTICS OF MULTIPLE SURFACES OF THE OBJECT OF MEASUREMENT
WO1998052025A1 (en) Surface inspection instrument and surface inspection method
GB2278193A (en) Optical measurement of thickness
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
US4380394A (en) Fiber optic interferometer
US5467192A (en) Improvements in or relating to surface curvature measurement
US4747688A (en) Fiber optic coherence meter
EP0561178A2 (en) Improvements in or relating to surface curvature measurement
US6285451B1 (en) Noncontacting optical method for determining thickness and related apparatus
RU94020463A (en) Reflectometer
JPS6082803A (en) Optical measuring device for measuring size of section of thread and use thereof
US5355209A (en) Device for measuring the diameter of an object that is largely cylindrical, for example an optical fiber, without contact
JPS5960344A (en) Method and device for automatically inspecting surface by coherent laser luminous flux
EP3483552A1 (en) Measuring surface roughness
CN106895963B (en) Device and method for detecting large numerical aperture immersion oil lens
CN106500891B (en) Glass surface stress detection device and detection prism used for same
JP3150764B2 (en) Simple interferometer
JPH0118370B2 (en)
JP2001264259A (en) Sheet inspecting device
SU1231400A1 (en) Interferometer for inspecting quality of plane surfaces
JPS6446623A (en) Connection part inspecting method for multicore optical fiber
SU1620826A1 (en) Method and apparatus for determining diameter of holes
CA1295476C (en) Method and apparatus of measuring outer diameter and structure of optical fiber
WO1982004311A1 (en) Fiber optic interferometer