JPH04300642A - Heat transfer method in heat-exchanging-type reformer - Google Patents

Heat transfer method in heat-exchanging-type reformer

Info

Publication number
JPH04300642A
JPH04300642A JP8951491A JP8951491A JPH04300642A JP H04300642 A JPH04300642 A JP H04300642A JP 8951491 A JP8951491 A JP 8951491A JP 8951491 A JP8951491 A JP 8951491A JP H04300642 A JPH04300642 A JP H04300642A
Authority
JP
Japan
Prior art keywords
catalyst
heat transfer
tube
pipe
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8951491A
Other languages
Japanese (ja)
Other versions
JPH0685868B2 (en
Inventor
Nobuo Moriya
守 屋 信 男
Yasumasa Morita
森 田 泰 正
Yuji Sasage
捧   勇 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Original Assignee
YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI filed Critical YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Priority to JP8951491A priority Critical patent/JPH0685868B2/en
Publication of JPH04300642A publication Critical patent/JPH04300642A/en
Publication of JPH0685868B2 publication Critical patent/JPH0685868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor

Abstract

PURPOSE:To make it possible to easily control heat flux distribution in a catalyst layer by installing a heat transfer accelerating means in almost the central part of the inside of an inner pipe of a catalyst pipe and also installing another heat transfer accelerating means covering from almost the central part of the outside of the catalyst pipe to the upper stream side of the catalyst pipe. CONSTITUTION:A bayonet-type catalyst pipe 1 having a double pipe structure consisting of an inner pipe 3 and an outer pipe 2 to reform natural gas steam into an H2- and CO-rich gas by reaction by bringing the gas steam into contact with the catalyst is installed. A heat transfer accelerating means 12 consisting of a combination of demistar net 10 and an inner pipe wire net 11 is installed in almost the central part of the inside of the inner pipe 3 of the catalyst pipe 1. Also, another heat transfer accelerating means 15 preferably composed of an outer pipe wire net 13 and an orifis buffle 14 is installed covering from almost the central part of the outside of the catalyst pipe 1 to the upper stream side of the catalyst pipe 1. As a result, heat transfer efficiency is enhanced and a plurality of catalyst pipes can be heated uniformly. Furthermore, the heat flux distribution to the catalyst layer can be controlled easily.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、溶融炭酸塩型燃料電池
(MCFC)発電システムにおいて、燃料電池アノード
排ガスを燃焼して得られる高温ガスの顕熱を利用して、
天然ガスをスチームで改質することにより水素および一
酸化炭素に富むガスを製造し、燃料電池アノードに供給
する役割をもつ改質触媒管を備えた熱交換器型改質器に
おける伝熱方法に関し、さらに詳しくは、その触媒管の
内管側および外管側のそれぞれに設ける伝熱促進手段を
所定の位置関係に設置することによって触媒層へのヒー
トフラックス分布を制御することによる熱交換器型改質
器における伝熱方法に関する。
[Industrial Application Field] The present invention utilizes sensible heat of high-temperature gas obtained by burning fuel cell anode exhaust gas in a molten carbonate fuel cell (MCFC) power generation system.
Regarding the heat transfer method in a heat exchanger-type reformer equipped with a reforming catalyst tube that produces gas rich in hydrogen and carbon monoxide by reforming natural gas with steam and supplies it to the fuel cell anode. , more specifically, a heat exchanger type in which heat transfer promoting means provided on the inner tube side and outer tube side of the catalyst tube are installed in a predetermined positional relationship to control the heat flux distribution to the catalyst layer. This article relates to a heat transfer method in a reformer.

【0002】0002

【従来の技術】MCFC発電システムにおける改質器に
おいては、デイリースタート/シャット(DSS)を含
む頻繁な起動・停止および急激な負荷変動にも耐え得る
熱衝撃に強い構造が要求され、このため、2重管構造を
もついわゆるバヨネットタイプの触媒管が多く採用され
る。図6はその構造の概略を示す断面図で、バヨネット
タイプ触媒管1は外管2と内管3との間に触媒層4が設
けられた構造のものである。天然ガスおよびスチームは
触媒層4をA方向に通過する間に水素と一酸化炭素に富
む改質ガスに改質される。この天然ガスの改質反応は、
たとえば反応式 CH4 +H2 O→CO+3H2     ΔH=4
9.3Kcal/グラムモル で示される吸熱反応である。したがって、この改質反応
を促進するためにアノード排ガス燃焼器から排出される
高温の燃焼ガス流Bおよび内管を触媒層とは逆方向に流
れる改質ガスからの熱を触媒層4に伝熱して触媒層4を
適度な温度に保持するようにしている。
[Prior Art] A reformer in an MCFC power generation system is required to have a structure that is resistant to thermal shock and can withstand frequent startups and stops including daily start/shut (DSS) and rapid load fluctuations. A so-called bayonet type catalyst tube with a double tube structure is often used. FIG. 6 is a sectional view schematically showing its structure, and the bayonet type catalyst tube 1 has a structure in which a catalyst layer 4 is provided between an outer tube 2 and an inner tube 3. The natural gas and steam are reformed into a reformed gas rich in hydrogen and carbon monoxide while passing through the catalyst layer 4 in the direction A. This reforming reaction of natural gas is
For example, the reaction formula CH4 +H2 O→CO+3H2 ΔH=4
It is an endothermic reaction with 9.3 Kcal/gram mole. Therefore, in order to promote this reforming reaction, heat from the high-temperature combustion gas flow B discharged from the anode exhaust gas combustor and the reformed gas flowing in the inner tube in the opposite direction to the catalyst layer is transferred to the catalyst layer 4. The catalyst layer 4 is maintained at an appropriate temperature.

【0003】このようなバヨネットタイプの触媒管に対
して外側(シェル側)を流通する高温燃焼ガスから必要
な熱量を供給する系においては、特に次の点が伝熱特性
上重要である。 (1)   伝熱効率を高めること。 (2)   ヒートフラックスの平均値を高めるととも
にその触媒層入口から出口に至る分布を全負荷時のみな
らず部分負荷時においても所望の形に制御すること。 (3)   複数の触媒管を均等加熱すること。そのた
めに圧力損失ΔPを所望の値(0.05〜0.1kg/
cm 2 )に維持するとともにその分布を制御して燃
焼ガスの偏流を避けること。
[0003] In such a system that supplies the necessary amount of heat from high temperature combustion gas flowing outside (shell side) to the bayonet type catalyst tube, the following points are particularly important in terms of heat transfer characteristics. (1) Improving heat transfer efficiency. (2) To increase the average value of heat flux and to control its distribution from the inlet to the outlet of the catalyst layer to a desired shape not only at full load but also at partial load. (3) Uniform heating of multiple catalyst tubes. For this purpose, the pressure loss ΔP is set to a desired value (0.05 to 0.1 kg/
cm 2 ) and control its distribution to avoid uneven flow of combustion gas.

【0004】したがって、触媒層への伝熱効率を高める
ために、従来種々の工夫がなされている。図7は従来技
術における伝熱促進手段を示す要部断面図であり、たと
えば、図7(a)に示すように触媒管内管内側にスリー
ブ5を設けたもの、燃焼ガス側に図7(b)に示すよう
にスリーブ6を設けたもの、図7(c)に示すようにオ
リフィスバッフル7を設けたもの、図7(d)に示すよ
うに外管外側にワイヤーネット8を設けたもの、図7(
e)に示すように充填物9を施したものなどがある。
[0004] Therefore, various attempts have been made to improve the efficiency of heat transfer to the catalyst layer. FIG. 7 is a sectional view of a main part showing a conventional heat transfer promoting means. For example, as shown in FIG. 7(a), a sleeve 5 is provided inside the catalyst tube inner tube, and as shown in FIG. ) with a sleeve 6 as shown in FIG. 7(c), with an orifice baffle 7 as shown in FIG. 7(d), with a wire net 8 on the outside of the outer tube as shown in FIG. 7(d), Figure 7 (
As shown in e), there are some that are provided with a filler 9.

【0005】しかし、触媒管内管内側にスリーブを設け
たもの(図7(a))では、伝熱促進効果が低いために
ほぼ内管全領域に設置する必要があり、したがって、内
管側ヒートフラックス(熱流束)分布の制御が困難とな
り、また、触媒管が3重構造となり複雑化する。燃焼ガ
ス側にスリーブまたはオリフィスバッフルを設けたもの
(図7(b)または(c))は、それら単独では伝熱促
進効果が低いため広範囲に設置する必要があり、ヒート
フラックス分布の制御が困難である。燃焼ガス側にワイ
ヤーネットを設けたもの(図7(d))では、伝熱促進
効果は高いが、それ単独では燃焼ガス側の圧力損失が小
さすぎてその分布の制御が困難であるため、燃焼ガスの
偏流の防止が難しく、したがって複数の触媒管の均等加
熱が困難となる。燃焼ガス側にスリーブおよびワイヤー
ネットを設けたもの(図7(b)と(d)の組合せ)で
は、伝熱促進効果に関しては良好であるが、燃焼ガス側
の圧力損失を最適水準(たとえば、0.05〜0.1k
g/cm 2 )に保つためには設置領域を拡大する必
要がある。また、伝熱促進効果を高めるためにスリーブ
と外管とのクリアランスを小さくしようとすると、製作
、取付け上の精度が問題となる。燃焼ガス側に充填物を
施したもの(図7(e))では、伝熱促進効果を高める
ことはできるが、燃焼ガス側の圧力損失が過大となり、
かつその分布の制御もできない。
However, in the case where a sleeve is provided inside the inner tube of the catalyst tube (FIG. 7(a)), the effect of promoting heat transfer is low, so it is necessary to install the sleeve in almost the entire area of the inner tube. It becomes difficult to control the flux (heat flux) distribution, and the catalyst tube has a three-layered structure, making it complicated. Those with a sleeve or orifice baffle on the combustion gas side (Figure 7 (b) or (c)) have a low heat transfer promotion effect when used alone, so they must be installed over a wide area, making it difficult to control the heat flux distribution. It is. A wire net provided on the combustion gas side (Fig. 7(d)) has a high heat transfer promotion effect, but if it is used alone, the pressure loss on the combustion gas side is too small and it is difficult to control its distribution. It is difficult to prevent uneven flow of combustion gas, and therefore it is difficult to uniformly heat a plurality of catalyst tubes. The one in which a sleeve and wire net are provided on the combustion gas side (the combination of FIGS. 7(b) and (d)) has a good heat transfer promotion effect, but the pressure loss on the combustion gas side cannot be maintained at an optimal level (for example, 0.05~0.1k
g/cm 2 ), it is necessary to expand the installation area. Furthermore, when attempting to reduce the clearance between the sleeve and the outer tube in order to enhance the heat transfer promotion effect, manufacturing and mounting accuracy becomes a problem. In the case of filling the combustion gas side (Fig. 7(e)), the heat transfer promotion effect can be enhanced, but the pressure loss on the combustion gas side becomes excessive.
Moreover, its distribution cannot be controlled.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来技術の欠点を解決して、さらに伝熱効率を高めるだ
けでなく複数の触媒管の均等な加熱を行い、かつ触媒層
へのヒートフラックス分布を望ましい形に制御すること
によって全負荷時はもちろんのこと部分負荷時において
も改質ガス温度を所定の望ましい値に維持することがで
きる熱交換器型改質器における伝熱方法を提供すること
を目的とする。
[Problems to be Solved by the Invention] The present invention solves the drawbacks of the prior art, and not only further increases the heat transfer efficiency, but also uniformly heats a plurality of catalyst tubes, and reduces heat to the catalyst layer. Provides a heat transfer method in a heat exchanger type reformer that can maintain the reformed gas temperature at a predetermined desired value not only at full load but also at partial load by controlling the flux distribution in a desired manner. The purpose is to

【0007】[0007]

【課題を解決するための手段】本発明者等は、先に伝熱
効率を高めるために、触媒管の内管側にデミスターネッ
トおよびワイヤーネットを組合わせた伝熱促進手段を設
け、さらに好ましい態様として触媒管の外側に外管ワイ
ヤーネットおよびオリフィスバッフルからなる伝熱促進
手段をさらに設けた熱交換器型改質器を提案した(特願
平3−46891号)。本発明はこれをさらに発展させ
、触媒管の内管側および外管側のそれぞれに設けられる
伝熱促進手段を所定の位置関係に設置するようにすれば
、上記の課題を解決するために極めて効果的であること
に着目して完成された。
[Means for Solving the Problems] In order to increase the heat transfer efficiency, the present inventors provided a heat transfer promoting means in combination with a demister net and a wire net on the inner tube side of the catalyst tube, and a more preferred embodiment As a result, a heat exchanger type reformer was proposed in which a heat transfer promoting means consisting of an outer tube wire net and an orifice baffle was further provided on the outside of the catalyst tube (Japanese Patent Application No. 3-46891). The present invention further develops this by installing heat transfer promoting means provided on each of the inner tube side and outer tube side of the catalyst tube in a predetermined positional relationship, in order to solve the above problems extremely. It was completed with a focus on being effective.

【0008】すなわち、本発明の熱交換器型改質器にお
ける伝熱方法は、天然ガスとスチームとを反応させて水
素および一酸化炭素に富むガスに改質するための内管と
外管からなる2重管構造のバヨネットタイプ触媒管を具
備する熱交換器型改質器における伝熱方法において、前
記触媒管の内管内側の略中央部にデミスターネットおよ
び内管ワイヤーネットの組合せからなる伝熱促進手段を
設け、かつ前記触媒管の外側の略中央部から触媒管の上
流側に亘って別の伝熱手段を設けることによって触媒層
へのヒートフラックス分布を制御すること、を特徴とし
ている。本発明の好ましい態様において、前記触媒管の
外側に設けられる前記伝熱促進手段を、外管ワイヤーネ
ットおよびオリフィスバッフルからなる伝熱促進手段と
することができる。
[0008] That is, the heat transfer method in the heat exchanger type reformer of the present invention is such that natural gas and steam are reacted and reformed into a gas rich in hydrogen and carbon monoxide from an inner tube and an outer tube. In a heat transfer method in a heat exchanger type reformer equipped with a bayonet type catalyst tube having a double tube structure, a heat transfer method consisting of a combination of a demister net and an inner tube wire net is installed approximately at the center inside the inner tube of the catalyst tube. The present invention is characterized in that the heat flux distribution to the catalyst layer is controlled by providing a heat promoting means and providing another heat transfer means from a substantially central portion on the outside of the catalyst tube to an upstream side of the catalyst tube. . In a preferred embodiment of the present invention, the heat transfer promoting means provided outside the catalyst tube may be a heat transfer promoting means comprising an outer tube wire net and an orifice baffle.

【0009】発明の具体的説明 以下、図面を含めて本発明の内容を具体的に説明する。 本発明の熱交換器型改質器における伝熱方法において、
天然ガスをスチームで改質するために用いる触媒管とし
ては、従来用いられているバヨネットタイプ触媒管が使
用され、その構造の概要は図6に示したものと同様であ
る。
DETAILED DESCRIPTION OF THE INVENTION The contents of the present invention will be specifically explained below, including the drawings. In the heat transfer method in the heat exchanger type reformer of the present invention,
As a catalyst tube used for reforming natural gas with steam, a conventionally used bayonet type catalyst tube is used, and the outline of its structure is the same as that shown in FIG. 6.

【0010】図1は、本発明の伝熱方法における伝熱促
進手段の設置位置の一例を説明する断面図である。バヨ
ネットタイプ触媒管1の内管3の内側にはデミスターネ
ット10および内管ワイヤーネット11を組合わせてな
る伝熱促進手段12を設け、触媒管の外側には別の伝熱
促進手段、好ましくは外管ワイヤーネット13およびオ
リフィスバッフル14からなる伝熱促進手段15を設け
る。このうち内管の内側の伝熱促進手段12は略中央部
に、好ましくは内管長の30〜80%の領域に亘って設
け、一方、触媒管の外側の伝熱促進手段15は触媒管の
略中央部から触媒管の上流側に設けるようにする。より
具体的には、内管内側の伝熱促進手段12は内管温度と
触媒層4の平均温度との差ΔT1 が120〜180℃
、好ましくは130〜150℃の範囲にある領域に、一
方触媒管外側の伝熱促進手段15は燃焼ガス温度と触媒
層4の平均温度との差ΔT2 が260℃以下、好まし
くは230℃以下の領域に設ける。
FIG. 1 is a sectional view illustrating an example of the installation position of the heat transfer promoting means in the heat transfer method of the present invention. Inside the inner tube 3 of the bayonet type catalyst tube 1, a heat transfer promoting means 12 consisting of a combination of a demister net 10 and an inner tube wire net 11 is provided, and on the outside of the catalyst tube, another heat transfer promoting means, preferably A heat transfer promoting means 15 consisting of an outer tube wire net 13 and an orifice baffle 14 is provided. Among these, the heat transfer promoting means 12 on the inside of the inner tube is provided approximately at the center, preferably over an area of 30 to 80% of the length of the inner tube, while the heat transfer promoting means 15 on the outside of the catalyst tube is provided at the center of the inner tube. It is provided on the upstream side of the catalyst tube from approximately the center. More specifically, the heat transfer promoting means 12 inside the inner tube has a difference ΔT1 between the inner tube temperature and the average temperature of the catalyst layer 4 of 120 to 180°C.
, preferably in the range of 130 to 150°C, while the heat transfer promoting means 15 on the outside of the catalyst tube has a temperature difference ΔT2 between the combustion gas temperature and the average temperature of the catalyst layer 4 of 260°C or less, preferably 230°C or less. Provided in the area.

【0011】このような位置関係で両伝熱促進手段12
、15を設置することによって、触媒層4の入口16か
ら出口17に亘ってヒートフラックス分布を望ましく制
御することが可能となる。その結果、本MCFC発電シ
ステム用改質器の運転温度として好ましい改質ガスの温
度に、すなわち改質ガス温度を触媒層出口17で800
℃程度、内管出口18で600℃程度の値に維持するこ
とができる。
With such a positional relationship, both heat transfer promoting means 12
, 15, it becomes possible to desirably control the heat flux distribution from the inlet 16 to the outlet 17 of the catalyst layer 4. As a result, the temperature of the reformed gas was adjusted to a preferable operating temperature of the reformer for the present MCFC power generation system, that is, the temperature of the reformed gas was adjusted to 800°C at the catalyst bed outlet 17.
℃, and can be maintained at a value of about 600°C at the inner tube outlet 18.

【0012】そして、このような望ましい改質ガス温度
は、定常運転時はもちろんのこと部分負荷時においても
良好に維持できる。すなわち、たとえば30〜50%ロ
ード(負荷)においても発電システムの効率を定常運転
時と同レベルに維持する必要があるので、部分負荷時に
おいても改質ガスの内管出口温度を所定の値(この値は
燃料電池アノード側入口温度に等しく600℃近傍であ
る)に保つ必要がある。また、触媒層出口温度が触媒の
損傷を引き起こすほど上昇し過ぎないように、好ましく
は800℃よりあまり上昇し過ぎないように、あるいは
触媒管外管温度がその設計温度を越えないように制御す
る必要があるが、上述のようにヒートフラックス分布を
所望の形に制御することによって、このような部分負荷
特性をも良好に維持することができる。
[0012] Such a desirable reformed gas temperature can be well maintained not only during steady operation but also during partial load. In other words, since it is necessary to maintain the efficiency of the power generation system at the same level as during steady operation even at a load of 30 to 50%, the inner pipe outlet temperature of the reformed gas is kept at a predetermined value ( This value needs to be maintained at around 600° C., which is equal to the fuel cell anode side inlet temperature. In addition, the temperature at the outlet of the catalyst bed is controlled so that it does not rise too much to cause damage to the catalyst, preferably so that it does not rise too much above 800°C, or the temperature of the outer catalyst tube does not exceed its design temperature. Although necessary, such partial load characteristics can also be maintained well by controlling the heat flux distribution in a desired shape as described above.

【0013】次に、各伝熱促進手段12、15について
さらに具体的に説明する。伝熱促進手段12に用いられ
るデミスターネット10は、細い金属性のワイヤーをラ
ンダムに、たとえば金タワシの如く集積体の形態に形成
してなるもので、たとえば空隙率99%、密度80kg
/m3 程度のものが用いられる。また、内管ワイヤー
ネット11は、上記のデミスターネットを圧縮したよう
な形態のもので、たとえばその空隙が20メッシュ程度
のものである。この内管ワイヤーネットはそれ自身伝熱
促進効果を持つとともにデミスターネットを保持し、ま
た改質ガス流の整流作用をする。
Next, each heat transfer promoting means 12 and 15 will be explained in more detail. The demister net 10 used as the heat transfer promoting means 12 is made by randomly forming thin metal wires into an aggregate shape like a metal scrubber, and has a porosity of 99% and a density of 80 kg, for example.
/m3 is used. Further, the inner tube wire net 11 has a shape similar to that of the above-mentioned demister net compressed, and has, for example, a gap of about 20 meshes. This inner tube wire net itself has a heat transfer promoting effect, holds the demister net, and also functions to rectify the reformed gas flow.

【0014】このような金属ワイヤーの集積体が、伝熱
促進作用をするのは次の理由による。すなわち、このよ
うな金属ワイヤーの集積体の場合、比表面積が大きく、
高温の改質ガス流体の通路内に配置されることにより、
改質ガス流体により容易に高温に加熱される。この高温
の金属ワイヤー集積体の輻射能は大きいため、被加熱面
すなわち触媒層内管表面は、改質ガス流体による対流加
熱に加えて、この金属ワイヤー集積体からの熱輻射によ
る輻射加熱を受け、しかもその熱輻射による熱伝達量は
大きい。その結果、改質ガス流体からの被加熱表面への
全体的な熱伝達は、金属ワイヤー集積体を用いない場合
の熱伝達に比べて著しく大きくなる。
The reason why such an aggregate of metal wires acts to promote heat transfer is as follows. In other words, in the case of such an aggregate of metal wires, the specific surface area is large;
By being placed in the path of the hot reformate gas fluid,
Easily heated to high temperatures by reformed gas fluid. Since the radiation power of this high-temperature metal wire assembly is large, the surface to be heated, that is, the surface of the tube inside the catalyst layer, is subjected to radiant heating due to thermal radiation from this metal wire assembly in addition to convective heating by the reformed gas fluid. , and the amount of heat transfer due to thermal radiation is large. As a result, the overall heat transfer from the reformate gas fluid to the heated surface is significantly greater than that without the metal wire assembly.

【0015】このデミスターネット10および内管ワイ
ヤーネット11は、これらを図1に示すように触媒管内
管の縦方向に交互に設けて多段に組合せるのがデミスタ
ーネットを保持する上で好ましい。またデミスターネッ
トの厚み(ln)と内管ワイヤーネットの厚み(lw)
の比率(ln/lw)は、3〜20、好ましくは8〜1
2の範囲とする。
For holding the demister net, it is preferable that the demister net 10 and the inner tube wire net 11 be arranged alternately in the longitudinal direction of the catalyst tube inner tube and combined in multiple stages as shown in FIG. Also, the thickness of the demister net (ln) and the thickness of the inner tube wire net (lw)
The ratio (ln/lw) is 3 to 20, preferably 8 to 1
The range shall be 2.

【0016】なお、上記のように本MCFC発電システ
ム用改質器の運転温度は改質ガスの触媒層出口で800
℃程度、触媒管内管出口で600℃程度であるが、この
温度範囲では、COリッチガスからのブドアール反応、
すなわち、2CO→C+CO2   による炭素析出の
可能性が大である。これを防ぐために触媒管の内管だけ
でなく上記の内管内側の伝熱促進手段に用いる材料とし
て、ブドアール反応を抑制もしくは少なくとも触媒作用
を有しない材質のものが選択される。また、運転条件に
おいても、スチーム/カーボン比(S/C)として天然
ガス原料としては一般に採用される2〜2.5よりも稍
大の3程度を採用するなどして、ブドアール反応を抑制
することが好ましい。
As mentioned above, the operating temperature of the reformer for the present MCFC power generation system is 800℃ at the exit of the catalyst layer of the reformed gas.
℃, and about 600℃ at the outlet of the catalyst tube, but in this temperature range, the Boudoir reaction from CO-rich gas,
That is, there is a high possibility of carbon precipitation due to 2CO→C+CO2. In order to prevent this, a material that suppresses Boudoir reaction or at least does not have catalytic action is selected as the material used not only for the inner tube of the catalyst tube but also for the heat transfer promoting means inside the inner tube. In addition, in terms of operating conditions, the Boudoir reaction is suppressed by adopting a steam/carbon ratio (S/C) of about 3, which is slightly larger than the 2 to 2.5 generally adopted for natural gas raw materials. It is preferable.

【0017】本発明において、触媒管の外側に設ける伝
熱促進手段は伝熱促進作用をするとともに、熱交換器型
改質器内に設けられる複数の触媒管の均等加熱を可能に
する。これら複数の触媒管を燃焼ガス側から均等に加熱
することが装置の安定な運転上不可欠であり、そのため
には燃焼ガスをその入口から出口まで偏流なしに均等に
流通させる必要があり、燃焼ガスの入口から出口に至る
圧力損失ΔPの値およびその分布を制御することが必要
がある。
In the present invention, the heat transfer promoting means provided outside the catalyst tubes not only promotes heat transfer but also enables uniform heating of the plurality of catalyst tubes provided in the heat exchanger type reformer. It is essential for the stable operation of the device to heat these multiple catalyst tubes evenly from the combustion gas side.To do this, it is necessary to distribute the combustion gas evenly from the inlet to the outlet without drifting. It is necessary to control the value of the pressure loss ΔP from the inlet to the outlet and its distribution.

【0018】そこで本発明においては、触媒管外側に設
ける伝熱促進手段としてオリフィスバッフルを好ましく
設置するとともに、その設置位置を触媒管の略中央部か
ら上流側に設置することによってこの目的を達成するも
のである。すなわち、高温の燃焼ガス流路はオリフィス
バッフル14の設置位置において狭くなり、燃焼ガスの
流れに乱れを生じて伝熱促進作用をするとともに燃焼ガ
スが偏流なく流通することを可能にする最適圧力損失0
.05〜0.1kg/cm 2 を与えることができる
。かつ、触媒管の略中央部から上流側、すなわち燃焼ガ
スの下流側にオリフィスバッフルを設置することによっ
て、圧力損失ΔPの大部分をオリフィスバッフル部分に
集中できるので燃焼ガスの流通に偏流を起こさせること
無く複数の触媒管の均等な加熱が実現できる。このよう
に圧力損失の値およびその分布を所望のものとするため
にオリフィスバッフル14のピッチおよび段数を決定す
る。
Therefore, in the present invention, this object is achieved by preferably installing an orifice baffle as a heat transfer promoting means provided outside the catalyst tube, and by installing the orifice baffle upstream from approximately the center of the catalyst tube. It is something. In other words, the high-temperature combustion gas flow path becomes narrow at the installation position of the orifice baffle 14, which creates turbulence in the flow of combustion gas and promotes heat transfer, while also achieving an optimal pressure loss that allows combustion gas to flow without uneven flow. 0
.. 05 to 0.1 kg/cm 2 . In addition, by installing the orifice baffle upstream from the approximate center of the catalyst tube, that is, on the downstream side of the combustion gas, most of the pressure loss ΔP can be concentrated in the orifice baffle portion, causing uneven flow in the combustion gas flow. Uniform heating of multiple catalyst tubes can be achieved without any problems. In this way, the pitch and number of stages of the orifice baffle 14 are determined in order to obtain the desired value and distribution of pressure loss.

【0019】上記の伝熱促進手段15は、上記のオリフ
ィスバッフル14と外管ワイヤーネット13からなるも
のが好ましく用いられ、このうち外管ワイヤーネット1
3は、上述のデミスターネットおよび内管ワイヤーネッ
トを組合せてなる伝熱促進手段とほぼ同様に対流加熱と
輻射加熱とによる熱伝達作用をなし、たとえば1.1φ
、8メッシュ程度のものが好ましく用いられる。
The heat transfer promoting means 15 preferably includes the orifice baffle 14 and the outer tube wire net 13, of which the outer tube wire net 1
No. 3 has a heat transfer effect by convection heating and radiation heating, similar to the heat transfer promoting means formed by combining the above-mentioned demister net and inner pipe wire net. For example, 1.1φ
, about 8 mesh is preferably used.

【0020】[0020]

【実施例】以下、本発明の一実施例を挙げてさらに具体
的に説明する。本発明はこれらの実施例によりその範囲
が限定されるものではない。
[Example] Hereinafter, the present invention will be explained in more detail by giving an example. The scope of the present invention is not limited by these Examples.

【0021】実施例1 図2は、本発明の方法に使用した1MW発電用熱交換器
型改質器の構造の概要を説明する断面図である。本改質
器本体の上部には、天然ガスおよびスチームの入口ノズ
ル19、改質ガスの出口ノズル20を有し、改質器本体
下部には燃焼ガスの入口ノズル21が、上部にはその出
口ノズル22が設けられている。改質器本体内部には触
媒管1を6本(図では2本のみ示した)設置し、その触
媒管1の外側および内管内側にそれぞれ伝熱促進手段を
設けたが、それらの詳しい設置位置については後述する
Example 1 FIG. 2 is a sectional view illustrating the outline of the structure of a 1 MW power generation heat exchanger type reformer used in the method of the present invention. The upper part of the reformer body has an inlet nozzle 19 for natural gas and steam, and the outlet nozzle 20 for reformed gas. The lower part of the reformer body has an inlet nozzle 21 for combustion gas, and the upper part has an outlet nozzle 21 for combustion gas. A nozzle 22 is provided. Six catalyst tubes 1 (only two are shown in the figure) were installed inside the reformer main body, and heat transfer promoting means were installed on the outside of the catalyst tubes 1 and on the inside of the inner tube, but the details of their installation are as follows. The position will be described later.

【0022】触媒管1の設置されている部分に対応する
内壁は、熱容量の小さなセラミックファイバーブランケ
ット24で、本体下部の燃焼ガスの入口ノズル22付近
の内壁は耐火物キャスタブル25でライニングされ、そ
れらの外壁は断熱材キャスタブル26で構成されており
、また、改質器本体の上部の外壁は別の断熱材27で形
成されている。
The inner wall corresponding to the part where the catalyst tube 1 is installed is lined with a ceramic fiber blanket 24 having a small heat capacity, and the inner wall near the combustion gas inlet nozzle 22 at the bottom of the main body is lined with a refractory castable 25. The outer wall is made of a heat insulating castable material 26, and the outer wall of the upper part of the reformer body is made of another heat insulating material 27.

【0023】そして、天然ガスおよびスチームは入口ノ
ズル19から本改質器内に導入され、触媒管1を通過す
る間に水素と一酸化炭素に富むガスに改質され出口ノズ
ル20から排出される。一方、高温の燃焼ガスは入口ノ
ズル21から改質器本体内に導入され触媒管1に熱を伝
達した後出口ノズル22から排出される。
Natural gas and steam are introduced into the main reformer through the inlet nozzle 19, reformed into a gas rich in hydrogen and carbon monoxide while passing through the catalyst tube 1, and discharged through the outlet nozzle 20. . On the other hand, high-temperature combustion gas is introduced into the reformer main body from the inlet nozzle 21, transfers heat to the catalyst tube 1, and then is discharged from the outlet nozzle 22.

【0024】触媒管の内管内側および触媒管の外側に設
ける伝熱促進手段の設置位置は図1に示すように、デミ
スターネット10および内管ワイヤーネット11を組合
わせてなる伝熱促進手段12を触媒層4の略中央部、具
体的には触媒層4の最上流端から3.18〜1.5mの
範囲に対応する触媒管内管の内側に、デミスターネット
10と内管ワイヤーネット11とを縦方向に交互に5段
に組合わせて設けた。触媒管外側には、外管ワイヤーネ
ット13とオリフィスバッフル14からなる伝熱促進手
段15を触媒層の上流側、具体的には触媒層の最上流端
付近から2.0mまでの範囲に対応する位置に設置した
。オリフィスバッフル14は、タイロッド23で支持し
て5段設けた。なお、内管内側には温度計28が取付け
られている。
As shown in FIG. 1, the installation positions of the heat transfer promoting means provided on the inner side of the catalyst tube and the outside of the catalyst tube are as shown in FIG. A demister net 10 and an inner tube wire net 11 are placed approximately at the center of the catalyst layer 4, specifically inside the catalyst tube inner tube corresponding to a range of 3.18 to 1.5 m from the most upstream end of the catalyst layer 4. were arranged in five rows alternately in the vertical direction. On the outside of the catalyst tube, a heat transfer promoting means 15 consisting of an outer tube wire net 13 and an orifice baffle 14 is installed on the upstream side of the catalyst layer, specifically, in a range up to 2.0 m from the vicinity of the most upstream end of the catalyst layer. installed in position. The orifice baffle 14 is supported by tie rods 23 and provided in five stages. Note that a thermometer 28 is attached to the inside of the inner tube.

【0025】このような構成による本装置の運転条件は
、次のようである。プロセス側条件として、入口ノズル
19において、天然ガス流量171Nm3/h、スチー
ム流量596Nm3 /h、温度434℃、圧力4.8
kg/cm2 Gとし、出口ノズル20において、改質
ガス流量1151Nm3 /h(H2 :56.55 
vol%、CO:7.69vol%、CO2 :8.9
6vol%、CH4 : 0.64vol%、H2 O
:26.18 vol%)、温度600℃、圧力2.3
kg/cm2 Gとし、触媒層出口17(触媒管底部)
では、温度800℃、圧力2.4kg/cm2 Gの条
件で行った。
The operating conditions of this apparatus having such a configuration are as follows. As process conditions, at the inlet nozzle 19, natural gas flow rate is 171 Nm3/h, steam flow rate is 596 Nm3/h, temperature is 434°C, and pressure is 4.8°C.
kg/cm2
vol%, CO: 7.69 vol%, CO2: 8.9
6vol%, CH4: 0.64vol%, H2O
:26.18 vol%), temperature 600°C, pressure 2.3
kg/cm2 G, catalyst layer outlet 17 (bottom of catalyst tube)
In this case, the temperature was 800° C. and the pressure was 2.4 kg/cm 2 G.

【0026】一方、燃焼ガス側条件として、入口ノズル
21において、燃焼ガス流量1805Nm3 /h、温
度1170℃、圧力2.5kg/cm2 Gとし、出口
ノズル22において、流量1805Nm3 /h、温度
600℃、圧力2.4kg/cm2 Gの条件で行った
On the other hand, as conditions on the combustion gas side, at the inlet nozzle 21, the combustion gas flow rate is 1805 Nm3/h, the temperature is 1170°C, and the pressure is 2.5 kg/cm2 G, and at the outlet nozzle 22, the flow rate is 1805 Nm3/h, the temperature is 600°C, The test was carried out at a pressure of 2.4 kg/cm2G.

【0027】比較例1   伝熱促進手段として、触媒管の内管側には内管全面
に亘ってスリーブを設け、一方、燃焼ガス側にはスリー
ブとワイヤーネットとを触媒管の上流側(最上流端付近
から2.5mまでの範囲)に設置した他は実施例1と同
様の条件で運転を行った。
Comparative Example 1 As a heat transfer promoting means, a sleeve was provided on the inner tube side of the catalyst tube over the entire inner tube, and on the other hand, on the combustion gas side, a sleeve and a wire net were installed on the upstream side (the furthest side) of the catalyst tube. Operation was carried out under the same conditions as in Example 1, except that the device was installed within a range of 2.5 m from the vicinity of the upstream end.

【0028】ヒートフラックス 上記の実施例1および比較例1における、触媒管の外管
側および内管側ヒートフラックスを測定した結果を図3
に示す。図中29は実施例1の、30は比較例1の内管
側ヒートフラックスを示し、31は実施例1の、32は
比較例1の外管側ヒートフラックスを示す。
Heat flux The results of measuring the heat flux on the outer tube side and inner tube side of the catalyst tube in Example 1 and Comparative Example 1 are shown in FIG.
Shown below. In the figure, 29 indicates the inner tube side heat flux of Example 1, 30 indicates the inner tube side heat flux of Comparative Example 1, 31 indicates the outer tube side heat flux of Example 1, and 32 indicates the outer tube side heat flux of Comparative Example 1.

【0029】図3から明らかなように、実施例1のヒー
トフラックス分布は、伝熱促進手段の設置された範囲(
内管側において触媒層全長4mに対し触媒層長さ1.5
〜3.18mの範囲、外管側において0〜2.0mの範
囲)において、改善されていることがわかる。すなわち
、中間部分でのヒートフラックスを大として、内管の出
口部分での値を小さくする。その結果、この出口部分で
の熱移動を小さくし、改質ガス温度の過度の低下を防止
することとなる。このような好ましいヒートフラックス
分布に制御することによって、次に述べるように、全負
荷時はもちろんのこと部分負荷時においても触媒層出口
および内管出口での改質ガス温度を好ましい値に維持す
ることができる。
As is clear from FIG. 3, the heat flux distribution in Example 1 is different from the range where the heat transfer promoting means is installed (
On the inner tube side, the catalyst layer length is 1.5 m for the total catalyst layer length of 4 m.
It can be seen that improvements were made in the range of 3.18 m and 0 to 2.0 m on the outer tube side). That is, the heat flux at the intermediate portion is increased, and the value at the exit portion of the inner tube is decreased. As a result, heat transfer at this outlet portion is reduced, and an excessive drop in the temperature of the reformed gas is prevented. By controlling such a preferable heat flux distribution, the reformed gas temperature at the outlet of the catalyst layer and the outlet of the inner tube can be maintained at a preferable value not only during full load but also during partial load, as described below. be able to.

【0030】これに対し比較例1におけるヒートフラッ
クス分布は、特に内管側においてその分布の制御ができ
ないために、全負荷時および特に部分負荷時において触
媒層出口および内管出口での改質ガス温度を望ましい値
に維持することが困難となる。
On the other hand, the heat flux distribution in Comparative Example 1 cannot be controlled, especially on the inner tube side, so that the reformed gas at the outlet of the catalyst layer and the outlet of the inner tube at full load and especially at partial load. It becomes difficult to maintain the temperature at the desired value.

【0031】改質ガス温度分布 図4は、上記の実施例1および比較例1の100%ロー
ド運転時の触媒層および改質ガス温度分布を示すグラフ
であり、実線で示した33は実施例1における触媒層の
、34は改質ガスの温度分布をそれぞれ示し、点線で示
した35は比較例1における触媒層の、36は改質ガス
の温度分布をそれぞれ示す。
Reformed gas temperature distribution FIG. 4 is a graph showing the catalyst layer and reformed gas temperature distribution during 100% load operation in the above-mentioned Example 1 and Comparative Example 1, and 33 shown by a solid line is a graph showing the temperature distribution of the reformed gas in the example 1 and comparative example 1. Reference numeral 34 indicates the temperature distribution of the reformed gas in the catalyst layer in Comparative Example 1, and 36 indicates the temperature distribution of the reformed gas in the catalyst layer in Comparative Example 1.

【0032】このグラフからわかるように、実施例1に
おいては図3に示したように触媒管の外管側および内管
側ヒートフラックスの分布を好ましく制御した結果、触
媒層出口(触媒層長さ4.0mの地点)温度を好ましい
温度である約800℃に押さえ、かつ改質ガス出口(触
媒層長さ0mの地点)温度を好ましい温度である約60
0℃に維持することができた。これに対し、比較例1に
おいては、触媒管の外管側および内管側ヒートフラック
スの分布が図3に示したように好ましくなかったために
、触媒層出口温度が約820℃、改質ガス出口温度が約
580℃とそれぞれ好ましい値とのずれがあった。
As can be seen from this graph, in Example 1, as a result of preferably controlling the distribution of heat flux on the outer tube side and the inner tube side of the catalyst tube as shown in FIG. The temperature at the reformed gas outlet (at the point where the catalyst layer length is 0 m) is kept at about 60° C., which is the preferable temperature.
It was possible to maintain the temperature at 0°C. On the other hand, in Comparative Example 1, the distribution of heat flux on the outer tube side and the inner tube side of the catalyst tube was unfavorable as shown in FIG. The temperature was about 580°C, which was different from the desired value.

【0033】図5は30%ロード運転時の触媒層および
改質ガス温度分布を示すグラフであり、実線で示した3
7は本発明の実施例における触媒層の、38は改質ガス
の温度分布をそれぞれ示し、点線で示した39は比較例
における触媒層の、40は改質ガスの温度分布をそれぞ
れ示す。
FIG. 5 is a graph showing the temperature distribution of the catalyst layer and reformed gas during 30% load operation.
7 shows the temperature distribution of the catalyst layer in the example of the present invention, 38 shows the temperature distribution of the reformed gas, and 39 shown by a dotted line shows the temperature distribution of the catalyst layer in the comparative example, and 40 shows the temperature distribution of the reformed gas.

【0034】このグラフからわかるように、本発明の実
施例においては30%ロードにおいても触媒層出口温度
を約820℃に押さえることができ、かつ改質ガス出口
温度を約590℃に維持することができた。これに対し
、比較例においては、触媒層出口温度が約850℃、ま
た改質ガス出口温度が約570℃とそれぞれ好ましい値
とのずれが大きかった。
As can be seen from this graph, in the embodiment of the present invention, even at 30% load, the catalyst bed outlet temperature can be kept at about 820°C, and the reformed gas outlet temperature can be maintained at about 590°C. was completed. On the other hand, in the comparative example, the catalyst layer outlet temperature was approximately 850° C., and the reformed gas outlet temperature was approximately 570° C., which were large deviations from the respective preferred values.

【0035】[0035]

【発明の効果】本発明によれば、触媒管の内管内側の略
中央部にデミスターネットおよび内管ワイヤーネットの
組合せからなる伝熱促進手段を設け、かつ触媒管の外側
の略中央部から触媒管の上流側に亘って別の伝熱手段を
設けることによって触媒層へのヒートフラックス分布を
制御するようにしたので、伝熱効率が高められ、かつ複
数の触媒管の均等加熱を実現できる。さらに、触媒層へ
のヒートフラックス分布の制御が容易になり、全負荷時
だけでなく部分負荷時においても改質ガス温度および触
媒層出口温度を所望の値に維持することができる。
According to the present invention, a heat transfer promoting means consisting of a combination of a demister net and an inner tube wire net is provided at approximately the center of the inside of the inner tube of the catalyst tube, and the heat transfer promoting means is provided at approximately the center of the outside of the catalyst tube. Since the heat flux distribution to the catalyst layer is controlled by providing another heat transfer means upstream of the catalyst tubes, heat transfer efficiency is increased and uniform heating of a plurality of catalyst tubes can be realized. Furthermore, the heat flux distribution to the catalyst layer can be easily controlled, and the reformed gas temperature and the catalyst layer outlet temperature can be maintained at desired values not only at full load but also at partial load.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の伝熱方法における伝熱促進手段の設置
位置の一例を説明する断面図。
FIG. 1 is a sectional view illustrating an example of the installation position of a heat transfer promoting means in the heat transfer method of the present invention.

【図2】本発明の方法に使用した1MW発電用熱交換器
型改質器の構造の概要を説明する断面図。
FIG. 2 is a sectional view illustrating the outline of the structure of a 1 MW heat exchanger type reformer for power generation used in the method of the present invention.

【図3】実施例および比較例における触媒管の外管側お
よび内管側ヒートフラックスを測定した結果を示すグラ
フ。
FIG. 3 is a graph showing the results of measuring the heat flux on the outer tube side and the inner tube side of the catalyst tube in Examples and Comparative Examples.

【図4】100%ロード運転時の触媒層および改質ガス
温度分布を示すグラフ。
FIG. 4 is a graph showing the catalyst layer and reformed gas temperature distribution during 100% load operation.

【図5】30%ロード運転時の触媒層および改質ガス温
度分布を示すグラフ。
FIG. 5 is a graph showing the catalyst layer and reformed gas temperature distribution during 30% load operation.

【図6】バヨネットタイプ触媒管の構造の概要を示す断
面図。
FIG. 6 is a sectional view showing an outline of the structure of a bayonet type catalyst tube.

【図7】従来技術における伝熱促進手段を示す要部断面
図。
FIG. 7 is a sectional view of a main part showing a heat transfer promoting means in the prior art.

【符号の説明】[Explanation of symbols]

1  バヨネットタイプ触媒管 2  外管 3  内管 4  触媒層 10  デミスターネット 11  内管ワイヤーネット 12  触媒管の内管内側に設ける伝熱促進手段13 
 外管ワイヤーネット 14  オリフィスバッフル
1 Bayonet type catalyst tube 2 Outer tube 3 Inner tube 4 Catalyst layer 10 Demister net 11 Inner tube wire net 12 Heat transfer promoting means 13 provided inside the inner tube of the catalyst tube
Outer tube wire net 14 Orifice baffle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】天然ガスとスチームとを反応させて水素お
よび一酸化炭素に富むガスに改質するための内管と外管
からなる2重管構造のバヨネットタイプ触媒管を具備す
る熱交換器型改質器における伝熱方法において、前記触
媒管の内管内側の略中央部にデミスターネットおよび内
管ワイヤーネットの組合せからなる伝熱促進手段を設け
、かつ前記触媒管の外側の略中央部から触媒管の上流側
に亘って別の伝熱促進手段を設けることによって触媒層
へのヒートフラックス分布を制御することを特徴とする
、熱交換器型改質器における伝熱方法。
Claim 1: A heat exchanger equipped with a bayonet type catalyst tube having a double tube structure consisting of an inner tube and an outer tube for reacting natural gas and steam to reform it into a gas rich in hydrogen and carbon monoxide. In the heat transfer method in a type reformer, a heat transfer promoting means consisting of a combination of a demister net and an inner tube wire net is provided approximately at the center of the inner side of the catalyst tube, and a heat transfer promoting means consisting of a combination of a demister net and an inner tube wire net is provided at approximately the center of the outer side of the catalyst tube. A heat transfer method in a heat exchanger type reformer, characterized in that heat flux distribution to the catalyst layer is controlled by providing another heat transfer promoting means from the upstream side of the catalyst tube to the catalyst layer.
【請求項2】前記触媒管の外側に設けられる前記伝熱促
進手段が、外管ワイヤーネットおよびオリフィスバッフ
ルからなる伝熱促進手段である、請求項1に記載の熱交
換器型改質器における伝熱方法。
2. The heat exchanger type reformer according to claim 1, wherein the heat transfer promoting means provided outside the catalyst tube is a heat transfer promoting means comprising an outer tube wire net and an orifice baffle. Heat transfer method.
JP8951491A 1991-03-28 1991-03-28 Heat transfer method in heat exchanger type reformer Expired - Fee Related JPH0685868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8951491A JPH0685868B2 (en) 1991-03-28 1991-03-28 Heat transfer method in heat exchanger type reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8951491A JPH0685868B2 (en) 1991-03-28 1991-03-28 Heat transfer method in heat exchanger type reformer

Publications (2)

Publication Number Publication Date
JPH04300642A true JPH04300642A (en) 1992-10-23
JPH0685868B2 JPH0685868B2 (en) 1994-11-02

Family

ID=13972900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8951491A Expired - Fee Related JPH0685868B2 (en) 1991-03-28 1991-03-28 Heat transfer method in heat exchanger type reformer

Country Status (1)

Country Link
JP (1) JPH0685868B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0873782A1 (en) * 1997-04-23 1998-10-28 dbb fuel cell engines GmbH Reformer, especially for steam reformation of methanol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0873782A1 (en) * 1997-04-23 1998-10-28 dbb fuel cell engines GmbH Reformer, especially for steam reformation of methanol
US6090499A (en) * 1997-04-23 2000-07-18 Dbb Fuel Cell Engines Gesellschaft Mit Beschraenkter Haftung Multi-stage reforming reactor using a drop catching element

Also Published As

Publication number Publication date
JPH0685868B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US7731935B2 (en) Steam reforming
CA2550062C (en) Axial convective reformer
EP0661768B1 (en) Method of heat transfer in reformer
JP3075757B2 (en) Endothermic reactor
JPS61222903A (en) Manufacture of gas flow containing hydrogen and carbon oxides and apparatus therefor
JPH0675670B2 (en) Process and reaction system for reforming heat exchange
US6096106A (en) Endothermic reaction apparatus
US9145298B2 (en) Steam reformer furnace, and method for the same
US5199961A (en) Apparatus for catalytic reaction
JPS59203372A (en) Fuel reformer for fuel cell
JP2000026101A (en) Apparatus for reforming fuel
JPH04300642A (en) Heat transfer method in heat-exchanging-type reformer
JPH0794322B2 (en) Methanol reformer
JPH04285001A (en) Heat exchanger-type reformer
JPS63197534A (en) Reaction device
JP3499273B2 (en) Heat transfer method in reformer
JPH08301602A (en) Fuel reformer
JPS60103001A (en) Fuel reformer
JPS59102804A (en) Device for modifying fuel
JPH04108601A (en) Methanol reforming method utilizing waste heat and waste heat recovery-type methanol reformer
JPH0647444B2 (en) Method for producing hydrogen-containing gas
JPH01320201A (en) Fuel reformer
WO2021043750A1 (en) Reformer furnace with supported reformer tubes
JPH0329723B2 (en)
JPH10287401A (en) Reforming equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees