JPH04300156A - Grinding wheel for polishing lens - Google Patents

Grinding wheel for polishing lens

Info

Publication number
JPH04300156A
JPH04300156A JP3089704A JP8970491A JPH04300156A JP H04300156 A JPH04300156 A JP H04300156A JP 3089704 A JP3089704 A JP 3089704A JP 8970491 A JP8970491 A JP 8970491A JP H04300156 A JPH04300156 A JP H04300156A
Authority
JP
Japan
Prior art keywords
curved surface
grinding
abrasive
lens
abrasive grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3089704A
Other languages
Japanese (ja)
Inventor
Masakatsu Inaba
稲葉 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3089704A priority Critical patent/JPH04300156A/en
Publication of JPH04300156A publication Critical patent/JPH04300156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To increase the contact pressure between abrasive and a workpiece to be polished so as to enhance the polishing efficiency and to enhance the discharge ability of chips and the lubricity at a surface to be polished in order to reduce the polishing resistance during polishing of a lens. CONSTITUTION:There are provided a grindstone base body 1 having a curved surface 1A corresponding to the shape of an optical lens article and an abrasive layer 6 formed over the curved surface 1A. Several convexities having a uniform degree of projection and made of at least graphite are formed on the curved surface 1A, and the abrasive layer 6 is formed by fixing ultra-abrasive grain having an averaged particle size of 3 to 30mum, onto the curved surface formed thereon with the convexities in a metal plating phase.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光学ガラス製のレンズ
表面を研削するためのレンズ研削用砥石に係わり、特に
、個々の砥粒と被削材との接触圧力を増して研削効率の
向上を図るとともに、研削面における切粉排出性および
潤滑性を向上し、研削抵抗を低減するための改良に関す
る。
[Industrial Application Field] The present invention relates to a lens grinding wheel for grinding the surface of an optical glass lens, and in particular, it improves grinding efficiency by increasing the contact pressure between individual abrasive grains and the work material. This invention relates to improvements for improving chip discharge and lubricity on the grinding surface and reducing grinding resistance.

【0002】0002

【従来の技術】光学レンズを製造する方法としては、従
来より、溶融ガラスを粗成形した後、カーブジェネレー
ター等の砥石を用いて粗研削を行ない、次いで遊離砥粒
を用いたラッピングを施し、さらにポリッシングにより
仕上げ研摩する方法が長く採られてきた。
[Prior Art] Conventionally, optical lenses have been manufactured by roughly forming molten glass, then rough grinding using a grindstone such as a curve generator, then lapping with free abrasive grains, and then A method of finishing by polishing has been used for a long time.

【0003】この加工方法では、単純な構成の加工装置
により高精度の光学レンズが製造できる利点があるが、
反面、作業者の技能依存度が高く、生産性が低いという
問題を有している。また、非球面レンズを製造する場合
には、球面研削や平面研削のように、レンズと研摩体と
を相対運動させるともずり的なラッピング加工が不可能
であるため、研削加工の段階で表面精度を高め、後工程
での加工量を極力少なくすることが重要である。
[0003] This processing method has the advantage that high-precision optical lenses can be manufactured using processing equipment with a simple configuration.
On the other hand, it has the problem of being highly dependent on the skill of the worker and having low productivity. In addition, when manufacturing aspherical lenses, it is impossible to perform shear-like lapping when the lens and polishing body are moved relative to each other, as in spherical grinding and surface grinding, so surface accuracy is required at the grinding stage. It is important to increase the amount of processing and minimize the amount of processing in post-processes.

【0004】このため最近では、技能依存度を減らして
自動化・省力化を図り、かつ非球面レンズの加工を可能
とする目的で、前述の粗研削加工の代わりに精密研削加
工によって光学ガラスに高精度の形状を付与し、ラッピ
ングを省いて、直接ポリッシングを行なう方法が有力視
されつつある。そして一部では既に、ダイヤモンド砥粒
を含有するレジンボンド砥石あるいはビトリファイドボ
ンド砥石により、レンズの精密研削を行なうことも試み
られている。
For this reason, recently, in order to reduce the dependence on skill and achieve automation and labor-saving, as well as to make it possible to process aspherical lenses, precision grinding has been used instead of the rough grinding described above to improve the quality of optical glass. A method that provides a precise shape, eliminates lapping, and performs direct polishing is becoming popular. Some attempts have already been made to precisely grind lenses using resin bonded grindstones or vitrified bonded grindstones containing diamond abrasive grains.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述のレジン
ボンド砥石あるいはビトリファイドボンド砥石では、結
合相の硬度が低く、摩耗しやすいために研削面の形状変
化が大きく、頻繁に形状修正を行なわねば十分な精密研
削精度が維持できない問題があった。
[Problems to be Solved by the Invention] However, in the resin bonded grindstone or vitrified bond grindstone described above, the hardness of the bonding phase is low and it is easily worn, resulting in large changes in the shape of the grinding surface, and it is necessary to frequently correct the shape. There was a problem that high precision grinding accuracy could not be maintained.

【0006】そこで本発明者らは、結合相として耐摩耗
性の高い金属めっき相を用いた電着砥石により、光学レ
ンズの精密研削を行なう方法を発案し、実際に種々の砥
石を作成して実験を行なった。
[0006] Therefore, the present inventors devised a method for precision grinding of optical lenses using an electroplated grindstone using a highly wear-resistant metal plating phase as a bonding phase, and actually produced various grindstones. We conducted an experiment.

【0007】その結果、この種の電着砥石では、超砥粒
を支持する金属めっき相が格段に硬質であるため、他の
結合材を用いた場合よりも超砥粒の平均粒径を小さくし
なければ、被削面に深いスクラッチ等が発生して所望の
仕上げ面粗さが得られないことが判明した。例えば、レ
ジンボンド砥石では結合相自体に多少の弾性があるため
、個々の砥粒の切り込みが若干均等化され、7〜10μ
mの超砥粒が使用されるのに対し、電着砥石では3〜3
0μmの超砥粒を使用しなければ所期の面粗さが得られ
がたい。
As a result, in this type of electrodeposited grindstone, the metal plating phase that supports the superabrasive grains is extremely hard, so the average grain size of the superabrasive grains can be made smaller than when other bonding materials are used. It has been found that if this is not done, deep scratches and the like will occur on the machined surface, making it impossible to obtain the desired finished surface roughness. For example, in a resin-bonded grindstone, the bonding phase itself has some elasticity, so the cuts of individual abrasive grains are slightly evened out, and 7 to 10μ
m superabrasive grains are used, while electrodeposited grindstones use 3 to 3 m superabrasive grains.
Unless superabrasive grains of 0 μm are used, it is difficult to obtain the desired surface roughness.

【0008】しかし、このように微細な超砥粒を用いた
電着砥石では、金属めっき相の表面が緻密で、かつ超砥
粒の粒径が小さいため、研削面の起伏に乏しく、研削面
への研削液の供給効率および研削液からの切粉排出性が
低い。よって、早期に目詰まりて個々の砥粒と被削材と
の接触圧力が低下して研削効率が低下する欠点を有して
いた。
[0008] However, in the electrodeposited grinding wheel using such fine superabrasive grains, the surface of the metal plating phase is dense and the grain size of the superabrasive grains is small, so the grinding surface has poor undulations and the grinding surface is rough. The efficiency of supplying the grinding fluid to the grinding fluid and the ability to discharge chips from the grinding fluid are low. Therefore, it has the disadvantage that it gets clogged early and the contact pressure between the individual abrasive grains and the workpiece decreases, resulting in a decrease in grinding efficiency.

【0009】[0009]

【課題を解決するための手段】光学レンズの製品形状と
対応した曲面を有する砥石基体と、前記曲面に形成され
た砥粒層とを具備し、前記砥石基体の前記曲面には突出
量が一定である多数の凸部が形成され、少なくともこれ
ら凸部は黒鉛等の軟質材で形成されるとともに、前記砥
粒層は、これら凸部の表面を含む前記曲面に、平均粒径
が3〜30μmの超砥粒を金属めっき相で固定してなる
電着砥粒層とされていることを特徴としている。
[Means for Solving the Problems] A grindstone base having a curved surface corresponding to the product shape of an optical lens, and an abrasive grain layer formed on the curved surface, the curved surface of the grindstone base having a constant protrusion amount. A large number of convex portions are formed, at least these convex portions are formed of a soft material such as graphite, and the abrasive grain layer has an average grain size of 3 to 30 μm on the curved surface including the surface of these convex portions. It is characterized by an electrodeposited abrasive layer formed by fixing superabrasive grains with a metal plating phase.

【0010】0010

【作用】本発明のレンズ研削用砥石によれば、曲面に形
成された凸部に対応して砥粒層にも凸部が多数形成され
ているため、総研削面積が大きくとも被削材と砥粒層と
の接触面積は小さく抑えられ、この凸部上に位置する砥
粒の接触圧力を増して切り込み効率を高め、高い研削効
率が得られる。
[Function] According to the lens grinding wheel of the present invention, many convex portions are formed in the abrasive grain layer corresponding to the convex portions formed on the curved surface, so even if the total grinding area is large, the workpiece material The contact area with the abrasive grain layer is kept small, and the contact pressure of the abrasive grains located on the convex portion is increased to improve the cutting efficiency and obtain high grinding efficiency.

【0011】また、研削が進行すると、凸部上に形成さ
れた砥粒層が摩耗し、その下の凸部が露出する。これら
の凸部は黒鉛等の軟質材で形成されているから、研削が
進行するにつれ徐々に摩耗して研削面に供給され、潤滑
剤としての作用を果たす。同時に、凸部の先端が摩耗し
ても、この摩耗部分の周縁の砥粒層が順次研削を受け継
ぐので、常に砥粒の接触圧力は高く維持され、良好な研
削効率を永く維持することが可能である。
Further, as the grinding progresses, the abrasive grain layer formed on the convex portion is worn away, and the convex portion below is exposed. Since these protrusions are made of a soft material such as graphite, they gradually wear out as the grinding progresses and are supplied to the grinding surface, acting as a lubricant. At the same time, even if the tip of the convex part wears out, the abrasive grain layer around the worn part takes over the grinding process, so the contact pressure of the abrasive grains is always maintained high, making it possible to maintain good grinding efficiency for a long time. It is.

【0012】0012

【実施例】図1は本発明に係わるレンズ研削用砥石の一
実施例を示す縦断面図である。図中符号1は円板状の砥
石基体で、その上面中央には回転軸2のフランジ部4が
同軸に固定される一方、砥石基体1の下面には、加工す
べきレンズの曲面形状に対応した曲面1Aが形成されて
いる。この曲面1Aは球面、非球面のいずれでもよく、
また図示のような凹曲面に限らず、凹面加工用として曲
面1Aを凸曲面にしてもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a longitudinal sectional view showing an embodiment of a lens grinding wheel according to the present invention. Reference numeral 1 in the figure is a disk-shaped grindstone base, and the flange part 4 of the rotating shaft 2 is coaxially fixed to the center of the upper surface, while the lower surface of the grindstone base 1 corresponds to the curved shape of the lens to be machined. A curved surface 1A is formed. This curved surface 1A may be either spherical or aspherical,
Further, the curved surface 1A is not limited to a concave curved surface as shown in the drawings, but may be a convex curved surface for concave surface processing.

【0013】曲面1Aには、突出量が一定である多数の
凸部8が形成されているとともに、この例では、砥石基
体1全体が、黒鉛、フッ素樹脂等の軟質材で成形されて
いる。ただし、必ずしも砥石基体1全体を軟質材で構成
する必要はなく、少なくともこれら凸部8が軟質材で形
成されていればよい。例えば、砥石基体1を、基体本体
と、この基体本体の曲面に形成された一定厚の黒鉛層と
で構成し、この黒鉛層に凸部8を形成したり、あるいは
凸部8と対応する部分にのみ黒鉛材を埋め込んで凸部と
する構成も可能である。
A large number of convex portions 8 having a constant protrusion amount are formed on the curved surface 1A, and in this example, the entire grindstone base 1 is molded from a soft material such as graphite or fluororesin. However, the entire grindstone base 1 does not necessarily have to be made of a soft material, and it is sufficient that at least these protrusions 8 are made of a soft material. For example, the grindstone base 1 may be constructed of a base body and a graphite layer of a constant thickness formed on the curved surface of the base body, and the graphite layer may be provided with convex portions 8, or portions corresponding to the convex portions 8 may be formed. It is also possible to embed graphite material only in the convex portion.

【0014】この実施例では、個々の凸部8がなだらか
な半球状(円盤状)に形成されている。ただし凸部8は
この形状に限らず、例えば楕円盤状、四角形状、ハニカ
ム状等のいかなる形状としてもよいし、あるいは多数の
凹部を曲面1Aに形成することにより、他の部分を相対
的に凸部としてもよい。
In this embodiment, each convex portion 8 is formed into a gentle hemispherical shape (disk shape). However, the convex portion 8 is not limited to this shape, and may have any shape such as an elliptical disk shape, a square shape, a honeycomb shape, etc., or by forming a large number of concave portions on the curved surface 1A, the other portions may be relatively It may also be a convex portion.

【0015】凸部8の形状がいずれの場合にも、曲面1
Aにおける凸部8の総面積と曲面1Aの他の部分の総面
積は、ほぼ等しく設定されることが望ましい。両者の面
積がほぼ等しく、かつ凸部8の表面が曲面1A内で他の
部分となだらかに連続する曲面にされていれば、凸部8
が摩耗していく過程でも、被削材に接触する砥粒層6の
総面積変化が小さく、研削効率の変動が小さくて済むと
いう利点を有する。
Regardless of the shape of the convex portion 8, the curved surface 1
It is desirable that the total area of the convex portion 8 at A and the total area of the other portions of the curved surface 1A are set approximately equal. If the areas of both are approximately equal and the surface of the convex part 8 is a curved surface that is gently continuous with other parts within the curved surface 1A, the convex part 8
Even in the process of wear, the total area of the abrasive layer 6 in contact with the workpiece material changes little, which has the advantage of minimizing fluctuations in grinding efficiency.

【0016】ただし、必要に応じては両者の総面積が大
きく異なっていてもよい。凸部8の平面視寸法および突
出量は、砥石基体1の寸法に応じて適宜設定されるべき
である。
[0016] However, if necessary, the total area of the two may be significantly different. The dimensions and protrusion amount of the convex portion 8 in plan view should be appropriately set according to the dimensions of the grindstone base 1.

【0017】そして各凸部8の表面を含む曲面1Aには
、全面に亙って電着砥粒層6が一定の肉厚に形成されて
いる。この電着砥粒層6は、ダイヤモンドまたはCBN
等の超砥粒を、金属めっき相内に多層状(単層状も可)
に分散させたものである。
An electrodeposited abrasive grain layer 6 is formed to a constant thickness over the entire surface of the curved surface 1A including the surface of each convex portion 8. This electrodeposited abrasive layer 6 is made of diamond or CBN.
Multi-layered super abrasive grains (single layer is also possible) within the metal plating phase
It is dispersed in

【0018】超砥粒の平均粒径は3〜30μmに設定す
ることが望ましく、3μm未満では、光学ガラスを研削
すると目詰まりおよび砥粒脱落が激しく、十分な研削効
率が得られないことが本発明者らの実験で確認されてい
る。また、平均粒径が30μmより大では超砥粒によっ
て被削面に形成される条痕が深くなり、レンズ研削に必
要な仕上げ面粗さ(例えばRz:0.7μm程度)が得
られない。
It is desirable that the average particle diameter of the superabrasive grains be set to 3 to 30 μm; if it is less than 3 μm, clogging and abrasive grain dropout will be severe when grinding optical glass, and sufficient grinding efficiency cannot be obtained. This has been confirmed through experiments conducted by the inventors. Furthermore, if the average grain size is larger than 30 μm, the striations formed on the surface to be cut by the superabrasive grains become deep, and the finished surface roughness required for lens grinding (for example, Rz: about 0.7 μm) cannot be obtained.

【0019】一方、金属めっき相は、Ni,Coまたは
Ni−Co合金等で構成されている。Ni−Co 系合
金を用いる場合には、そのCo 含有量が10〜60w
t%とされることが望ましい。この組成からなる合金に
よれば、単純なNi めっき相の場合に比して耐疲労性
および剛性が高められる。Co 含有量が10wt%未
満では十分な耐熱性および耐疲労効果が得られない。ま
た60wt%以上ではCoが高価であるから製造単価の
上昇を招く。
On the other hand, the metal plating phase is composed of Ni, Co, Ni--Co alloy, or the like. When using a Ni-Co alloy, the Co content is 10 to 60 w.
It is desirable to set it as t%. An alloy having this composition has improved fatigue resistance and rigidity compared to the case of a simple Ni plating phase. If the Co content is less than 10 wt%, sufficient heat resistance and fatigue resistance effects cannot be obtained. Moreover, if Co is 60 wt % or more, Co is expensive, leading to an increase in the manufacturing cost.

【0020】また、Ni−Co系合金を用いるのであれ
ば、金属めっき相12に0.005〜1.0wt%のM
nが含有されていてもよい。この場合には金属めっき相
12が一層硬質化し、上記効果がより顕著になる。Mn
 が0.005wt%未満では効果が得られず、1.0
wt%を越えてもそれ以上の改善は見られない。
[0020] Furthermore, if a Ni-Co alloy is used, 0.005 to 1.0 wt% of M is added to the metal plating phase 12.
n may be included. In this case, the metal plating phase 12 becomes even harder, and the above effect becomes more pronounced. Mn
If it is less than 0.005 wt%, no effect will be obtained, and 1.0
Even if it exceeds wt%, no further improvement is seen.

【0021】上記構成からなるレンズ研削用砥石によれ
ば、図2に示すように、曲面1Aに形成された凸部8に
対応して砥粒層6にも凸部6Aが多数形成されているた
め、総研削面積が大きくとも被削材と砥粒層6との接触
面積は小さく抑えられ、この凸部6Aに位置する砥粒の
被削材への接触圧力を増して切り込み効率を高め、高い
研削効率が得られる。
According to the lens grinding wheel having the above structure, as shown in FIG. 2, a large number of convex portions 6A are formed in the abrasive grain layer 6 corresponding to the convex portions 8 formed on the curved surface 1A. Therefore, even if the total grinding area is large, the contact area between the workpiece and the abrasive grain layer 6 is kept small, and the contact pressure of the abrasive grains located at the convex portions 6A with the workpiece is increased to increase cutting efficiency. High grinding efficiency can be obtained.

【0022】また、研削が進行すると、凸部6Aが摩耗
し、その下の凸部8が露出する。これらの凸部8は黒鉛
等の軟質材で形成されているから、研削が進行するにつ
れ徐々に摩耗して研削面に供給され、潤滑剤としての作
用を果たす。
Further, as the grinding progresses, the convex portion 6A is worn away, and the convex portion 8 below it is exposed. Since these protrusions 8 are made of a soft material such as graphite, they gradually wear out as the grinding progresses and are supplied to the grinding surface, acting as a lubricant.

【0023】同時に、図3に示すように、凸部8の先端
が摩耗しても、この摩耗部分8Aの周縁の砥粒層6Aが
順次研削を受け継ぐので、常に砥粒の接触圧力は高く維
持され、良好な研削効率を永く維持することが可能であ
る。
At the same time, as shown in FIG. 3, even if the tip of the convex portion 8 is worn, the abrasive grain layer 6A at the periphery of this worn part 8A takes over the grinding process, so the contact pressure of the abrasive grains is always maintained high. It is possible to maintain good grinding efficiency for a long time.

【0024】また、この砥石は超砥粒8の平均粒径が3
〜30μmに設定されているため、光学レンズ研削に必
要な研削精度および仕上げ面粗さが得られる。
[0024] Furthermore, in this grindstone, the average particle diameter of the superabrasive grains 8 is 3.
Since it is set to ~30 μm, the grinding accuracy and finished surface roughness required for optical lens grinding can be obtained.

【0025】なお、上記実施例では砥石基体1が円板状
であったが、本発明は円板状に限られることはなく、例
えば図4および図5に示すように、回転軸に対して非対
照な形状に変更してもよい。
Although the grinding wheel base 1 was disk-shaped in the above embodiment, the present invention is not limited to the disk shape. For example, as shown in FIGS. 4 and 5, It may be changed to a non-symmetrical shape.

【0026】[0026]

【発明の効果】以上説明したように、本発明のレンズ研
削用砥石では、曲面に形成された凸部に対応して砥粒層
にも凸部が多数形成されているため、総研削面積が大き
くとも被削材と砥粒層との接触面積は小さく抑えられ、
この凸部上に位置する砥粒の接触圧力を増して切り込み
効率を高め、高い研削効率が得られる。
[Effects of the Invention] As explained above, in the lens grinding wheel of the present invention, a large number of convex portions are formed in the abrasive grain layer corresponding to the convex portions formed on the curved surface, so that the total grinding area is reduced. At most, the contact area between the workpiece and the abrasive layer can be kept small,
By increasing the contact pressure of the abrasive grains located on this convex portion, the cutting efficiency is increased, and high grinding efficiency can be obtained.

【0027】また、研削が進行すると、凸部上に形成さ
れた砥粒層が摩耗し、その下の凸部が露出する。これら
の凸部は黒鉛等の軟質材で形成されているから、研削が
進行するにつれ徐々に摩耗して研削面に供給され、潤滑
剤としての作用を果たす。同時に、凸部の先端が摩耗し
ても、この摩耗部分の周縁の砥粒層が順次研削を受け継
ぐので、常に砥粒の接触圧力は高く維持され、良好な研
削効率を永く維持することが可能である。
Further, as the grinding progresses, the abrasive grain layer formed on the convex portion is worn away, and the convex portion below is exposed. Since these protrusions are made of a soft material such as graphite, they gradually wear out as the grinding progresses and are supplied to the grinding surface, acting as a lubricant. At the same time, even if the tip of the convex part wears out, the abrasive grain layer around the worn part takes over the grinding process, so the contact pressure of the abrasive grains is always maintained high, making it possible to maintain good grinding efficiency for a long time. It is.

【0028】また、この砥石は超砥粒8の平均粒径が3
〜30μmに設定されているため、光学レンズ研削に必
要な研削精度および仕上げ面粗さが得られる。
[0028] Also, in this grindstone, the average particle size of the superabrasive grains 8 is 3
Since it is set to ~30 μm, the grinding accuracy and finished surface roughness required for optical lens grinding can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係わるレンズ研削用砥石の一実施例を
示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an embodiment of a lens grinding wheel according to the present invention.

【図2】同砥石の砥粒層の断面拡大図である。FIG. 2 is an enlarged cross-sectional view of the abrasive grain layer of the same grindstone.

【図3】本発明の作用を示す砥粒層の断面拡大図である
FIG. 3 is an enlarged cross-sectional view of an abrasive grain layer showing the effect of the present invention.

【図4】本発明の他の実施例を示す平面図である。FIG. 4 is a plan view showing another embodiment of the present invention.

【図5】同実施例のV−V線視断面図である。FIG. 5 is a sectional view taken along the line V-V of the same embodiment.

【符号の説明】[Explanation of symbols]

1  砥石基体 1A  曲面 2  回転軸 4  フランジ部 6  砥粒層 6A  摩耗部分周縁の砥粒層 8  凸部 8A  凸部の摩耗部分 1. Grinding wheel base 1A curved surface 2 Rotation axis 4 Flange part 6 Abrasive grain layer 6A Abrasive grain layer around the worn part 8 Convex part 8A Convex worn part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光学レンズの製品形状と対応した曲面
を有する砥石基体と、前記曲面に形成された砥粒層とを
具備したレンズ研削用砥石であって、前記砥石基体の前
記曲面には突出量が一定である多数の凸部が形成され、
少なくともこれら凸部は軟質材で形成されるとともに、
前記砥粒層は、これら凸部の表面を含む前記曲面に、平
均粒径が3〜30μmの超砥粒を金属めっき相で固定し
てなる電着砥粒層とされていることを特徴とするレンズ
研削用砥石。
1. A grindstone for lens grinding, comprising a grindstone base having a curved surface corresponding to the product shape of an optical lens, and an abrasive grain layer formed on the curved surface, wherein the curved surface of the grindstone base has a protruding surface. A large number of convex portions with a constant amount are formed,
At least these convex portions are formed of a soft material, and
The abrasive grain layer is an electrodeposited abrasive grain layer formed by fixing superabrasive grains having an average grain size of 3 to 30 μm on the curved surface including the surfaces of these convex portions with a metal plating phase. Grinding wheel for lens grinding.
【請求項2】  前記軟質材は、黒鉛であることを特徴
とする請求項1記載のレンズ研削用砥石。
2. The lens grinding wheel according to claim 1, wherein the soft material is graphite.
JP3089704A 1991-03-28 1991-03-28 Grinding wheel for polishing lens Pending JPH04300156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3089704A JPH04300156A (en) 1991-03-28 1991-03-28 Grinding wheel for polishing lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3089704A JPH04300156A (en) 1991-03-28 1991-03-28 Grinding wheel for polishing lens

Publications (1)

Publication Number Publication Date
JPH04300156A true JPH04300156A (en) 1992-10-23

Family

ID=13978169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3089704A Pending JPH04300156A (en) 1991-03-28 1991-03-28 Grinding wheel for polishing lens

Country Status (1)

Country Link
JP (1) JPH04300156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061560A (en) * 2007-09-07 2009-03-26 Mitsubishi Materials Corp Electrodeposition tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061560A (en) * 2007-09-07 2009-03-26 Mitsubishi Materials Corp Electrodeposition tool

Similar Documents

Publication Publication Date Title
CN101039775B (en) Cmp pad dresser with oriented particles and associated methods
KR100486429B1 (en) Ultra abrasive grain wheel f0r mirror finish
KR19990083128A (en) Method for chamfering a wafer
JPH11267902A (en) Tool having ultra-fine cutting blade and processing tool having ultra-fine cutting blade
JP2010076013A (en) Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone
US5146909A (en) Stationary fine point diamond trueing and dressing block and method of use
JP3299523B2 (en) Tool for turning groove of hard foam resin pad
JPH04300156A (en) Grinding wheel for polishing lens
JP2001025948A (en) Spherical grinding wheel
JP2000301468A (en) Grinding wheel for grinding and grinding wheel for vertical line grinding
JPH04300155A (en) Grinding wheel for polishing lens
JPH04300165A (en) Grinding wheel
JPH1058331A (en) Super abrasive grain wheel for lapping
JP2005161449A (en) Cup type super-abrasive grain wheel for processing mirror surface
JPS6317608Y2 (en)
JPH09254040A (en) Grinding wheel and lens grinding wheel
JP3128079B2 (en) Electroplated tool and manufacturing method thereof
JP2868988B2 (en) Spiral wheel manufacturing method
JP2001001269A (en) Grinding/polishing tool and its manufacture, and grinding /polishing method using the tool
JPH10249714A (en) Polishing device and method, magnetic head and magnetic recording and reproducing device
JPH06114743A (en) Electrodeposition grinding wheel
JPH10264041A (en) Lapping ultra-abrasive grain wheel
JP2003089064A (en) Rotary truer and manufacturing method therefor
JPH04300164A (en) Grinding wheel for grinding lens
JPH04223878A (en) Grindwheel for grinding lens and manufacture thereof