JPH04300155A - Grinding wheel for polishing lens - Google Patents

Grinding wheel for polishing lens

Info

Publication number
JPH04300155A
JPH04300155A JP3089703A JP8970391A JPH04300155A JP H04300155 A JPH04300155 A JP H04300155A JP 3089703 A JP3089703 A JP 3089703A JP 8970391 A JP8970391 A JP 8970391A JP H04300155 A JPH04300155 A JP H04300155A
Authority
JP
Japan
Prior art keywords
abrasive grain
grinding
grinding wheel
lens
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3089703A
Other languages
Japanese (ja)
Inventor
Masakatsu Inaba
稲葉 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3089703A priority Critical patent/JPH04300155A/en
Publication of JPH04300155A publication Critical patent/JPH04300155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To polish the surface of a lens made of optical glass with a high degree of accuracy with polishing speeds at the rotational center side and the rotational outer peripheral side of a surface to be polished being made to be uniform. CONSTITUTION:An electroplated abrasive grain layer 6 in which an ultra- abrasive grain is fixed in a metal plating phase is formed over a surface 1 to be plated on a grindstone base body 1. The averaged particle size of the ultra-abrasive grain is in a range of 3 to 30mum, the content rate of the abrasive grain on a side 6 near to the rotational axis of the grind stone is set to be higher than that on a side remote from the rotational axis.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光学ガラス製のレンズ
表面を研削するためのレンズ研削用砥石およびその製造
方法に係わり、特に、研削面の回転中心側と回転外周側
での研削速度を均一にするための改良に関する。
[Industrial Application Field] The present invention relates to a lens grinding wheel for grinding the surface of an optical glass lens and a method for manufacturing the same, and in particular, the present invention relates to a lens grinding wheel for grinding the surface of an optical glass lens and a method for manufacturing the same. Regarding improvements for uniformity.

【0002】0002

【従来の技術】光学レンズを製造する方法としては、従
来より、溶融ガラスを粗成形した後、カーブジェネレー
ター等の砥石を用いて粗研削を行ない、次いで遊離砥粒
を用いたラッピングを施し、さらにポリッシングにより
仕上げ研摩する方法が長く採られてきた。
[Prior Art] Conventionally, optical lenses have been manufactured by roughly forming molten glass, then rough grinding using a grindstone such as a curve generator, then lapping with free abrasive grains, and then A method of finishing by polishing has been used for a long time.

【0003】この加工方法では、単純な構成の加工装置
により高精度の光学レンズが製造できる利点があるが、
反面、作業者の技能依存度が高く、生産性が低いという
問題を有している。また、非球面レンズを製造する場合
には、球面研削や平面研削のように、レンズと研摩体と
を相対運動させるともずり的なラッピング加工が不可能
であるため、研削加工の段階で表面精度を高め、後工程
での加工量を極力少なくすることが重要である。
[0003] This processing method has the advantage that high-precision optical lenses can be manufactured using processing equipment with a simple configuration.
On the other hand, it has the problem of being highly dependent on the skill of the worker and having low productivity. In addition, when manufacturing aspherical lenses, it is impossible to perform shear-like lapping when the lens and polishing body are moved relative to each other, as in spherical grinding and surface grinding, so surface accuracy is required at the grinding stage. It is important to increase the amount of processing and minimize the amount of processing in post-processes.

【0004】このため最近では、技能依存度を減らして
自動化・省力化を図り、かつ非球面レンズの加工を可能
とする目的で、前述の粗研削加工の代わりに精密研削加
工によって光学ガラスに高精度の形状を付与し、ラッピ
ングを省いて、直接ポリッシングを行なう方法が有力視
されつつある。そして一部では既に、ダイヤモンド砥粒
を含有するレジンボンド砥石あるいはビトリファイドボ
ンド砥石により、レンズの精密研削を行なうことも試み
られている。
For this reason, recently, in order to reduce the dependence on skill and achieve automation and labor-saving, as well as to make it possible to process aspherical lenses, precision grinding has been used instead of the rough grinding described above to improve the quality of optical glass. A method that provides a precise shape, eliminates lapping, and performs direct polishing is becoming popular. Some attempts have already been made to precisely grind lenses using resin bonded grindstones or vitrified bonded grindstones containing diamond abrasive grains.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述のレジン
ボンド砥石あるいはビトリファイドボンド砥石では、結
合相の硬度が低く、摩耗しやすいために研削面の形状変
化が大きく、頻繁に形状修正を行なわねば十分な精密研
削精度が維持できない問題があった。
[Problems to be Solved by the Invention] However, in the resin bonded grindstone or vitrified bond grindstone described above, the hardness of the bonding phase is low and it is easily worn, resulting in large changes in the shape of the grinding surface, and it is necessary to frequently correct the shape. There was a problem that high precision grinding accuracy could not be maintained.

【0006】そこで本発明者らは、結合相として耐摩耗
性の高い金属めっき相を用いた電着砥石により、光学レ
ンズの精密研削を行なう方法を発案し、実際に種々の砥
石を作成して実験を行なった。
[0006] Therefore, the present inventors devised a method for precision grinding of optical lenses using an electroplated grindstone using a highly wear-resistant metal plating phase as a bonding phase, and actually produced various grindstones. We conducted an experiment.

【0007】その結果、この種の電着砥石においては、
平均粒径が3〜30μmの超砥粒を使用すれば好適な仕
上げ面粗さが得られることが判明したが、同時に次のよ
うな問題も明らかになった。
As a result, in this type of electrodeposited grindstone,
Although it has been found that a suitable finished surface roughness can be obtained by using superabrasive grains having an average grain size of 3 to 30 μm, the following problems have also become apparent.

【0008】すなわち、軸線回りに砥石を回転してレン
ズ素材を研削する場合、必然的に研削面の回転中心側よ
りも回転外周側で砥粒層の周速が大きく、個々の砥粒に
よる研削量も大きい。一般的な被削材においては、この
程度の研削量の差、ひいては研削速度の差があっても、
最終的に得られる形状精度に対する影響は比較的小さい
ために、殆ど問題にならないのであるが、光学レンズの
研削加工では、研削面の形状精度に対する要求が極めて
厳しいため、公差範囲に収まらないおそれを有するので
ある。
That is, when a lens material is ground by rotating a grindstone around the axis, the circumferential speed of the abrasive grain layer is necessarily higher on the outer peripheral side of the rotation than on the rotation center side of the grinding surface, and the grinding by individual abrasive grains is difficult. The portions are also large. For general work materials, even if there is a difference in the amount of grinding of this degree and even a difference in grinding speed,
The effect on the final shape accuracy is relatively small, so it is hardly a problem, but in the grinding process of optical lenses, the demands on the shape accuracy of the ground surface are extremely strict, so there is a risk that it will not fall within the tolerance range. We have it.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたもので、砥石基体の被めっき面に、
金属めっき相で超砥粒を固定した電着砥粒層を形成して
なり、前記超砥粒の平均粒径は3〜30μmとされると
ともに、前記電着砥粒層の砥石回転軸線に近い側におけ
る砥粒含有率は、前記砥石回転軸線から遠い側における
砥粒含有率よりも高く設定されていることを特徴として
いる。
[Means for Solving the Problems] The present invention has been made to solve the above problems.
An electrodeposited abrasive grain layer is formed in which superabrasive grains are fixed with a metal plating phase, and the average grain size of the superabrasive grains is 3 to 30 μm, and the electrodeposited abrasive grain layer is close to the grinding wheel rotation axis. The abrasive grain content on the side is set higher than the abrasive grain content on the side farther from the grindstone rotation axis.

【0010】0010

【作用】本発明のレンズ研削用砥石によれば、研削面の
砥粒露出密度が外周側よりも内周側で高いため、砥粒層
の内周側での周速の遅さを補正し、砥粒層の回転中心側
と外周側での研削速度を均一にすることができ、被削材
の形状精度が高められる。
[Function] According to the lens grinding wheel of the present invention, since the abrasive grain exposure density on the grinding surface is higher on the inner circumferential side than on the outer circumferential side, the slowness of the peripheral speed on the inner circumferential side of the abrasive grain layer is compensated for. , the grinding speed on the rotation center side and the outer peripheral side of the abrasive grain layer can be made uniform, and the shape accuracy of the workpiece can be improved.

【0011】[0011]

【実施例】図1は本発明に係わるレンズ研削用砥石の一
実施例を示す縦断面図、図2は底面図である。図中符号
1は円板状の砥石基体で、その上面中央には回転軸2の
フランジ部4が同軸に固定される一方、砥石基体1の下
面には、加工すべきレンズの曲面形状に対応した被めっ
き面1Aが形成されている。この被めっき面1Aは球面
、非球面のいずれでもよく、また図示のような凹曲面に
限らず、凹面加工用として被めっき面1Aを凸曲面にし
てもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a longitudinal sectional view showing an embodiment of a lens grinding wheel according to the present invention, and FIG. 2 is a bottom view thereof. Reference numeral 1 in the figure is a disk-shaped grindstone base, and the flange part 4 of the rotating shaft 2 is coaxially fixed to the center of the upper surface, while the lower surface of the grindstone base 1 corresponds to the curved shape of the lens to be machined. A plated surface 1A is formed. The plated surface 1A may be either a spherical or aspherical surface, and is not limited to a concave curved surface as shown, but may be a convex curved surface for concave processing.

【0012】砥石基体1の材質としては、アルミニウム
合金、ステンレス合金、銅合金等の金属のみならず、被
めっき面1Aを導電体で構成すればセラミックス等の非
導電体も使用可能である。ただし、砥石基体1の冷却効
率を高め、かつ昇温による研削面の変形を低減するには
、熱伝導性が高く、熱膨張率が低い材質が好ましく、こ
の観点からすれば銅合金が特に適している。
As for the material of the grinding wheel base 1, not only metals such as aluminum alloy, stainless steel alloy, and copper alloy, but also non-conductive materials such as ceramics can be used if the plated surface 1A is made of a conductive material. However, in order to increase the cooling efficiency of the grinding wheel base 1 and reduce deformation of the grinding surface due to temperature rise, a material with high thermal conductivity and a low coefficient of thermal expansion is preferable, and from this point of view, copper alloy is particularly suitable. ing.

【0013】被めっき面1Aには、全面に一定厚の電着
砥粒層6が形成されている。この電着砥粒層6は、ダイ
ヤモンドまたはCBN等の超砥粒を金属めっき相内に多
層状(または単層状)に分散させたものであり、超砥粒
の平均粒径は3〜30μmに設定することが望ましい。
An electrodeposited abrasive layer 6 having a constant thickness is formed over the entire surface 1A to be plated. This electrodeposited abrasive grain layer 6 is made by dispersing superabrasive grains such as diamond or CBN in a multilayered (or single layered) form within a metal plating phase, and the average grain size of the superabrasive grains is 3 to 30 μm. It is desirable to set this.

【0014】3μm未満では、光学ガラスを研削すると
目詰まりおよび砥粒脱落が激しく、十分な研削効率が得
られないことが本発明者らの実験で確認されている。ま
た、平均粒径が30μmより大では超砥粒によって被削
面に形成される条痕が深くなり、レンズ研削に必要な仕
上げ面粗さ(例えばRz:0.7μm程度)が得られな
い。
It has been confirmed through experiments by the present inventors that if the diameter is less than 3 μm, clogging and abrasive grain dropout will be severe when grinding optical glass, and sufficient grinding efficiency cannot be obtained. Furthermore, if the average grain size is larger than 30 μm, the striations formed on the surface to be cut by the superabrasive grains become deep, and the finished surface roughness required for lens grinding (for example, Rz: about 0.7 μm) cannot be obtained.

【0015】本発明のレンズ研削用砥石の特徴は、図2
に示すように、電着砥粒層6の砥石回転軸線に近い内周
側6Aにおける砥粒含有率が、前記砥石回転軸線から遠
い外周側6Bにおける砥粒含有率よりも高く設定されて
いることにある。この例では、外周部6Bの外周縁から
、内周部6Aの中心(砥石回転中心)に向けて無段階に
砥粒含有率が上昇するようになっている。このように無
段階に砥粒含有率が変化するほうが効果の点から好まし
いが、必要に応じては段階的に砥粒含有率を変えてもよ
い。
The features of the lens grinding wheel of the present invention are shown in FIG.
As shown in , the abrasive grain content on the inner circumferential side 6A of the electrodeposited abrasive layer 6 that is close to the whetstone rotation axis is set higher than the abrasive grain content on the outer circumferential side 6B that is far from the whetstone rotation axis. It is in. In this example, the abrasive grain content increases steplessly from the outer periphery of the outer periphery 6B toward the center of the inner periphery 6A (the center of rotation of the grindstone). Although it is preferable for the abrasive grain content to change steplessly in this way from the viewpoint of effectiveness, the abrasive grain content may be changed stepwise if necessary.

【0016】各部6A,6Bの砥粒含有率は、砥石の寸
法や使用時の回転速度に応じて決定されるべきで、使用
時の各部における研削速度がほぼ均一になるように実験
的に設定される。内周側6Aと外周側6Bでは切粉の排
出性や研削液の供給性等の他の影響因子も異なり、一概
に理論化することは難しいからである。
The abrasive grain content of each part 6A, 6B should be determined according to the dimensions of the grindstone and the rotational speed during use, and should be experimentally set so that the grinding speed in each part during use is approximately uniform. be done. This is because other influencing factors such as the ability to discharge chips and the ability to supply grinding fluid are different between the inner peripheral side 6A and the outer peripheral side 6B, and it is difficult to make a general theory.

【0017】一方、金属めっき相は、Ni,Coまたは
Ni−Co合金等で構成されている。Ni−Co 系合
金を用いる場合には、そのCo 含有量が10〜60w
t%とされることが望ましい。この組成からなる合金に
よれば、単純なNi めっき相の場合に比して耐疲労性
および剛性が高められる。Co 含有量が10wt%未
満では十分な耐熱性および耐疲労効果が得られない。ま
た60wt%以上ではCoが高価であるから製造単価の
上昇を招く。
On the other hand, the metal plating phase is composed of Ni, Co, Ni--Co alloy, or the like. When using a Ni-Co alloy, the Co content is 10 to 60 w.
It is desirable to set it as t%. An alloy having this composition has improved fatigue resistance and rigidity compared to the case of a simple Ni plating phase. If the Co content is less than 10 wt%, sufficient heat resistance and fatigue resistance effects cannot be obtained. Moreover, if Co is 60 wt % or more, Co is expensive, leading to an increase in the manufacturing cost.

【0018】また、Ni−Co系合金を用いるのであれ
ば、金属めっき相に0.005〜1.0wt%のMnが
含有されていてもよい。この場合には金属めっき相が一
層硬質化し、上記効果がより顕著になる。Mn が0.
005wt%未満では効果が得られず、1.0wt%を
越えてもそれ以上の改善は見られない。
[0018] Furthermore, if a Ni--Co alloy is used, the metal plating phase may contain 0.005 to 1.0 wt% of Mn. In this case, the metal plating phase becomes even harder, and the above effect becomes more pronounced. Mn is 0.
If it is less than 0.005 wt%, no effect will be obtained, and if it exceeds 1.0 wt%, no further improvement will be observed.

【0019】上記構成からなるレンズ研削用砥石によれ
ば、研削面の砥粒露出密度が外周側6Bよりも内周側6
Aで高いため、砥粒層の内周側6Aでの周速の遅さを補
正して内周側6Aと外周側6Bでの研削速度を均一にす
ることができ、最終的に得られるレンズの形状精度が高
められる。また、この砥石は超砥粒の平均粒径が3〜3
0μmに設定されているため、光学レンズ研削に必要な
研削精度および仕上げ面粗さが得られる。
According to the lens grinding wheel having the above structure, the abrasive grain exposure density on the grinding surface is higher on the inner circumferential side 6B than on the outer circumferential side 6B.
Since the grinding speed is high at A, it is possible to correct the slow circumferential speed at the inner circumferential side 6A of the abrasive grain layer and equalize the grinding speed at the inner circumferential side 6A and outer circumferential side 6B, and the final lens obtained shape accuracy is improved. In addition, this whetstone has an average particle size of super abrasive grains of 3 to 3
Since it is set to 0 μm, the grinding accuracy and finished surface roughness required for optical lens grinding can be obtained.

【0020】なお、上記実施例では砥石基体1が円板状
であったが、本発明は円板状に限られることはなく、例
えば図3および図4に示すように、回転軸に対して非対
照な形状に変更してもよい。また、砥粒層に超砥粒以外
の粒子を分散させてもよく、その場合には、粒子の脱落
によりチップポケットが形成され、切粉の排出性および
研削液の供給性が高められる。
Although the grinding wheel base 1 was disk-shaped in the above embodiment, the present invention is not limited to the disk shape. For example, as shown in FIGS. 3 and 4, It may be changed to a non-symmetrical shape. Further, particles other than superabrasive grains may be dispersed in the abrasive grain layer, and in that case, chip pockets are formed by shedding of the particles, thereby improving chip discharge performance and grinding fluid supply performance.

【0021】[0021]

【発明の効果】以上説明したように、本発明のレンズ研
削用砥石では、研削面の砥粒露出密度が外周側よりも内
周側で高いため、砥粒層の内周側での周速の遅さを補正
して砥粒層の中心側と外周側での研削速度を均一にする
ことができ、最終的に得られる被削材の形状精度が高め
られる。また、この砥石は超砥粒の平均粒径が3〜30
μmに設定されているため、光学レンズ研削に必要な研
削精度および仕上げ面粗さが得られる。
As explained above, in the lens grinding wheel of the present invention, the exposed density of abrasive grains on the grinding surface is higher on the inner circumferential side than on the outer circumferential side, so that the circumferential speed on the inner circumferential side of the abrasive layer increases. By correcting the slowness of grinding, it is possible to equalize the grinding speed on the center side and the outer circumferential side of the abrasive grain layer, and the shape accuracy of the finally obtained workpiece is improved. In addition, this whetstone has an average particle size of super abrasive grains of 3 to 30
Since it is set to μm, the grinding accuracy and finished surface roughness required for optical lens grinding can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係わるレンズ研削用砥石の一実施例を
示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an embodiment of a lens grinding wheel according to the present invention.

【図2】同砥石の底面図である。FIG. 2 is a bottom view of the same grindstone.

【図3】本発明の他の実施例を示す平面図である。FIG. 3 is a plan view showing another embodiment of the present invention.

【図4】同実施例のA−A線視断面図である。FIG. 4 is a sectional view taken along line AA of the same embodiment.

【符号の説明】[Explanation of symbols]

1  砥石基体 1A  被めっき面 2  回転軸 4  フランジ部 6  電着砥粒層 1. Grinding wheel base 1A Plated surface 2 Rotation axis 4 Flange part 6 Electrodeposited abrasive layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  砥石基体の被めっき面に、金属めっき
相で超砥粒を固定した電着砥粒層を形成したレンズ研削
用砥石であって、前記超砥粒の平均粒径は3〜30μm
とされるとともに、前記電着砥粒層の砥石回転軸線に近
い側における砥粒含有率は、前記砥石回転軸線から遠い
側における砥粒含有率よりも高く設定されていることを
特徴とするレンズ研削用砥石。
1. A lens grinding wheel comprising an electrodeposited abrasive grain layer in which superabrasive grains are fixed with a metal plating phase on a surface to be plated of a whetstone base, wherein the average grain size of the superabrasive grains is 3 to 3. 30μm
A lens characterized in that the abrasive grain content on the side of the electrodeposited abrasive layer nearer to the grinding wheel rotation axis is set higher than the abrasive grain content on the side farther from the grinding wheel rotation axis. Grinding wheel.
JP3089703A 1991-03-28 1991-03-28 Grinding wheel for polishing lens Pending JPH04300155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3089703A JPH04300155A (en) 1991-03-28 1991-03-28 Grinding wheel for polishing lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3089703A JPH04300155A (en) 1991-03-28 1991-03-28 Grinding wheel for polishing lens

Publications (1)

Publication Number Publication Date
JPH04300155A true JPH04300155A (en) 1992-10-23

Family

ID=13978141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3089703A Pending JPH04300155A (en) 1991-03-28 1991-03-28 Grinding wheel for polishing lens

Country Status (1)

Country Link
JP (1) JPH04300155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014061553A (en) * 2012-09-19 2014-04-10 Olympus Corp Grinding wheel and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014061553A (en) * 2012-09-19 2014-04-10 Olympus Corp Grinding wheel and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR101259651B1 (en) Pad dresser with oriented particles and associated methods
JPH11267902A (en) Tool having ultra-fine cutting blade and processing tool having ultra-fine cutting blade
WO2002022310A1 (en) Ultra abrasive grain wheel for mirror finish
JP2010076013A (en) Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone
JPH04300155A (en) Grinding wheel for polishing lens
JP2000301468A (en) Grinding wheel for grinding and grinding wheel for vertical line grinding
JP2001025948A (en) Spherical grinding wheel
JPH04300156A (en) Grinding wheel for polishing lens
JPH04300165A (en) Grinding wheel
JPH09254040A (en) Grinding wheel and lens grinding wheel
JPH04223875A (en) Grindstone for grinding lens
JP2000190199A (en) Plane correcting method for surface plate
JPH05269671A (en) Diamond wheel
JP2010115768A (en) Cbn grinding wheel
JPS63134173A (en) Cbn electrodeposited grindstone
JPH04300164A (en) Grinding wheel for grinding lens
JP2005161449A (en) Cup type super-abrasive grain wheel for processing mirror surface
JPS6035579Y2 (en) spiral polishing plate
JPH04223874A (en) Grindstone for grinding lens
JPH04223878A (en) Grindwheel for grinding lens and manufacture thereof
JP2001334469A (en) Diamond wheel for glass substrate work and working method of glass substrate
JPH10249714A (en) Polishing device and method, magnetic head and magnetic recording and reproducing device
JP2001001269A (en) Grinding/polishing tool and its manufacture, and grinding /polishing method using the tool
JPH06114743A (en) Electrodeposition grinding wheel
JPS6284977A (en) Grinding pellet