JPH04297874A - Angular velocity sensor driver - Google Patents

Angular velocity sensor driver

Info

Publication number
JPH04297874A
JPH04297874A JP3005685A JP568591A JPH04297874A JP H04297874 A JPH04297874 A JP H04297874A JP 3005685 A JP3005685 A JP 3005685A JP 568591 A JP568591 A JP 568591A JP H04297874 A JPH04297874 A JP H04297874A
Authority
JP
Japan
Prior art keywords
angular velocity
amplifier
signal
velocity sensor
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3005685A
Other languages
Japanese (ja)
Inventor
Toshihiko Ichise
俊彦 市瀬
Jiro Terada
二郎 寺田
Hiroshi Takenaka
寛 竹中
Kazumitsu Ueda
上田 和光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3005685A priority Critical patent/JPH04297874A/en
Publication of JPH04297874A publication Critical patent/JPH04297874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To obtain a driver which is so arranged to cancel a drive signal component to be mixed into an input signal of an amplifier in a tuning fork type angular velocity sensor. CONSTITUTION:This apparatus has a tuning fork structure type angular velocity sensor 9, a phase inversion amplifier 10 which is connected so that an input signal is inputted from a piezo-electric element for driving of the sensor while an output signal is outputted to the piezo-electric element for driving again to invert the phase of a drive voltage by 180 deg., an amplifier 5 which uses an electric charge generated in a piezo-electric element for detection as input signal while an output signal thereof is picked up to obtain an angular velocity and a variable resistor 12 which is connected between the input side and the output side of the phase inversion amplifier 10 while a slide element is connected on the input side of the amplifier 5.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はセラミック圧電素子を音
叉構造に接合した、振動型の角速度センサ駆動装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration type angular velocity sensor drive device in which a ceramic piezoelectric element is bonded to a tuning fork structure.

【0002】0002

【従来の技術】近年角速度が検出できる角速度センサの
実用化が進んでおり、たとえばビデオカメラに角速度セ
ンサを取りつけ、手ぶれによる撮影画面の揺れを、角速
度センサの出力によりレンズ位置を変えて補正する方式
など実用化されている。とくに圧電素子を音叉構造に接
合した振動型角速度センサはその応答速度や感度の面で
優れており、今後の幅広い活用が期待されている。
[Background Art] In recent years, angular velocity sensors that can detect angular velocity have been put into practical use. For example, an angular velocity sensor is attached to a video camera, and the shaking of the shooting screen due to camera shake is corrected by changing the lens position using the output of the angular velocity sensor. etc. have been put into practical use. In particular, a vibrating angular velocity sensor in which a piezoelectric element is bonded to a tuning fork structure has excellent response speed and sensitivity, and is expected to be widely used in the future.

【0003】従来の振動型角速度センサの駆動装置につ
いて図面に基づいて説明する。図6は従来の振動型角速
度センサ駆動装置の構成を示す回路ブロック図であり、
第1の増幅器1と、整流器2と、平滑回路3と、第2の
増幅器4で構成される駆動部分と、第3の増幅器5と、
同期検波器6と、ローパスフィルタ7とで構成される検
知部分とからなり、音叉構造振動型角速度センサ9に接
続されている。つぎに構成要素の互いの関連動作を説明
する。
A conventional vibration type angular velocity sensor driving device will be explained based on the drawings. FIG. 6 is a circuit block diagram showing the configuration of a conventional vibration type angular velocity sensor drive device.
A driving section consisting of a first amplifier 1, a rectifier 2, a smoothing circuit 3, a second amplifier 4, and a third amplifier 5,
It consists of a detection section composed of a synchronous detector 6 and a low-pass filter 7, and is connected to a tuning fork structure vibration type angular velocity sensor 9. Next, the mutually related operations of the constituent elements will be explained.

【0004】音叉構造振動型角速度センサ9は、第1の
増幅器1と、第1の増幅器1の出力電荷を整流する整流
器2と、この整流器2の出力電圧を平滑する平滑回路3
と、平滑回路3の出力電圧値によって第1の増幅器1か
らの出力電圧を増幅する増幅度が変化する第2の増幅器
4とによって一定振幅に制御されて音叉振動している。 音叉構造振動型角速度センサ9に角速度が加わると角速
度信号は第3の増幅器5で増幅および位相シフトされ、
同期検波器6で検波され、さらにローパスフィルタ7に
て平滑,増幅されて出力される。
The tuning fork structure vibration type angular velocity sensor 9 includes a first amplifier 1, a rectifier 2 that rectifies the output charge of the first amplifier 1, and a smoothing circuit 3 that smoothes the output voltage of the rectifier 2.
and a second amplifier 4 whose amplification degree for amplifying the output voltage from the first amplifier 1 changes depending on the output voltage value of the smoothing circuit 3, and the tuning fork vibrates under constant amplitude control. When angular velocity is applied to the tuning fork structure vibration type angular velocity sensor 9, the angular velocity signal is amplified and phase shifted by the third amplifier 5,
The signal is detected by a synchronous detector 6, smoothed and amplified by a low-pass filter 7, and output.

【0005】上記構成の本発明の角速度センサ駆動装置
は、まず角速度センサを駆動すると第1,第2の検知用
圧電素子は音叉振動するモニター用圧電素子もしくは駆
動用圧電素子とは直交しているため、原理的には角速度
信号が加わらなければ表面電極には電荷は生じない。
In the angular velocity sensor driving device of the present invention having the above configuration, when the angular velocity sensor is first driven, the first and second detection piezoelectric elements are orthogonal to the monitoring piezoelectric element or the driving piezoelectric element that vibrates like a tuning fork. Therefore, in principle, no charge is generated on the surface electrode unless an angular velocity signal is applied.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
振動型角速度センサ駆動装置ではセンサの構造上のバラ
ツキによりセンサを音叉振動させるための駆動信号が検
知用圧電素子の表面電極に生ずる電荷に混入する。この
ため、音叉構造の振動周波数に合わせた同期検波によっ
てこのもれ信号を除外して角速度信号のみ出力すること
が一般に行なわれる。しかし、上記のもれ信号は本来の
角速度信号の百倍以上にもなることがある。また出力電
圧が温度変化により変動したり、増幅器の出力電圧が飽
和してしまい、増幅度を充分得られない問題があった。
[Problems to be Solved by the Invention] However, in conventional vibration type angular velocity sensor drive devices, due to variations in the structure of the sensor, the drive signal for causing the sensor to vibrate in a tuning fork mixes with the charge generated on the surface electrode of the detection piezoelectric element. . For this reason, this leakage signal is generally excluded by synchronous detection matched to the vibration frequency of the tuning fork structure, and only the angular velocity signal is output. However, the above leakage signal may be more than 100 times the original angular velocity signal. Furthermore, there are problems in that the output voltage fluctuates due to temperature changes, and the output voltage of the amplifier saturates, making it impossible to obtain a sufficient degree of amplification.

【0007】本発明は上記課題に鑑み、増幅器の入力信
号に混入する駆動信号成分を打ち消す機能を有する角速
度センサ駆動装置を促進しようとするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention aims to promote an angular velocity sensor drive device having a function of canceling drive signal components mixed into an input signal of an amplifier.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、駆動用圧電素子,検知用圧電素子、前記
駆動用圧電素子と前記検知用圧電素子とを振動方向が直
交するように積み上げ接合する第1の接合部材および前
記接合された素子の一対を音叉構造に接合する第2の接
合部材とを具備した角速度センサと、前記一方の駆動用
圧電素子からの信号が入力されるとともに出力信号を他
方の駆動用圧電素子に出力するように接続され、かつ駆
動電圧の位相を180°反転させる位相反転増幅器と、
前記検知用圧電素子の表面電極に発生する電荷を入力信
号とし、かつその出力信号を取り出すことで角速度信号
を得る増幅器と、前記位相反転増幅器の入力端子と出力
端子との間に接続されるとともに摺動子が前記増幅器の
入力端子に接続された可変抵抗器とを有するものである
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a drive piezoelectric element, a detection piezoelectric element, and a drive piezoelectric element and a detection piezoelectric element so that their vibration directions are perpendicular to each other. an angular velocity sensor comprising a first joining member that stacks up and joins the elements, and a second joining member that joins the pair of joined elements to a tuning fork structure, and a signal from the one driving piezoelectric element is inputted. a phase inversion amplifier that is connected to output the output signal to the other drive piezoelectric element and inverts the phase of the drive voltage by 180°;
an amplifier that uses the charge generated on the surface electrode of the detection piezoelectric element as an input signal and obtains an angular velocity signal by extracting the output signal; and an amplifier that is connected between the input terminal and the output terminal of the phase inversion amplifier; The slider has a variable resistor connected to the input terminal of the amplifier.

【0009】[0009]

【作用】本発明によれば、可変抵抗器を介して駆動信号
もしくは駆動信号と180°位相の反転した信号を出力
信号に混入することができ、もれ信号を打ち消し減少さ
せることができる。
According to the present invention, a drive signal or a signal whose phase is inverted by 180 degrees from the drive signal can be mixed into the output signal via the variable resistor, thereby canceling out and reducing leakage signals.

【0010】0010

【実施例】以下本発明による角速度センサ駆動装置の一
実施例を図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an angular velocity sensor driving device according to the present invention will be described below with reference to the drawings.

【0011】まず音叉構造振動型角速度センサについて
図3〜図5を用いて説明する。角速度センサは図3に示
すような構造であり、主に4つの圧電バイモルフからな
る駆動素子,モニター素子,第1および第2の検知素子
で構成され、駆動素子101と第1の検知素子103を
第1の接合部材である接合部105で直交接合した第1
の振動ユニット109と、モニター素子102と第2の
検知素子104を接合部106で直交接合した第2の振
動ユニット110とを第2の接合部材である連結板10
7で連結し、この連結板107を支持棒108で一点支
持した音叉構造となっている。
First, a tuning fork structure vibration type angular velocity sensor will be explained with reference to FIGS. 3 to 5. The angular velocity sensor has a structure as shown in FIG. The first joint is orthogonally joined at the joint part 105 which is the first joint member.
The vibration unit 109 and the second vibration unit 110 in which the monitor element 102 and the second detection element 104 are orthogonally joined at the joint part 106 are connected to the connecting plate 10 which is the second joint member.
7, and this connecting plate 107 is supported at one point by a support rod 108 to form a tuning fork structure.

【0012】駆動素子101に正弦波電圧信号を与える
と、逆圧電効果により第1の振動ユニット109が振動
を始め、音叉振動により第2の振動ユニット110も振
動を開始する。したがってモニター素子102の圧電効
果によって素子表面に発生する電荷は駆動素子101へ
印加している正弦波電圧信号に比例する。このモニター
素子102に発生する電荷を検出し、これが一定振幅に
なるように駆動素子101へ印加する正弦波電圧信号を
コントロールすることにより安定した音叉振動を得るこ
とができる。なお、モニター素子102は、一定振幅制
御が不要な場合は、第2の駆動素子として振動される。 このセンサが角速度に比例した出力を発生させるメカニ
ズムを図4および図5を用いて説明する。
When a sinusoidal voltage signal is applied to the drive element 101, the first vibration unit 109 starts to vibrate due to the inverse piezoelectric effect, and the second vibration unit 110 also starts to vibrate due to the tuning fork vibration. Therefore, the charge generated on the surface of the monitor element 102 due to the piezoelectric effect is proportional to the sinusoidal voltage signal applied to the drive element 101. By detecting the charge generated in the monitor element 102 and controlling the sinusoidal voltage signal applied to the drive element 101 so that the charge has a constant amplitude, stable tuning fork vibration can be obtained. Note that the monitor element 102 is vibrated as a second drive element when constant amplitude control is not required. The mechanism by which this sensor generates an output proportional to angular velocity will be explained using FIGS. 4 and 5.

【0013】図4は図3に示した角速度センサを上から
みたもので、速度vで振動している検知素子103に角
速度ωの回転が加わると、検知素子103には『コリオ
リの力』が生じる。この『コリオリの力』は速度vに垂
直で大きさは2mvωである(mは検知素子103の先
端の等価質量である)。検知素子103は音叉振動をし
ているので、ある時点で検知素子103が速度vで振動
しているとすれば、検知素子104は速度vで振動して
おり『コリオリの力』は−2mvωである。よって検知
素子103,104は図5のように互いに『コリオリの
力』が働く方向に変形し、素子表面には圧電効果によっ
て電荷が生じる。ここでvは音叉振動によって生じる運
動であり、音叉振動が であるとすれば、『コリオリの力』は Fc=a・ω・sinω0t となり、角速度ωおよび音叉振動aに比例しており、検
知素子103,104を面方向に変形させる力となる。 したがって検知素子103,104の表面電荷量QはQ
∝a=a・ω・sinω0t となり音叉振幅aが一定にコントロールされているとす
れば、 Q∝ω・sinω0t となり検知素子103,104に発生する表面電荷量Q
は角速度ωに比例した出力として得られ、この信号をω
0tで同期検波すれば角速度ωに比例した直流信号が得
られる。なお、このセンサに角速度以外の並進運動を与
えても検知素子103と検知素子104の2つの素子表
面には同極性の電荷が生ずるため、直流信号に変換時、
互いに打ち消しあって出力は出ないようになっている以
上、圧電バイモルフ素子で説明したが、一般の圧電素子
でも同様の機能を有することは言うまでもない。
FIG. 4 shows the angular velocity sensor shown in FIG. 3 viewed from above. When rotation at an angular velocity ω is applied to the sensing element 103, which is vibrating at a velocity v, a "Coriolis force" is applied to the sensing element 103. arise. This "Coriolis force" is perpendicular to the velocity v and has a magnitude of 2 mvω (m is the equivalent mass of the tip of the sensing element 103). Since the sensing element 103 is vibrating like a tuning fork, if the sensing element 103 is vibrating at a speed v at a certain point, the sensing element 104 is vibrating at a speed v, and the "Coriolis force" is -2mvω. be. Therefore, the sensing elements 103 and 104 are deformed toward each other in the direction of the "Coriolis force" as shown in FIG. 5, and charges are generated on the surfaces of the elements due to the piezoelectric effect. Here, v is the motion caused by the tuning fork vibration, and if the tuning fork vibration is This becomes a force that deforms 103 and 104 in the plane direction. Therefore, the amount of surface charge Q of the sensing elements 103 and 104 is Q
∝a=a・ω・sinω0t, and if the tuning fork amplitude a is controlled to be constant, then Q∝ω・sinω0t, which is the amount of surface charge Q generated on the sensing elements 103 and 104.
is obtained as an output proportional to the angular velocity ω, and this signal is expressed as ω
If synchronous detection is performed at 0t, a DC signal proportional to the angular velocity ω can be obtained. Note that even if a translational motion other than angular velocity is applied to this sensor, charges of the same polarity are generated on the surfaces of the two sensing elements 103 and 104, so when converting to a DC signal,
Since they cancel each other out and no output is produced, the piezoelectric bimorph element has been described, but it goes without saying that a general piezoelectric element can have the same function.

【0014】図1は本発明の一実施例であり、従来例と
同一機能を有するものには同一符号を付し説明を省略す
る。
FIG. 1 shows one embodiment of the present invention, and parts having the same functions as those of the conventional example are denoted by the same reference numerals and explanations thereof will be omitted.

【0015】10は位相反転増幅器であり、第1の増幅
器1の出力側につながっている。この位相反転増幅器1
0を介すると、音叉構造振動型角速度センサ9を音叉振
動させる駆動信号と180°位相が反転した信号を得る
ことができる。11は可変抵抗器であり、位相反転増幅
器10の入力側と出力側の間に接続されており、この可
変抵抗器11の摺動子は第3の増幅器5の入力側へ抵抗
器12を介して接続されている。この構成により、位相
反転増幅器10の入力信号もしくは出力信号を適当な値
だけ第3の増幅器5の入力側へ混入することができる。
Reference numeral 10 denotes a phase inversion amplifier, which is connected to the output side of the first amplifier 1. This phase inversion amplifier 1
0, it is possible to obtain a signal whose phase is inverted by 180 degrees from the drive signal for causing the tuning fork structure vibration type angular velocity sensor 9 to vibrate. A variable resistor 11 is connected between the input side and the output side of the phase inversion amplifier 10, and the slider of this variable resistor 11 is connected to the input side of the third amplifier 5 via the resistor 12. connected. With this configuration, an appropriate value of the input signal or output signal of the phase inversion amplifier 10 can be mixed into the input side of the third amplifier 5.

【0016】図2(a),(b),(c)は本実施例の
動作を説明する波形図である。図2(a)の実線は図1
の位相反転増幅器10の入力信号を示し、破線は同増幅
器の出力信号を示している。これら信号は正弦波であり
、その周波数は前記した通り角速度センサの音叉振動周
波数と同一である。
FIGS. 2(a), 2(b), and 2(c) are waveform diagrams illustrating the operation of this embodiment. The solid line in Figure 2(a) is shown in Figure 1.
The input signal of the phase inversion amplifier 10 is shown, and the broken line shows the output signal of the same amplifier. These signals are sine waves whose frequency is the same as the tuning fork vibration frequency of the angular velocity sensor, as described above.

【0017】図2(b)は角速度が印加された時に検知
素子103及び検知素子104に生ずる電荷の理論値で
ある。この波形は図2(a)と同一周波数で位相が90
°だけシフトしており、振幅は前記したコリオリの力の
原理から説明がつくように印加された角速度に比例する
。ところが実際にはセンサを構成する材料のバラツキや
組立て上の誤差が原因して、検知素子103もしくは検
知素子104に生ずる波形は、図2(c)の実線に示す
様に図2(b)と駆動電圧とを加算した波形になってし
まうが、可変抵抗器11を適当に摺動して駆動電圧が加
算されるか、駆動電圧と逆位相の電圧が加算されるかす
る。これは、検知素子104とモニター素子102の直
交精度及び検知素子103と駆動素子101の直交精度
が、90°に対しプラス側にズレているか、マイナス側
にズレているかによって決まるものである。可変抵抗1
1を変化させると、図2(c)の波形に対し図2(a)
の実線の破形もしくは破線の波形の電圧が適当な量加算
される。これによって図2(c)の波形から駆動信号成
分を取りのぞくことができ、図2(b)に示すような理
想的な波形に近づけることができる。
FIG. 2(b) shows theoretical values of charges generated in the sensing element 103 and the sensing element 104 when an angular velocity is applied. This waveform has the same frequency as Fig. 2(a) and a phase of 90
The amplitude is proportional to the applied angular velocity, as explained by the Coriolis force principle described above. However, in reality, due to variations in the materials constituting the sensor and assembly errors, the waveform generated in the sensing element 103 or 104 differs from that in FIG. 2(b), as shown by the solid line in FIG. 2(c). Although the waveform is obtained by adding the drive voltage, either the drive voltage is added by appropriately sliding the variable resistor 11, or a voltage with the opposite phase to the drive voltage is added. This is determined by whether the orthogonality accuracy between the detection element 104 and the monitor element 102 and the orthogonality accuracy between the detection element 103 and the driving element 101 deviate from 90° to the plus side or to the minus side. variable resistance 1
1, the waveform in Fig. 2(a) is changed from the waveform in Fig. 2(c).
An appropriate amount of voltage is added as shown by the broken solid line or the waveform shown by the broken line. As a result, the drive signal component can be removed from the waveform of FIG. 2(c), and the waveform can be approximated to an ideal waveform as shown in FIG. 2(b).

【0018】以上の説明より明らかなように本実施例の
角速度センサ駆動装置によればセンサのバラツキによっ
て生じる駆動信号のモレ成分を取りのぞくことができる
。このため同期検波回路の応答スピードによって生じて
いた温度変化による出力電圧の変動が小さくなる。さら
にローパスフィルタが簡略できるという効果もある。
As is clear from the above description, the angular velocity sensor drive device of this embodiment can remove leakage components of the drive signal caused by sensor variations. Therefore, fluctuations in the output voltage due to temperature changes caused by the response speed of the synchronous detection circuit are reduced. Another advantage is that the low-pass filter can be simplified.

【0019】[0019]

【発明の効果】以上のように本発明によれば、可変抵抗
器を介して駆動信号もしくは駆動信号と180°位相の
反転した信号を出力信号に混入することができ、もれ信
号を打ち消し減少させることができる。
As described above, according to the present invention, a drive signal or a signal whose phase is 180° inverted from the drive signal can be mixed into the output signal through the variable resistor, thereby canceling out and reducing leakage signals. can be done.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の角速度センサ駆動装置の一実施例を示
すブロック図
FIG. 1 is a block diagram showing an embodiment of the angular velocity sensor driving device of the present invention.

【図2】同実施例の動作を説明するための波形図[Figure 2] Waveform diagram for explaining the operation of the same embodiment

【図3
】音叉構造振動型角速度センサの斜視図
[Figure 3
] Perspective view of tuning fork structure vibration type angular velocity sensor

【図4】同セン
サの動作説明図
[Figure 4] Diagram explaining the operation of the sensor

【図5】同センサの動作説明図[Figure 5] Diagram explaining the operation of the sensor

【図6】従来の角速度センサ駆動装置のブロック図[Figure 6] Block diagram of a conventional angular velocity sensor drive device

【符号の説明】[Explanation of symbols]

1  第1の増幅器 2  整流器 3  平滑回路 4  第2の増幅器 5  第3の増幅器 6  同期検波器 7  ローパスフィルタ 9  音叉構造振動型角速度センサ 10  位相反転増幅器 11  可変抵抗器 12  抵抗器 1 First amplifier 2 Rectifier 3 Smoothing circuit 4 Second amplifier 5 Third amplifier 6 Synchronous detector 7 Low pass filter 9 Tuning fork structure vibration type angular velocity sensor 10 Phase inversion amplifier 11 Variable resistor 12 Resistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】駆動用圧電素子,検知用圧電素子、前記駆
動用圧電素子と前記検知用圧電素子とを振動方向が直交
するように積み上げ接合する第1の接合部材、および前
記接合された素子の一対を音叉構造に接合する第2の接
合部材を具備した角速度センサと、前記一方の駆動用圧
電素子からの信号が入力されるとともに出力信号を他方
の駆動用圧電素子に出力するように接続され、かつ駆動
電圧の位相を180°反転させる位相反転増幅器と、前
記検知用圧電素子の表面電極に発生する電荷を入力信号
としかつその出力信号を取り出すことで角速度信号を得
る増幅器と、前記位相反転増幅器の入力端子と出力端子
との間に接続されるとともに摺動子が前記増幅器の入力
端子に接続された可変抵抗器とを有する角速度センサ駆
動装置。
1. A driving piezoelectric element, a sensing piezoelectric element, a first joining member for stacking and joining the driving piezoelectric element and the sensing piezoelectric element so that their vibration directions are perpendicular to each other, and the joined element. an angular velocity sensor equipped with a second joining member that joins the pair to a tuning fork structure; and a connection so that a signal from the one driving piezoelectric element is input and an output signal is output to the other driving piezoelectric element. and a phase inversion amplifier that inverts the phase of the drive voltage by 180 degrees; an amplifier that uses the charge generated on the surface electrode of the detection piezoelectric element as an input signal and obtains an angular velocity signal by extracting the output signal; An angular velocity sensor driving device comprising: a variable resistor connected between an input terminal and an output terminal of an inverting amplifier, and a variable resistor having a slider connected to the input terminal of the amplifier.
JP3005685A 1991-01-22 1991-01-22 Angular velocity sensor driver Pending JPH04297874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3005685A JPH04297874A (en) 1991-01-22 1991-01-22 Angular velocity sensor driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3005685A JPH04297874A (en) 1991-01-22 1991-01-22 Angular velocity sensor driver

Publications (1)

Publication Number Publication Date
JPH04297874A true JPH04297874A (en) 1992-10-21

Family

ID=11617959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3005685A Pending JPH04297874A (en) 1991-01-22 1991-01-22 Angular velocity sensor driver

Country Status (1)

Country Link
JP (1) JPH04297874A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636860A4 (en) * 1992-11-17 1994-10-20 Citizen Watch Co Ltd Angular velocity detector circuit.
JP2002267448A (en) * 2001-03-09 2002-09-18 Matsushita Electric Ind Co Ltd Angular velocity sensor
US6705151B2 (en) 1995-05-30 2004-03-16 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
US6732586B2 (en) 1995-05-30 2004-05-11 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
US6912901B1 (en) 1995-05-30 2005-07-05 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
WO2005068939A1 (en) * 2004-01-20 2005-07-28 Ngk Insulators, Ltd. Detection circuit, detection method, and physical amount measurement device
JP2013108890A (en) * 2011-11-22 2013-06-06 Rohm Co Ltd Angular velocity detector

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636860A4 (en) * 1992-11-17 1994-10-20 Citizen Watch Co Ltd Angular velocity detector circuit.
EP0636860A1 (en) * 1992-11-17 1995-02-01 Citizen Watch Co. Ltd. Angular velocity detector circuit
US7043988B2 (en) 1995-05-30 2006-05-16 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
US6705151B2 (en) 1995-05-30 2004-03-16 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
US6732586B2 (en) 1995-05-30 2004-05-11 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
US6912901B1 (en) 1995-05-30 2005-07-05 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
US6959584B2 (en) 1995-05-30 2005-11-01 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
WO2002073131A1 (en) * 2001-03-09 2002-09-19 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
JP2002267448A (en) * 2001-03-09 2002-09-18 Matsushita Electric Ind Co Ltd Angular velocity sensor
WO2005068939A1 (en) * 2004-01-20 2005-07-28 Ngk Insulators, Ltd. Detection circuit, detection method, and physical amount measurement device
JPWO2005068939A1 (en) * 2004-01-20 2007-09-06 日本碍子株式会社 Detection circuit, detection method and physical quantity measuring apparatus
US7370531B2 (en) 2004-01-20 2008-05-13 Ngk Insulators, Ltd. Detection circuits, detection method and systems of measuring physical quantities
JP4610012B2 (en) * 2004-01-20 2011-01-12 セイコーエプソン株式会社 Physical quantity measuring device
JP2013108890A (en) * 2011-11-22 2013-06-06 Rohm Co Ltd Angular velocity detector

Similar Documents

Publication Publication Date Title
JP2666505B2 (en) Angular velocity sensor drive
KR100985315B1 (en) Method for processing detection signal of vibratory inertial force sensor and vibratory inertial force sensor
EP1467178A2 (en) Capacitance-sensing vibratory gyro and method for detecting change in capacitance
JP2005249646A (en) Tuning fork type oscillator for angular velocity sensor, angular velocity sensor using the oscillator, and automobile using the angular velocity sensor
JPH04297874A (en) Angular velocity sensor driver
JP3206551B2 (en) Vibrator and vibrating gyroscope using it
JP2666506B2 (en) Angular velocity sensor drive
JP2000205861A (en) Vibration gyro
JP3494096B2 (en) Vibrating gyro
JPH0348714A (en) Angular velocity sensor driving circuit
JP2998248B2 (en) Angular velocity sensor device
JPH08278141A (en) Ceramic piezoelectric complex type angular velocity sensor
JP3166484B2 (en) Vibrating gyro
JPH03108669A (en) Driving circuit of angular velocity sensor
JP2006153715A (en) Vibration gyroscope
JPH08327653A (en) Acceleration sensor
JP3531295B2 (en) Vibrator and piezoelectric vibration angular velocity meter using the same
JP3122925B2 (en) Piezoelectric vibrator for piezoelectric vibrating gyroscope
JP2571893B2 (en) Vibrating gyro
JPH09292231A (en) Vibrating gyroscope
JPH02163608A (en) Angular velocity meter
JP2006064613A (en) Gyroscopic sensor and electronic device
JPH0359414A (en) Angular velocity sensor
JPH0535967B2 (en)
JPH11281364A (en) Piezoelectric vibration gyro