JPH0348714A - Angular velocity sensor driving circuit - Google Patents

Angular velocity sensor driving circuit

Info

Publication number
JPH0348714A
JPH0348714A JP1185515A JP18551589A JPH0348714A JP H0348714 A JPH0348714 A JP H0348714A JP 1185515 A JP1185515 A JP 1185515A JP 18551589 A JP18551589 A JP 18551589A JP H0348714 A JPH0348714 A JP H0348714A
Authority
JP
Japan
Prior art keywords
amplifier
amplitude
angular velocity
bimorph element
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1185515A
Other languages
Japanese (ja)
Inventor
Toshihiko Ichise
俊彦 市瀬
Mikio Nozu
野津 幹雄
Jiro Terada
二郎 寺田
Hiroshi Senda
千田 博史
Yasuto Osada
長田 康人
Takahiro Manabe
真鍋 高広
Kazumitsu Ueda
上田 和光
Hiroshi Takenaka
寛 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1185515A priority Critical patent/JPH0348714A/en
Publication of JPH0348714A publication Critical patent/JPH0348714A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the sensitivity of an angular velocity sensor from being affected by temperature variation by making the amplitude quantity of tuning-fork vibration proportional to the sensor sensitivity and varying the amplitude quantity with temperature according to the temperature variation of the sensitivity. CONSTITUTION:Charges induced at the electrodes of a piezoelectric bimorph element 102 for a motor are amplified 1, rectified 2, and smoothed 3 to become a DC voltage which is proportional to the amplitude of the tuning fork vibration. An amplifier 4 amplifies the output voltage of the amplifier 1 to drive a piezoelectric bimorph element 101 for driving. Then when the amplitude of the tuning force vibration increases, the charges induced at the electrodes of the elements 102 increase, the output voltage amplitude of the amplifier 1 increases, and the amplitude of the voltage applied to the element 101 decreases, so that the amplitude of the tuning fork vibration is held at a constant value. A temperature dependent resistor 14 increases in resistance value as the ambient temperature rises and the amplifier 1 decreases in amplification degree as the temperature rises. Therefore, the vibration of the tuning fork vibration becomes small in amplitude as the temperature rises and becomes large in amplitude when the temperature falls. Thus, temperature characteristics of the sensitivity which are a problem characteristic to the tuning fork structure vibration type angular velocity sensor can be corrected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はセラミック圧電素子を音叉構造に(産金した振
動型角速度センサの駆動回路に関し、特にセンサの感度
の温度変化を補正することができる角速度センサの駆動
回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a drive circuit for a vibrating angular velocity sensor in which a ceramic piezoelectric element is formed into a tuning fork structure. The present invention relates to a drive circuit.

従来の技術 従来の角速度センサ駆動回路について図面に基づいて説
明する。第2図は従来の角速度センサ駆動回路の構成を
示す回路ブロック図であり、1は第1の増幅器、2は整
流器、3は平滑回路、4は第2の増幅器、5は第3の増
幅器、6は同期検波器、7は第4の増幅器、9は音叉構
造振動型角速度センサである。
2. Description of the Related Art A conventional angular velocity sensor drive circuit will be described with reference to the drawings. FIG. 2 is a circuit block diagram showing the configuration of a conventional angular velocity sensor drive circuit, in which 1 is a first amplifier, 2 is a rectifier, 3 is a smoothing circuit, 4 is a second amplifier, 5 is a third amplifier, 6 is a synchronous detector, 7 is a fourth amplifier, and 9 is a tuning fork structure vibration type angular velocity sensor.

音叉構造振動型角速度センサ9は、第1の増幅器1と、
第1の増幅器1の出力電荷を整流する整流器2と、この
整流器2の出力電圧を平滑する平滑回路3と、平滑回路
3の出力電圧値によって第1の増幅器1からの出力電圧
を増幅する増幅度が変化する第4の増幅器とによって一
定撮幅に制御されて音叉振動している。音叉構造撮動型
角速度センサ91こ角速度が加わると角速度信号は第3
の増幅器5で増幅及び位相シフトされ、同期検波器6で
検波され、さらに第4の増幅器7にて平滑。
The tuning fork structure vibration type angular velocity sensor 9 includes a first amplifier 1 and
A rectifier 2 that rectifies the output charge of the first amplifier 1, a smoothing circuit 3 that smoothes the output voltage of the rectifier 2, and an amplifier that amplifies the output voltage from the first amplifier 1 based on the output voltage value of the smoothing circuit 3. The tuning fork vibrates while being controlled to a constant field of view by a fourth amplifier whose intensity changes. When the angular velocity is added to the tuning fork structure imaging type angular velocity sensor 91, the angular velocity signal becomes the third one.
The signal is amplified and phase shifted by an amplifier 5, detected by a synchronous detector 6, and further smoothed by a fourth amplifier 7.

増幅されて出力される。It is amplified and output.

第3図は音叉構造振動型角速度センサ9に使用されてい
る圧電バイモルフ素子の断面図である。
FIG. 3 is a sectional view of a piezoelectric bimorph element used in the tuning fork structure vibration type angular velocity sensor 9.

第3図において10は電極材、11は圧電素子、12は
中間電極板、13は圧電素子11と中間電極板12を接
着する接着剤である。
In FIG. 3, 10 is an electrode material, 11 is a piezoelectric element, 12 is an intermediate electrode plate, and 13 is an adhesive for bonding the piezoelectric element 11 and the intermediate electrode plate 12 together.

発明が解決しようとする課題 しかしこの様な音叉構造振動型角速度センサ9ではセン
ザ自体に使用されている各部分の材料の温度特性によっ
て角速度に対する出力電圧の感度が影響を受は変化する
問題がある。例えば第3図に示す圧電バイモルフ素子を
構成する各材料についても、圧電素子11の感度の温度
特性、中間電極板12のバネ弾性率の温度特性、接着剤
12の接着後の硬度の温度特性などの非常に多くの要因
が関係し、角速度に対する出力電圧の感度の温度特性が
Oになる様な材料の組合せを選択することは困難である
。本発明は、角速度センサ感度がt温度変化により影響
を受けない角速度センサ駆動回路を提供することを目的
とする。
Problem to be Solved by the Invention However, in the tuning fork structure vibrating angular velocity sensor 9, there is a problem in that the sensitivity of the output voltage to the angular velocity is affected by the temperature characteristics of the materials of each part used in the sensor itself. . For example, regarding each material constituting the piezoelectric bimorph element shown in FIG. 3, the temperature characteristics of the sensitivity of the piezoelectric element 11, the temperature characteristics of the spring elasticity of the intermediate electrode plate 12, the temperature characteristics of the hardness after bonding of the adhesive 12, etc. A large number of factors are involved, and it is difficult to select a combination of materials such that the temperature characteristic of the sensitivity of the output voltage to the angular velocity is O. An object of the present invention is to provide an angular velocity sensor drive circuit whose angular velocity sensor sensitivity is not affected by temperature changes.

課題を解決するための手段 上記目的を達成するために1本発明は、駆動用圧電バイ
モルフ素子と第1の検知用バイモルフ素子とを互に直交
接合してなる第1の撮動ユニット、及びモニター用圧電
バイモルフ素子と第2の検知用バイモルフ素子とを互に
直交接合してなる第2の振動ユニットからなり、かつ前
記第1.第2の振動ユニットを検知軸に沿って互に平行
になるように前記駆動用圧電バイモルフ素子と前記モニ
ター用圧電バイモルフ素子の自由端どうしを連結板で連
結して音叉構造とした振動型角速度センサを駆動する作
用を有し、前記モニター用圧電バイモルフ素子の出力電
荷を入力信号とし増幅度を周囲温度によって変化させう
る第1の増幅器と、この第1の増幅器の出力電圧を入力
信号とし全波整流する整流器と、この整流器の出力電圧
を平滑する平滑回路と、前記第1の増幅器の出力電圧を
入力信号とし前記平滑回路の出力電圧値によって増幅度
が可変され前記駆動用圧電バイモルフ素子に出力信号を
出力する第2の増幅器と、前記第1の検知用バイモルフ
素子と前記第2の検知用バイモルフ素子との出力電荷を
入力信号とし入出力信号の位相が90度シフトして増幅
される第3の増幅器と、この第3の増幅器の出力電圧を
前記第1の増幅器の出力電圧の極性で同期検波する同期
検波器と、この同期検波器の出力電圧を平滑しかつ増幅
し角速度に比例した電圧を出力する第4の増幅器とによ
って構成されるものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a first imaging unit in which a driving piezoelectric bimorph element and a first sensing bimorph element are orthogonally joined to each other, and a monitor. a second vibration unit formed by orthogonally joining a piezoelectric bimorph element for detection and a second bimorph element for detection; A vibration type angular velocity sensor in which the second vibration unit has a tuning fork structure in which the free ends of the driving piezoelectric bimorph element and the monitoring piezoelectric bimorph element are connected to each other by a connecting plate so as to be parallel to each other along the detection axis. a first amplifier which has the function of driving the piezoelectric bimorph element for monitoring and whose amplification degree can be changed depending on the ambient temperature by using the output charge of the monitoring piezoelectric bimorph element as an input signal; a rectifier for rectification, a smoothing circuit for smoothing the output voltage of the rectifier, and an output voltage of the first amplifier as an input signal, the amplification degree being varied according to the output voltage value of the smoothing circuit, and output to the driving piezoelectric bimorph element. a second amplifier that outputs a signal, and a second amplifier that uses the output charges of the first detection bimorph element and the second detection bimorph element as input signals and amplifies the input and output signals with a phase shift of 90 degrees. a synchronous detector that synchronously detects the output voltage of the third amplifier with the polarity of the output voltage of the first amplifier; and a fourth amplifier that outputs a voltage.

作用 以上の構成とすれば音叉構造振動型角速度センサでは音
叉振動の振幅量とセンサ感度は比例するので感度の温度
変化に合わせて振幅量を温度で変化させることによって
見かけ上の感度の温度変化を少なくすることができる。
If the above structure is used, in a tuning fork vibrating angular velocity sensor, the amplitude of the tuning fork vibration and the sensor sensitivity are proportional, so by changing the amplitude with temperature in accordance with the temperature change in sensitivity, the apparent temperature change in sensitivity can be suppressed. It can be reduced.

実施例 以下本発明による角速度センサ駆動回路の一実施例を図
面に基づいて説明する。
Embodiment Hereinafter, one embodiment of the angular velocity sensor drive circuit according to the present invention will be described based on the drawings.

まず音叉構造振動型角速度センサについて第5図〜第7
図を用いて説明する。
First, Figures 5 to 7 about the tuning fork structure vibration type angular velocity sensor.
This will be explained using figures.

角速度センサは第5図に示す様な構造であり、主に4つ
の圧電バイモルフからなる駆動素子、モニター素子、第
1及び第2の検知素子で構成され、駆動素子101と第
1の検知素子103を接合部105で直交接合した第1
の振動ユニット109と、モニター素子102と第2の
検知素子104を接合部106て・直交接合した第2の
振動ユニツ1−1.10とを連結板107で連結し、こ
の連結板107を支持体108で一点支持した音叉構造
となっている。
The angular velocity sensor has a structure as shown in FIG. 5, and is mainly composed of a drive element consisting of four piezoelectric bimorphs, a monitor element, and first and second detection elements, including a drive element 101 and a first detection element 103. The first
The vibration unit 109 and the second vibration unit 1-1.10, in which the monitor element 102 and the second detection element 104 are orthogonally joined at the joint 106, are connected by a connecting plate 107, and this connecting plate 107 is supported. It has a tuning fork structure supported at one point by the body 108.

駆動素子101に正弦波電圧信号を与えると、逆圧電効
果により第1の振動ユニット109が振動を始め、音叉
振動により第2の振動ユニットL 1. Oら振動を開
始する。従ってモニター素子1、02の圧電効果によっ
て素子表面に発生ずる電荷は駆動素子1.01へ印加し
ている正弦波電圧信号に比例する。このモニター素子1
.02に発生ずる電荷を検出し、これが一定振幅になる
様に駆動索−f’−101へ印加す゛る正弦波電圧信号
を、−1ント(]−ルする事により安定した音叉振動を
得る事ができる。
When a sinusoidal voltage signal is applied to the driving element 101, the first vibration unit 109 starts to vibrate due to the inverse piezoelectric effect, and the second vibration unit L1. Start the vibration. Therefore, the charge generated on the surface of the monitor elements 1, 02 by the piezoelectric effect is proportional to the sinusoidal voltage signal applied to the drive element 1.01. This monitor element 1
.. By detecting the charge generated at 02 and controlling the sine wave voltage signal applied to the drive cable -f'-101 by -1 so that the amplitude becomes constant, stable tuning fork vibration can be obtained. can.

このセンサが角速度に比例した出力を発生させるメツ1
ニズムを第6図及び第7図を用いて説明する。第6図は
第5図に示した角速度センサをLがらみたもので、速度
υで振動している検知素r103に角速度ωの回転が加
わると、検知末子1、03には「コリオリの力」が生ず
る。この「コノオリの力」は速度υに垂直で大きさは2
 m tノωである。検知素子]、、 03は音叉振動
をしているので、ある時点で検知素子103が速度υで
振動しているとずれば、検知素子1.04は速度−〇で
振動しており「コリオリの力」は−2mυωである。よ
って検知素子103,1.04は第7図の様に互いに「
コリオリの力」が働く方向に変形し、素子表面には圧電
効果によって電荷が生じろ。ここでυは音叉振動によっ
て生じる運動であり、1f又振動が v=a−s lnωot          −C1)
a・音叉振動の振幅 (υ0 音叉振動の周期 であるとすれば「コリオリの力」は F  ccta  −ω ― s  i  n  ωo
t                −(2)となり角
速度ω及び音叉振幅aに比例しており、検知A;子1.
03,104を両方向に変形させる力。ヒなる。従って
検知素子103.104の表面電荷量Qは QoCa 1ω−s i ncl)ot       
 −・”(3)七なり音叉振幅aが一定にコントロール
されているきすれば Q ・:< ω#s i +〕ωo t       
   ・・・・・・(4)、となり検知素子1..03
.1.04に発生する表面電荷ff1Qは角速度ωに比
例した出力として得られる。
Mechanism 1: This sensor generates an output proportional to angular velocity
The mechanism will be explained using FIGS. 6 and 7. Fig. 6 shows the angular velocity sensor shown in Fig. 5 viewed from L. When a rotation with an angular velocity ω is applied to the sensing element r103 which is vibrating at a speed υ, the "Coriolis force" is applied to the sensing element 1 and 03. occurs. This "Konori force" is perpendicular to the speed υ and has a magnitude of 2
m t no ω. Detecting element ],,03 is vibrating like a tuning fork, so if detecting element 103 is vibrating at a speed υ at a certain point, detecting element 1.04 is vibrating at a speed -〇, which is the "Coriolis "force" is -2 mυω. Therefore, the sensing elements 103 and 1.04 are connected to each other as shown in FIG.
It deforms in the direction of the Coriolis force, and a charge is generated on the surface of the element due to the piezoelectric effect. Here, υ is the movement caused by the tuning fork vibration, and 1f and the vibration are v=a−s lnωot −C1)
a. Amplitude of tuning fork vibration (υ0) If it is the period of tuning fork vibration, "Coriolis force" is F ccta -ω - sin ωo
t - (2), which is proportional to the angular velocity ω and the tuning fork amplitude a, and detection A; child 1.
Force that deforms 03,104 in both directions. Hi naru. Therefore, the surface charge Q of the sensing elements 103 and 104 is QoCa 1ω-s i ncl)ot
−・”(3) If the seventh tuning fork amplitude a is controlled to a constant value, then Q・:<ω#s i +]ωo t
...(4), and the detection element 1. .. 03
.. The surface charge ff1Q generated at 1.04 is obtained as an output proportional to the angular velocity ω.

この信号をω0(で同期検波ずれば角速度ωに比例t、
7た直流信号が得られる。尚、このセンサに角速度以外
の併進運動を与えても検知素子1.03 、:!:検知
素子104の2つの素子表面には同極性の電荷が生ずる
ため、直流信号に変換時、互に打ち消しあって出力は出
ない様になっている。
If this signal is synchronously detected at ω0(, t is proportional to the angular velocity ω,
7. A DC signal is obtained. Note that even if a translational motion other than angular velocity is applied to this sensor, the sensing element 1.03, :! : Since charges of the same polarity are generated on the surfaces of the two elements of the sensing element 104, when converted to a DC signal, they cancel each other out and no output is produced.

(3)式よりわかる様に音叉構造振動型角速度センナの
検知用バイモルフ素子の電極に誘起する表面電荷量Qは
音叉振幅aに比例する。ここで感度が第4図の特性図に
示す様に温度特性を持つとすれば温度係数をβとして(
3)式は Q −a  ・ ω −β  祷 (Ta  −T )
s   1  n  c+g  t、  −−−15)
と表わすことができる。ただしくT、−T)は周囲温度
と常温との温度差である。
As can be seen from equation (3), the amount of surface charge Q induced on the electrode of the sensing bimorph element of the tuning fork vibrating angular velocity sensor is proportional to the tuning fork amplitude a. If the sensitivity has a temperature characteristic as shown in the characteristic diagram in Figure 4, then let the temperature coefficient be β and (
3) The formula is Q −a ・ω −β (Ta −T )
s 1 n c + g t, ---15)
It can be expressed as Here, T, -T) is the temperature difference between the ambient temperature and the normal temperature.

一般的に音叉振動の振幅aはいかなる条件下においても
一定となる様に制御されるが、(5)式かられかる様に
振幅aにセンサの温度特性βと逆の温度特性を加えてや
ればQの温度依存性を少なくできることがわかる。
Generally, the amplitude a of tuning fork vibration is controlled to be constant under any conditions, but as shown in equation (5), a temperature characteristic opposite to the temperature characteristic β of the sensor can be added to the amplitude a. It can be seen that the temperature dependence of Q can be reduced.

第1図は本発明の一実施例を示すブロック図であり、前
記した通り音叉振動の振幅aに温度係数をもたせた方法
である。モニタ素子102の電(歪に誘起した電荷は第
1の増幅器1によって電圧に変換され、整流器2で整流
され、平滑回路3によって音叉振動の振幅aに比例した
直流電圧となる。第2の増幅器4は第1の増幅器1の出
力電圧を増幅″し、駆動素子101を駆動するが増幅度
は平滑回路3の出力電圧に依存する様になっており平滑
回路3の出力電圧が高ければ増幅度は小さく平滑回路3
の出力電圧が低ければ増幅度は大きい。
FIG. 1 is a block diagram showing one embodiment of the present invention, which is a method in which, as described above, the amplitude a of tuning fork vibration is given a temperature coefficient. The electric charge induced by the distortion in the monitor element 102 is converted into a voltage by the first amplifier 1, rectified by the rectifier 2, and converted into a DC voltage proportional to the amplitude a of the tuning fork vibration by the smoothing circuit 3.The second amplifier 4 amplifies the output voltage of the first amplifier 1 and drives the drive element 101, but the degree of amplification depends on the output voltage of the smoothing circuit 3, and the higher the output voltage of the smoothing circuit 3, the higher the degree of amplification. is a small smoothing circuit 3
The lower the output voltage, the higher the amplification degree.

音叉振動の振幅が大きくなるとモニタ素子102の電極
に誘起する電荷が大きくなり、これに伴い第1の増幅器
1の出力電圧振幅が太き(なる。さらに平滑回路3から
出力される直流電圧が太き(なると第2の増幅器4の増
幅度が小さ(なる。これに伴い駆動素子101へ印加さ
れる電圧振幅が小さくなって音叉振動の振幅は小さ(な
る。以上の構成によって音叉振動の振幅は一定値に保た
れる。
When the amplitude of the tuning fork vibration increases, the electric charge induced in the electrode of the monitor element 102 increases, and accordingly, the output voltage amplitude of the first amplifier 1 increases. When the amplification degree of the second amplifier 4 becomes small (the amplitude of the voltage applied to the drive element 101 becomes small), the amplitude of the tuning fork vibration becomes small (the amplitude of the tuning fork vibration becomes small). It is kept at a constant value.

14は温度依存抵抗であり周囲温度の上昇と共に抵抗値
が高くなり、第1の増幅器1は温度が高くなると増幅度
が低くなる構成である。よって音叉振動の振幅は温度が
高くなると振幅が小さくなり温度が低くなると振幅が大
きくなる。第1の検知素子103と第2の検知素子10
4には、印加された角速度に比例した振幅と音叉振動周
期に等しい周期の交流電荷が生じ、この交流電荷は第3
の増幅器5によって90度位相がシフトした交流電圧に
変換される。さらにこの電圧信号は、同期検波器6にお
いて第1の増幅器1の出力電圧の極性によって同期検波
され第4の増幅器7によって平滑増幅されて角速度に比
例した電圧が得られる。これを式で表わすと第1の検知
素子103と第2の検知素子104に発生する電荷は(
5)式で表わされ Q+o:++Q+o4= a・ov・β(Ta  T)
s i n ωot・・・・・・(5)゛ であるとすれば第3の増幅器の出力は(5)式を電圧に
変換し位相を90“シフトしているわけだからこの出力
電圧をv5とすれば V5−G1・a・ω・β(Ta  T)cos(J)o
t・・・・・・(6) と表わすことができる。
Reference numeral 14 denotes a temperature-dependent resistor whose resistance value increases as the ambient temperature rises, and the first amplifier 1 has a configuration in which the degree of amplification decreases as the temperature rises. Therefore, as the temperature increases, the amplitude of the tuning fork vibration decreases, and as the temperature decreases, the amplitude increases. First sensing element 103 and second sensing element 10
4, an alternating current charge is generated with an amplitude proportional to the applied angular velocity and a period equal to the tuning fork vibration period, and this alternating current charge is
The amplifier 5 converts the voltage into an alternating current voltage whose phase is shifted by 90 degrees. Furthermore, this voltage signal is synchronously detected by the synchronous detector 6 according to the polarity of the output voltage of the first amplifier 1, and smoothed and amplified by the fourth amplifier 7 to obtain a voltage proportional to the angular velocity. Expressing this in a formula, the charges generated in the first sensing element 103 and the second sensing element 104 are (
5) Expressed by the formula Q+o: ++Q+o4= a・ov・β(Ta T)
sin ωot... (5) If it is, then the output of the third amplifier converts equation (5) into a voltage and shifts the phase by 90", so this output voltage is v5 Then, V5-G1・a・ω・β(Ta T)cos(J)o
t...(6) It can be expressed as:

ただしG1は第3の増幅器の電荷を電圧に変換する係数
である。(6)式で表わされる出力電圧V5は更に同期
検波器已によって同期検波される。同期検波のタイミン
グは第1の増幅器1の出力電圧の極性で決まる。第1の
増幅器1の出力電圧Vは音叉振動の速度υに対し90゛
進んだ位相だから Vl = G2 c o s ωo t       
     −=−(7)ただしG2は第1の増幅器の電
荷を電圧に変換する係数である。
However, G1 is a coefficient for converting the charge of the third amplifier into voltage. The output voltage V5 expressed by equation (6) is further synchronously detected by a synchronous detector. The timing of synchronous detection is determined by the polarity of the output voltage of the first amplifier 1. Since the output voltage V of the first amplifier 1 has a phase that is 90 degrees ahead of the speed υ of tuning fork vibration, Vl = G2 cos ωo t
-=-(7) However, G2 is a coefficient for converting the charge of the first amplifier into a voltage.

(6) 、 (7)式かられかるようにv5とvlは同
位相であるからvlの極性でV5を同期検波し第4の増
幅器7で平滑し増幅すれば第4の増幅器7の出力電圧V
4は V4=(g−G3・a・ω・β(Ta−T)    −
−−−−−(8)ただしG3は第4の増幅器のゲインで
ある。
As can be seen from equations (6) and (7), v5 and vl are in the same phase, so if V5 is synchronously detected with the polarity of vl, smoothed and amplified by the fourth amplifier 7, the output voltage of the fourth amplifier 7 is V
4 is V4=(g-G3・a・ω・β(Ta-T) −
-----(8) However, G3 is the gain of the fourth amplifier.

(8)式より角速度ωに比例した電圧が得られる事がわ
かる。G1.G3.aは通常は定数であるがセンサ自体
の温度係数βが存在するため本実施例では第1の増幅器
1に温度依存性抵抗2を付加することで振幅aにβと逆
の温度特性を付加しセンサ自体の温度係数βを打ち消し
ている。
It can be seen from equation (8) that a voltage proportional to the angular velocity ω can be obtained. G1. G3. Normally, a is a constant, but since there is a temperature coefficient β of the sensor itself, in this embodiment, by adding a temperature-dependent resistor 2 to the first amplifier 1, a temperature characteristic opposite to β is added to the amplitude a. This cancels out the temperature coefficient β of the sensor itself.

なお第3の増幅器5の増幅度GIに温度特性をもたせて
いる。また第4の増幅器7の増幅度G3に温度特性を持
たせる事も可能であるが、この場合SN比の温度変化及
び直流オフセット電圧の温度変化の要因となり好ましく
ない。
Note that the amplification degree GI of the third amplifier 5 has temperature characteristics. It is also possible to give temperature characteristics to the amplification degree G3 of the fourth amplifier 7, but in this case it is not preferable because it causes a temperature change in the S/N ratio and a temperature change in the DC offset voltage.

発明の効果 本発明によれば音叉構造振動型角速度センサ特有の問題
である感度の温度特性を補正することができる。
Effects of the Invention According to the present invention, it is possible to correct the temperature characteristic of sensitivity, which is a problem peculiar to a tuning fork structure vibration type angular velocity sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における角速度センサ駆動回
路のブロック図、第2図は従来の角速度センサ駆動回路
のブロック図、第3図は圧電バイモルフ素子の断面図、
第4図は角速度センサの感度の温度特性を示す特性図、
第5図は音叉構造振動型角速度センサの斜視図、第6図
及び第7図は角速度センサの動作説明図である。 1・・・・・・第1の増幅器、2・・・・・・整流器、
3・・・・・・平滑回路、4・・・・・・第2の増幅器
、5・・・・・・第3の増幅器、6・・・・・・同期検
波器、7・・・・・・第4の増幅器、8・・・・・・角
速度センサ駆動回路、9・・・・・・音叉構造振動型角
速度センサ、14・・・・・・温度依存性抵抗、101
・・・・・・駆動素子、102・・・・・・モニター素
子、103・・・・・・第1の検知素子、104・・・
・・・第2の検知素子、105,106・・・・・・接
合部、107・・・・・・連結板、109・・・・・・
第1の振動ユニット、11O・・・・・・第2の撮動ユ
ニッ]\。
FIG. 1 is a block diagram of an angular velocity sensor drive circuit according to an embodiment of the present invention, FIG. 2 is a block diagram of a conventional angular velocity sensor drive circuit, and FIG. 3 is a cross-sectional view of a piezoelectric bimorph element.
Figure 4 is a characteristic diagram showing the temperature characteristics of the sensitivity of the angular velocity sensor.
FIG. 5 is a perspective view of the tuning fork structure vibration type angular velocity sensor, and FIGS. 6 and 7 are diagrams for explaining the operation of the angular velocity sensor. 1... First amplifier, 2... Rectifier,
3... Smoothing circuit, 4... Second amplifier, 5... Third amplifier, 6... Synchronous detector, 7... ... Fourth amplifier, 8 ... Angular velocity sensor drive circuit, 9 ... Tuning fork structure vibration type angular velocity sensor, 14 ... Temperature dependent resistance, 101
... Drive element, 102 ... Monitor element, 103 ... First detection element, 104 ...
...Second detection element, 105, 106...Joint portion, 107...Connection plate, 109...
First vibration unit, 11O...Second imaging unit]\.

Claims (2)

【特許請求の範囲】[Claims] (1)駆動用圧電バイモルフ素子と第1の検知用バイモ
ルフ素子とを互に直交接合してなる第1の振動ユニット
、及びモニター用圧電バイモルフ素子と第2の検知用バ
イモルフ素子とを互に直交接合してなる第2の振動ユニ
ットからなり、かつ前記第1、第2の振動ユニットを検
知軸に沿って互に平行になるように前記駆動用圧電バイ
モルフ素子と前記モニター用圧電バイモルフ素子の自由
端どうしを連結板で連結して音叉構造とした振動型角速
度センサを駆動する作用を有し、前記モニター用圧電バ
イモルフ素子の出力電荷を入力信号とし増幅度を周囲温
度によって変化させうる第1の増幅器と、この第1の増
幅器の出力電圧を入力信号とし全波整流する整流器と、
この整流器の出力電圧を平滑する平滑回路と、前記第1
の増幅器の出力電圧を入力信号とし前記平滑回路の出力
電圧値によって増幅度が可変され前記駆動用圧電バイモ
ルフ素子に出力信号を出力する第2の増幅器と、前記第
1の検知用バイモルフ素子と前記第2の検知用バイモル
フ素子との出力電荷を入力信号とし入出力信号の位相が
90度シフトして増幅される第3の増幅器と、この第3
の増幅器の出力電圧を前記第1の増幅器の出力電圧の極
性で同期検波する同期検波器と、この同期検波器の出力
電圧を平滑しかつ増幅し角速度に比例した電圧を出力す
る第4の増幅器とによって構成した角速度センサ駆動回
路。
(1) A first vibration unit in which a piezoelectric bimorph element for driving and a first bimorph element for detection are connected orthogonally to each other, and a piezoelectric bimorph element for monitoring and a second bimorph element for detection are connected orthogonally to each other. the driving piezoelectric bimorph element and the monitoring piezoelectric bimorph element are arranged so that the first and second vibration units are parallel to each other along the detection axis. A first sensor having a function of driving a vibrating angular velocity sensor having a tuning fork structure whose ends are connected by a connecting plate, and whose amplification degree can be changed depending on the ambient temperature by using the output charge of the monitoring piezoelectric bimorph element as an input signal. an amplifier; a rectifier that uses the output voltage of the first amplifier as an input signal and performs full-wave rectification;
a smoothing circuit for smoothing the output voltage of the rectifier;
a second amplifier which uses the output voltage of the amplifier as an input signal and outputs an output signal to the driving piezoelectric bimorph element, the amplification degree of which is varied according to the output voltage value of the smoothing circuit; a third amplifier which uses the output charge from the second detection bimorph element as an input signal and amplifies the input/output signal by shifting the phase of the input/output signal by 90 degrees;
a synchronous detector that synchronously detects the output voltage of the amplifier according to the polarity of the output voltage of the first amplifier; and a fourth amplifier that smooths and amplifies the output voltage of the synchronous detector and outputs a voltage proportional to the angular velocity. An angular velocity sensor drive circuit composed of
(2)第3の増幅器の増幅度を周囲温度によって変化さ
せる請求項1記載の角速度センサ駆動回路。
(2) The angular velocity sensor drive circuit according to claim 1, wherein the amplification degree of the third amplifier is changed depending on the ambient temperature.
JP1185515A 1989-07-18 1989-07-18 Angular velocity sensor driving circuit Pending JPH0348714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1185515A JPH0348714A (en) 1989-07-18 1989-07-18 Angular velocity sensor driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1185515A JPH0348714A (en) 1989-07-18 1989-07-18 Angular velocity sensor driving circuit

Publications (1)

Publication Number Publication Date
JPH0348714A true JPH0348714A (en) 1991-03-01

Family

ID=16172137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1185515A Pending JPH0348714A (en) 1989-07-18 1989-07-18 Angular velocity sensor driving circuit

Country Status (1)

Country Link
JP (1) JPH0348714A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016043A1 (en) * 1998-09-16 2000-03-23 Matsushita Electric Industrial Co., Ltd. Angle speed sensor
JP2005345284A (en) * 2004-06-03 2005-12-15 Favess Co Ltd Torque detection device
US7191669B2 (en) 2002-11-14 2007-03-20 Denso Corporation Highly reliable torque sensor
US7246531B2 (en) 2002-10-02 2007-07-24 Denso Corporation Torque sensor for detecting a shaft torque
WO2008044689A1 (en) 2006-10-12 2008-04-17 Nsk Ltd. Torque detector, method of producing the torque detector, and electric power steering device
US7424829B2 (en) 2004-03-17 2008-09-16 Mitsubishi Denki Kabushiki Kaisha Bipolar output torque sensor
JP2008261844A (en) * 2007-03-16 2008-10-30 Citizen Holdings Co Ltd Physical quantity sensor
JP2012215503A (en) * 2011-04-01 2012-11-08 Citizen Holdings Co Ltd Sensor drive circuit and physical quantity sensor using the same
US20150326199A1 (en) * 2014-05-07 2015-11-12 National Tsing Hua University Active type temperature compensation resonator structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016043A1 (en) * 1998-09-16 2000-03-23 Matsushita Electric Industrial Co., Ltd. Angle speed sensor
US6412347B1 (en) 1998-09-16 2002-07-02 Matsushita Electric Industrial Co., Ltd. Angle speed sensor
US7246531B2 (en) 2002-10-02 2007-07-24 Denso Corporation Torque sensor for detecting a shaft torque
US7191669B2 (en) 2002-11-14 2007-03-20 Denso Corporation Highly reliable torque sensor
US7424829B2 (en) 2004-03-17 2008-09-16 Mitsubishi Denki Kabushiki Kaisha Bipolar output torque sensor
JP2005345284A (en) * 2004-06-03 2005-12-15 Favess Co Ltd Torque detection device
WO2008044689A1 (en) 2006-10-12 2008-04-17 Nsk Ltd. Torque detector, method of producing the torque detector, and electric power steering device
JP2008261844A (en) * 2007-03-16 2008-10-30 Citizen Holdings Co Ltd Physical quantity sensor
JP2012215503A (en) * 2011-04-01 2012-11-08 Citizen Holdings Co Ltd Sensor drive circuit and physical quantity sensor using the same
US20150326199A1 (en) * 2014-05-07 2015-11-12 National Tsing Hua University Active type temperature compensation resonator structure
US9899987B2 (en) * 2014-05-07 2018-02-20 National Tsing Hua University Active type temperature compensation resonator structure

Similar Documents

Publication Publication Date Title
JP3536497B2 (en) Vibration type angular velocity detector
JPH0348714A (en) Angular velocity sensor driving circuit
JP3682664B2 (en) Piezoelectric vibration gyro
US5902931A (en) Vibration gyroscope
US6170330B1 (en) Angular velocity sensor and angular velocity sensing system
WO2007125708A1 (en) Temperature characteristic setting method for angular velocity sensor, and angular velocity sensor
JPH04297874A (en) Angular velocity sensor driver
JP2998248B2 (en) Angular velocity sensor device
JPH08247770A (en) Vibration gyroscope
JPH03226621A (en) Driving apparatus of angular velocity sensor
JP3581992B2 (en) Vibrating gyro
JPH09196965A (en) Acceleration sensor
JP3166484B2 (en) Vibrating gyro
JP2508382B2 (en) Angular velocity sensor
JP2540256B2 (en) How to use a vibrating gyro
JPH11281371A (en) Temperature correction circuit of piezoelectric biaxial angular velocity sensor
JPH05264282A (en) Angular velosity sensor
JPH09292231A (en) Vibrating gyroscope
WO2010073576A1 (en) Angular velocity sensor
JPH06194178A (en) Angular velocity sensor
JP2583704B2 (en) Oscillation circuit
JPH0762617B2 (en) Vibrating gyro
JPH051916A (en) Vibrating gyro
JPH0821735A (en) Drive detector circuit of piezoelectric vibrator
JPH0560562A (en) Vibrating gyroscope