WO2010073576A1 - Angular velocity sensor - Google Patents
Angular velocity sensor Download PDFInfo
- Publication number
- WO2010073576A1 WO2010073576A1 PCT/JP2009/007043 JP2009007043W WO2010073576A1 WO 2010073576 A1 WO2010073576 A1 WO 2010073576A1 JP 2009007043 W JP2009007043 W JP 2009007043W WO 2010073576 A1 WO2010073576 A1 WO 2010073576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lower electrode
- electrode
- upper electrode
- angular velocity
- voltage signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5719—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
Definitions
- the present invention relates to an angular velocity sensor used for automobile control, a car navigation device, a digital camera, and the like.
- This element has a base 1, a first drive arm 3A, a second drive arm 3B, a first sense arm 5A, and a second sense arm 5B.
- the first drive arm 3A and the second drive arm 3B are connected to the base 1 and formed symmetrically with each other.
- the first sense arm 5A is connected to the base 1 and extends in a direction substantially opposite to the first drive arm 3A.
- the second sense arm 5B is also connected to the base 1 and extends in a direction substantially opposite to the second drive arm 3B.
- the first drive arm 3A and the second drive arm 3B vibrate in a direction substantially perpendicular to their extending direction.
- the first sense arm 5A includes a first substrate 6, a first lower electrode 7, a second lower electrode 8, a first piezoelectric body 10A, and a second piezoelectric body 10B.
- the first upper electrode 11 and the second upper electrode 12 are provided.
- the lower electrodes 7 and 8 are formed on the first substrate 6.
- the piezoelectric bodies 10A and 10B are formed on the lower electrodes 7 and 8, respectively.
- the upper electrodes 11 and 12 are formed on the piezoelectric bodies 10A and 10B, respectively.
- the second sense arm 5B includes the second substrate 13, the third lower electrode 14, the fourth lower electrode 15, the third piezoelectric body 16A, the fourth piezoelectric body 16B, and the third upper electrode. 18 and a fourth upper electrode 19.
- the third lower electrode 14 and the fourth lower electrode 15 are formed on the second substrate 13.
- the third piezoelectric body 16 A is formed on the third lower electrode 14, and the fourth piezoelectric body 16 B is formed on the fourth lower electrode 15.
- the third upper electrode 18 is formed on the third piezoelectric body 16A, and the fourth upper electrode 19 is formed on the fourth piezoelectric body 16B.
- the second upper electrode 12 is disposed on the side close to the second sense arm 5B, and the first upper electrode 11 is disposed on the opposite side to the second sense arm 5B.
- the third upper electrode 18 is disposed on the side close to the first sense arm 5A, and the fourth upper electrode 19 is disposed on the opposite side to the first sense arm 5A.
- the angular velocity around the axis about the Z direction shown in FIG. 8 is detected as follows.
- the drive arms 3A and 3B vibrate so as to be parallel to the surface constituting the base 1 and to approach and separate from each other.
- the sense arms 5A and 5B also vibrate in synchronization.
- the drive arm 3A and the sense arm 5A vibrate in the same phase
- the drive arm 3B and the sense arm 5B vibrate in the same phase.
- the drive arm 3A and the drive arm 3B vibrate in opposite phases.
- a current (drive current) due to this vibration is generated in the electrodes provided on the sense arms 5A and 5B.
- the current generated in the upper electrodes of the sense arms 5A and 5B in this way is then converted into a voltage. Then, the sum of the voltage of the second upper electrode 12 and the voltage of the fourth upper electrode 19 is obtained. On the other hand, the sum of the voltage of the first upper electrode 11 and the sum of the voltage of the third upper electrode 18 is obtained.
- the angular velocity in the direction perpendicular to the plane forming the base 1 is detected from the difference between the two sums. Specifically, the voltage line from the second upper electrode 12 and the voltage line from the fourth upper electrode 19 are connected, and the voltage line of the first upper electrode 11 and the voltage line of the third upper electrode 18 are connected to each other. Connect. These outputs are input to the amplifier. Thus, in this calculation, the angular velocity around the axis about the Z direction can be detected.
- the out-of-plane angular velocity cannot be accurately detected. That is, it is impossible to accurately detect the angular velocity around the axis with the sense arm 5A, 5B extending from the base 1, that is, the Y direction in FIG.
- the voltage line from the upper electrode is connected. Therefore, in order to obtain the angular velocity around the axis with the Y direction as an axis, it is necessary to input a voltage caused by the drive current to the amplifier. As a result, the S / N ratio decreases.
- Patent Document 1 is known as prior art document information relating to this application.
- the angular velocity sensor of the present invention has an element and a calculation unit.
- the element includes a base, first and second drive arms, and first and second sense arms.
- the first and second drive arms have portions connected to the base and extending parallel to each other from the base.
- the first and second sense arms are connected to the base and have portions extending from the base in opposite directions to the first and second drive arms and extending in parallel with each other from the base.
- the first sense arm has a first substrate, first and second lower electrodes, first and second piezoelectric bodies, and first and second upper electrodes.
- the first and second lower electrodes are formed on the first substrate.
- the second lower electrode is formed closer to the second sense arm than the first lower electrode.
- the first and second piezoelectric bodies are respectively formed on the first and second lower electrodes, and the first and second upper electrodes are respectively formed on the first and second piezoelectric bodies.
- the second sense arm has a second substrate, third and fourth lower electrodes, third and fourth piezoelectric bodies, and third and fourth upper electrodes.
- the third and fourth lower electrodes are formed on the second substrate.
- the fourth lower electrode is formed on the side farther from the first sense arm than the third lower electrode.
- the third and fourth piezoelectric bodies are respectively formed on the third and fourth lower electrodes, and the third and fourth upper electrodes are respectively formed on the third and fourth piezoelectric bodies.
- the computing unit includes a sum of a voltage signal of the first lower electrode with respect to the first upper electrode and a voltage signal of the second lower electrode with respect to the second upper electrode, and the third lower electrode with respect to the third upper electrode.
- the difference between the voltage signal and the sum of the voltage signal of the fourth lower electrode with respect to the fourth upper electrode is calculated.
- the sum of the voltage signal of the fourth upper electrode with respect to the fourth lower electrode is calculated.
- FIG. 1 is a perspective view of an element of an angular velocity sensor according to an embodiment of the present invention.
- 2 is a cross-sectional view taken along line 2-2 of the element shown in FIG.
- FIG. 3 is a block diagram showing the configuration of the angular velocity sensor according to the embodiment of the present invention.
- FIG. 4 is a conceptual diagram illustrating a voltage detection method in the calculation unit of the angular velocity sensor according to the embodiment of the present invention.
- FIG. 5A is a perspective view showing a driving state of the element shown in FIG. 5B is a perspective view showing a state in which an angular velocity around the Y axis is applied to the element shown in FIG.
- FIG. 5A is a perspective view showing a driving state of the element shown in FIG.
- FIG. 5C is a perspective view showing a state in which an angular velocity around the Z-axis is applied to the element shown in FIG.
- FIG. 6 shows the voltage phase of each electrode in a state where an angular velocity around the Y axis is applied and an angular velocity around the Z axis is applied when the element shown in FIG. 1 is driven.
- FIG. 7A is a conceptual diagram illustrating a method of detecting an angular velocity around the Y axis by the calculation unit of the angular velocity sensor according to the embodiment of the present invention.
- FIG. 7B is a conceptual diagram illustrating a method of detecting an angular velocity around the Z axis by the calculation unit of the angular velocity sensor according to the embodiment of the present invention.
- FIG. 8 is a perspective view of an element of a conventional angular velocity sensor.
- FIG. 9 is a cross-sectional view of the element shown in FIG. 8 taken along line 9-9.
- FIG. 1 is a perspective view of an element of an angular velocity sensor according to an embodiment of the present invention
- FIG. 2 is a sectional view taken along line 2-2 of FIG.
- FIG. 3 is a block diagram showing the overall configuration of the angular velocity sensor according to the embodiment of the present invention.
- the element 20 has a base 21, a first drive arm 22, a second drive arm 23, a first sense arm 24, and a second sense arm 25.
- the first drive arm 22 has a U-shaped bent portion 22A and a weight portion 22B provided at the tip of the bent portion 22A.
- the second drive arm 23 has a bending portion 23A and a weight portion 23B.
- the first sense arm 24 has a bent portion 24A and a weight portion 24B
- the second sense arm 25 has a bent portion 25A and a weight portion 25B.
- the bending portions 22A, 23A, 24A, and 25A are connected to the base portion 21.
- the bent portions 22A and 23A are parallel on the side connected to the base portion 21.
- bent portions 24 ⁇ / b> A and 25 ⁇ / b> A are parallel on the side connected to the base portion 21. That is, the drive arms 22 and 23 have a portion connected to the base portion 21 and extending in parallel from the base portion 21.
- the sense arms 24 and 25 are connected to the base 21 and extend in the opposite direction from the base 21 to the drive arms 22 and 23 and have portions extending in parallel from the base 21.
- the first sense arm 24 and the second sense arm 25 are formed in substantially opposite directions with respect to the first drive arm 22 and the second drive arm 23. That is, the first drive arm 22 and the second drive arm 23 are provided symmetrically with respect to the Y axis in the X axis direction, and the first drive arm 22 and the first sense arm 24 are in the X axis direction in the Y axis direction. With respect to the line symmetry. Similarly, the first sense arm 24 and the second sense arm 25 are provided symmetrically with respect to the Y axis in the X-axis direction, and the second drive arm 23 and the second sense arm 25 are X-directional in the Y-axis direction. It is provided in line symmetry with respect to the axis.
- the bending portion 24 ⁇ / b> A of the first sense arm 24 includes a first substrate 26, a first lower electrode 27, a second lower electrode 28, a first piezoelectric body 29, and a second piezoelectric element. Piezoelectric body 30, first upper electrode 31, and second upper electrode 32.
- the first lower electrode 27 and the second lower electrode 28 are formed on the first substrate 26.
- the second lower electrode 28 is formed closer to the second sense arm 25 than the first lower electrode 27.
- the first piezoelectric body 29 is formed on the first lower electrode 27, and the second piezoelectric body 30 is formed on the second lower electrode 28.
- the first upper electrode 31 is formed on the first piezoelectric body 29, and the second upper electrode 32 is formed on the second piezoelectric body 30.
- the flexible portion 25A of the second sense arm 25 includes a second substrate 33, a third lower electrode 34, a fourth lower electrode 35, a third piezoelectric body 36, and a fourth piezoelectric body 37. And a third upper electrode 38 and a fourth upper electrode 39.
- the lower electrodes 34 and 35 are formed on the second substrate 33.
- the fourth lower electrode 35 is formed on the side farther from the first sense arm 24 than the third lower electrode 34.
- the piezoelectric bodies 36 and 37 are formed on the lower electrodes 34 and 35, respectively, and the upper electrodes 38 and 39 are formed on the piezoelectric bodies 36 and 37, respectively.
- the bent portions 22A and 23A also have a similar laminated structure.
- the base of the element 20, such as the base 21, the first substrate 26, and the second substrate 33, is formed of silicon or the like.
- the piezoelectric bodies 29, 30, 36 and 37 are made of lead zirconate titanate (PZT) or the like.
- PZT lead zirconate titanate
- the base portion 21, the first substrate 26, the second substrate 33, etc., the element 20 and the piezoelectric materials 29, 30, 36, 37 are formed. You may form as one.
- the element 20 configured as described above is connected to the drive unit 50 and the calculation unit 70 to form an angular velocity sensor as shown in FIG.
- the output of the drive part 50 is connected to each electrode formed in the bending parts 22A and 23A.
- each electrode of the element 20 is connected to the calculation unit 70. That is, the first lower electrode 27, the second lower electrode 28, the first upper electrode 31, and the second upper electrode 32 are connected to the output lines 27A, 28A, 31A, and 32A, respectively, and the third lower electrode 34 is connected.
- the fourth lower electrode 35, the third upper electrode 38, and the fourth upper electrode 39 are connected to output lines 34A, 35A, 38A, and 39A, respectively.
- Output lines 80 and 90 are provided on the output side of the arithmetic unit 70.
- FIG. 4 is a conceptual diagram illustrating a voltage detection method in the calculation unit 70.
- a set of the first lower electrode 27 and the first upper electrode 31 will be described as an example.
- FIG. 5A is a perspective view showing a driving state of the element 20
- FIG. 5B is a perspective view showing a state where an angular velocity around the Y axis is applied to the element 20
- FIG. 5C is a state where an angular velocity around the Z axis is applied to the element 20
- FIG. 6 shows the voltage phase of each electrode when the element 20 is driven in a state where an angular velocity around the Y axis is applied and in a state where an angular velocity around the Z axis is applied.
- FIG. 6 shows the voltage phase of each electrode when the element 20 is driven in a state where an angular velocity around the Y axis is applied and in a state where an angular velocity around the Z axis is applied.
- FIG. 7A is a conceptual diagram illustrating a method for detecting an angular velocity around the Y axis by the calculation unit 70
- FIG. 7B is a conceptual diagram illustrating a method for detecting the angular velocity around the Z axis by the calculation unit 70.
- the material constituting the substrate such as the first substrate 26 is combined with the pair of the lower electrode and the upper electrode provided on the first drive arm 22 and the second drive arm 23 from the drive unit 50 shown in FIG.
- An AC voltage with a unique resonance frequency is applied.
- the drive arms 22 and 23 vibrate in a direction substantially perpendicular to the direction in which the bent portions 22 ⁇ / b> A and 23 ⁇ / b> A extend from the base portion 21 in a direction parallel to the surface forming the base portion 21.
- the sense arms 24 and 25 also vibrate in synchronization. That is, for example, the drive vibration 42 is generated in the sense arm 25 in synchronization with the drive vibration 41 of the drive arm 23.
- the first drive arm 22 and the first sense arm 24 vibrate in the same phase
- the second drive arm 23 and the second sense arm 25 vibrate in the same phase
- the first drive arm 22 and the second drive arm 23 vibrate in opposite phases.
- a current (drive current) due to this vibration is generated in the electrodes provided on the sense arms 24 and 25.
- the phase of the output signal in each of the above states is shown in FIG.
- the first sense arm 24 and the second sense arm 25 are driven in a direction away from each other, the first piezoelectric body 29 is compressed and the second piezoelectric body 30 is stretched. Therefore, the phase of the voltage signal of the first lower electrode 27 with respect to the first upper electrode 31 is +, and the phase of the voltage signal of the second lower electrode 28 with respect to the second upper electrode 32 is ⁇ . Similarly, + and-indicate whether the phase is the same or opposite.
- lower 1 indicates a voltage signal of the first lower electrode 27 with respect to the first upper electrode 31.
- Upper 4 indicates a voltage signal of the fourth upper electrode 39 with respect to the fourth lower electrode 35.
- the leftmost column indicates the voltage signal of the electrode with respect to the pair of electrodes in each pair of the upper electrode and the lower electrode.
- the calculating unit 70 When calculating the angular velocity around the Y axis, as shown in FIG. 7A, the calculating unit 70 first obtains the sum of the voltage output 27B of “lower 1” and the voltage output 28B of “lower 2”. On the other hand, the sum of the voltage output 34B of the “lower 3” and the voltage output 35B of the “lower 4” is obtained. Then, the difference between the two is obtained. As apparent from FIG.
- the calculation unit 70 outputs the difference signal 80B obtained in this way from the output line 80 to an external circuit.
- the external circuit calculates the angular velocity applied around the Y axis based on the amplitude of the difference signal 80B.
- the calculation unit 70 may include such a function and output an electrical signal corresponding to the angular velocity.
- Coriolis force is proportional to the angular velocity.
- the magnitude of deflection of the sense arms 24 and 25 changes according to the Coriolis force, and a current having a magnitude corresponding to the magnitude of the deflection. Are generated from each electrode. Therefore, the angular velocity can be calculated by knowing the magnitude of the amplitude of the voltage difference signal 80B.
- the first sense arm 24 moves to the negative side in the Z-axis direction
- the second sense arm 25 moves to the positive side in the Z-axis direction.
- the output amplitude of the sum of the voltage output of the first lower electrode 27 with respect to the first upper electrode 31 and the voltage output of the second lower electrode 28 with respect to the second upper electrode 32 decreases.
- the output amplitude of the sum of the voltage output of the third lower electrode 34 to the third upper electrode 38 and the voltage output of the fourth lower electrode 35 to the fourth upper electrode 39 increases.
- the angular velocity around the axis about the direction in which the flexures 24A and 24B, which are a part of the sense arms 24 and 25, extend from the base 21, that is, the Y direction shown in FIG. can do.
- the calculation unit 70 when calculating the angular velocity around the Z axis, the calculation unit 70 first obtains the sum of the voltage output 31B of the upper part 1 and the voltage output 38B of the upper part 3 as shown in FIG. 7B. On the other hand, the sum of the voltage output 32B of the upper part 2 and the voltage output 39B of the upper part 4 is obtained. Then, the difference between the two is obtained. As apparent from FIG. 6, when an angular velocity is applied around the Z axis, the upper part 1 and the upper part 3 are in phase, the upper part 2 and the upper part 4 are in phase, and the upper part 1 is in antiphase. Therefore, the difference signal 90B output to the output line 90 in FIG. 3 has an amplitude four times that of a single voltage output.
- the calculation unit 70 outputs the difference signal 90B thus obtained to the external circuit, and the external circuit calculates the angular velocity around the Z axis based on the amplitude of the difference signal 90B.
- the calculation unit 70 may include such a function and output an electrical signal corresponding to the angular velocity.
- the first and second sense arms 24 and 25 move to the negative side in the X axis direction. Accordingly, the output amplitude of the sum of the voltage output of the second upper electrode 32 with respect to the second lower electrode 28 and the voltage output of the fourth upper electrode 39 with respect to the fourth lower electrode 35 increases. On the other hand, the output amplitude of the sum of the voltage output of the first upper electrode 31 with respect to the first lower electrode 27 and the voltage output of the third upper electrode 38 with respect to the third lower electrode 34 decreases.
- the angular velocity sensor according to the present embodiment can perform multi-axis detection.
- the angular velocity around the axis with the Z direction as the axis can also be obtained as follows. That is, the arithmetic unit 70 first obtains the sum of the voltage output 28B of the lower part 2 and the voltage output 35B of the lower part 4. On the other hand, the sum of the voltage output 27B of the lower part 1 and the voltage output 34B of the lower part 3 is obtained. Then, the difference between the two is obtained. However, in this case, since the angular velocity around the Y axis and the angular velocity around the Z axis are calculated using the same signal, it is necessary to perform all calculations using an amplifier. Therefore, many amplifiers are required for the arithmetic unit 70.
- the calculating part 70 can be comprised simply.
- Drive current is 10 6 times the current due to the angular velocity, because the driving current can be canceled before entering into the amplifier, this arrangement is effective from the viewpoint of S / N ratio.
- the lower electrodes 27, 28, 34, and 35 are preferably formed of platinum.
- a platinum electrode is essential.
- the upper electrodes 31, 32, 38, and 39 are preferably formed of gold.
- the angular velocity is detected by finally obtaining the difference in voltage output. Therefore, occurrence of phase shift can be suppressed.
- the material of the upper electrode and the lower electrode is not limited to this combination.
- the upper electrodes 31, 32, 38 and 39 are used for calculation in angular velocity detection around the axis with the Z direction as an axis shown in FIG.
- the lower electrodes 27, 28, 34, and 35 are used for calculation in angular velocity detection around an axis with the Y direction shown in FIG. 1 as an axis.
- the upper electrodes 31, 32, 38, and 39 can be formed using gold of the same material, and the lower electrodes 27, 28, 34, and 35 can be formed of platinum of the same material. Thus, even when the lower electrodes 27, 28, 34, and 35 and the upper electrodes 31, 32, 38, and 39 are formed of different materials, the occurrence of phase shift can be suppressed.
- the drive current is 10 6 times the current due to the angular velocity as described above.
- the first lower electrode 27 and the second lower electrode 28 may be electrically connected on the first substrate 26.
- the third lower electrode 34 and the fourth lower electrode 35 may be electrically connected on the second substrate 33.
- the first lower electrode 27 and the second lower electrode 28 are integrally formed, and the third lower electrode 34 and the fourth lower electrode 35 are integrally formed.
- the arithmetic unit 70 obtains the sum of the voltage signal of the first lower electrode 27 for the first upper electrode 31 and the voltage signal of the second lower electrode 28 for the second upper electrode 32.
- the sum of the voltage signal of the third lower electrode 34 for the third upper electrode 38 and the voltage signal of the fourth lower electrode 35 for the fourth upper electrode 39 is obtained.
- the difference between the two sums is obtained. Based on this difference, it is possible to detect the angular velocity around the axis with the direction in which the sense arms 24 and 25 extend from the base 21 as the axis. That is, the angular velocity around the axis with the Y direction shown in FIG. 1 as an axis can be detected. However, the angular velocity about the axis about the Y direction shown in FIG. 1 can be detected even if the same calculation is performed using the voltage signal of each corresponding upper electrode for each lower electrode.
- the arithmetic unit 70 obtains the sum of the voltage signal of the first upper electrode 31 for the first lower electrode 27 and the voltage signal of the second upper electrode 32 for the second lower electrode 28.
- the sum of the voltage signal of the third upper electrode 38 for the third lower electrode 34 and the voltage signal of the fourth upper electrode 38 for the fourth lower electrode 35 is obtained.
- the difference between the two sums is obtained. Based on this difference, it is possible to detect the angular velocity around the axis with the direction in which the sense arms 24 and 25 extend from the base 21 as the axis.
- the calculation unit 70 may be configured in this way.
- the arithmetic unit 70 calculates the sum of the voltage signal of the second lower electrode 28 for the second upper electrode 31 and the voltage signal of the fourth lower electrode 35 for the fourth upper electrode 39, and the first upper electrode 31.
- the difference between the voltage signal of the first lower electrode 27 for the electrode 31 and the sum of the voltage signal of the third lower electrode 34 for the third upper electrode 38 may be calculated. From this difference, it is also possible to detect an angular velocity around an axis about the direction perpendicular to the plane forming the base 21, that is, the Z direction shown in FIG.
- the angular velocity around the axis with the Y direction as the axis and the angular velocity around the axis with the Z direction as the axis are obtained separately using the upper electrode for the lower electrode and the upper electrode for the lower electrode, respectively. . Therefore, it is possible to accurately detect the biaxial angular velocity while suppressing the influence of the drive current.
- 3 may be configured not to be included in the angular velocity sensor but to provide a terminal electrically connected to each drive arm and to supply a drive signal from an external circuit to each drive arm.
- the angular velocity sensor of the present invention can detect the angular velocity around the axis with the direction in which the first and second sense arms extend from the base as an axis. This angular velocity sensor is useful in automobile control, car navigation devices, digital cameras, and the like.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
A first sense arm (24) has a first substrate (26), first and second lower electrodes (27, 28) formed on the first substrate, first and second piezoelectric bodies (29, 30) formed on the first and second lower electrodes, and first and second upper electrodes (31, 32) formed on the first and second piezoelectric bodies. A second sense arm (25) has a second substrate (33), third and fourth lower electrodes (34, 35) formed on the second substrate, third and fourth piezoelectric bodies (36, 37) formed on the third and fourth lower electrodes, and third and fourth upper electrodes (38, 39) formed on the third and fourth piezoelectric bodies. A calculating section calculates a difference between the sum of the voltages of the first and second lower electrodes (27, 28) and the sum of the voltages of the third and fourth lower electrodes (34, 35). Based on the obtained difference, an angular velocity around the axis can be obtained with the direction wherein the first and second sense arms (24, 25) extend from a base section as the axis.
Description
本発明は、自動車制御やカーナビゲーション装置、デジタルカメラ等に用いられる角速度センサに関する。
The present invention relates to an angular velocity sensor used for automobile control, a car navigation device, a digital camera, and the like.
図8、図9はそれぞれ従来の角速度センサの素子の斜視図と断面図である。この素子は、基部1と、第1のドライブアーム3Aと第2のドライブアーム3Bと、第1のセンスアーム5Aと第2のセンスアーム5Bとを有する。第1のドライブアーム3Aと第2のドライブアーム3Bは基部1に接続され互いに線対称に形成されている。第1のセンスアーム5Aは基部1に接続されるとともに第1のドライブアーム3Aに対し略反対方向へ伸びている。第2のセンスアーム5Bも基部1に接続されるとともに第2のドライブアーム3Bに対し略反対方向へ伸びている。第1のドライブアーム3Aと第2のドライブアーム3Bはそれらの延伸方向に略垂直な方向に振動する。
8 and 9 are a perspective view and a cross-sectional view of the element of the conventional angular velocity sensor, respectively. This element has a base 1, a first drive arm 3A, a second drive arm 3B, a first sense arm 5A, and a second sense arm 5B. The first drive arm 3A and the second drive arm 3B are connected to the base 1 and formed symmetrically with each other. The first sense arm 5A is connected to the base 1 and extends in a direction substantially opposite to the first drive arm 3A. The second sense arm 5B is also connected to the base 1 and extends in a direction substantially opposite to the second drive arm 3B. The first drive arm 3A and the second drive arm 3B vibrate in a direction substantially perpendicular to their extending direction.
図9に示すように、第1のセンスアーム5Aは第1の基板6と、第1の下部電極7と第2の下部電極8と、第1の圧電体10Aと第2の圧電体10Bと、第1の上部電極11と第2の上部電極12とを有する。下部電極7、8は第1の基板6上に形成されている。圧電体10A、10Bはそれぞれ下部電極7、8の上に形成されている。上部電極11、12はそれぞれ圧電体10A、10Bの上に形成されている。
As shown in FIG. 9, the first sense arm 5A includes a first substrate 6, a first lower electrode 7, a second lower electrode 8, a first piezoelectric body 10A, and a second piezoelectric body 10B. The first upper electrode 11 and the second upper electrode 12 are provided. The lower electrodes 7 and 8 are formed on the first substrate 6. The piezoelectric bodies 10A and 10B are formed on the lower electrodes 7 and 8, respectively. The upper electrodes 11 and 12 are formed on the piezoelectric bodies 10A and 10B, respectively.
また第2のセンスアーム5Bは第2の基板13と、第3の下部電極14と第4の下部電極15と、第3の圧電体16Aと第4の圧電体16Bと、第3の上部電極18と第4の上部電極19とを有する。第3の下部電極14と第4の下部電極15は第2の基板13上に形成されている。第3の圧電体16Aは第3の下部電極14の上に形成され、第4の圧電体16Bは第4の下部電極15の上に形成されている。第3の上部電極18は第3の圧電体16Aの上に形成され、第4の上部電極19は第4の圧電体16Bの上に形成されている。
The second sense arm 5B includes the second substrate 13, the third lower electrode 14, the fourth lower electrode 15, the third piezoelectric body 16A, the fourth piezoelectric body 16B, and the third upper electrode. 18 and a fourth upper electrode 19. The third lower electrode 14 and the fourth lower electrode 15 are formed on the second substrate 13. The third piezoelectric body 16 A is formed on the third lower electrode 14, and the fourth piezoelectric body 16 B is formed on the fourth lower electrode 15. The third upper electrode 18 is formed on the third piezoelectric body 16A, and the fourth upper electrode 19 is formed on the fourth piezoelectric body 16B.
第1のセンスアーム5Aにおいて、第2の上部電極12は第2のセンスアーム5Bに近い側に配置され、第1の上部電極11は第2のセンスアーム5Bと反対側に配置されている。第2のセンスアーム5Bにおいて、第3の上部電極18は第1のセンスアーム5Aに近い側に配置され、第4の上部電極19は第1のセンスアーム5Aと反対側に配置されている。
In the first sense arm 5A, the second upper electrode 12 is disposed on the side close to the second sense arm 5B, and the first upper electrode 11 is disposed on the opposite side to the second sense arm 5B. In the second sense arm 5B, the third upper electrode 18 is disposed on the side close to the first sense arm 5A, and the fourth upper electrode 19 is disposed on the opposite side to the first sense arm 5A.
この素子を用いた角速度センサでは、以下のようにして図8に示すZ方向を軸とした軸周りの角速度を検出する。ドライブアーム3A、3Bに設けられた上部電極、下部電極の組に交流電圧を印加するとドライブアーム3A、3Bは、基部1を構成する面に平行で、かつ互いに近づいたり離れたりするように振動する。この振動に伴ってセンスアーム5A、5Bも同調して振動する。このとき、ドライブアーム3Aとセンスアーム5Aは同位相で振動し、ドライブアーム3Bとセンスアーム5Bは同位相で振動する。そしてドライブアーム3Aとドライブアーム3Bは互いに逆位相で振動する。その結果、センスアーム5A、5B上に設けられた電極にこの振動による電流(駆動電流)が生じる。
In the angular velocity sensor using this element, the angular velocity around the axis about the Z direction shown in FIG. 8 is detected as follows. When an AC voltage is applied to the pair of upper and lower electrodes provided on the drive arms 3A and 3B, the drive arms 3A and 3B vibrate so as to be parallel to the surface constituting the base 1 and to approach and separate from each other. . Along with this vibration, the sense arms 5A and 5B also vibrate in synchronization. At this time, the drive arm 3A and the sense arm 5A vibrate in the same phase, and the drive arm 3B and the sense arm 5B vibrate in the same phase. The drive arm 3A and the drive arm 3B vibrate in opposite phases. As a result, a current (drive current) due to this vibration is generated in the electrodes provided on the sense arms 5A and 5B.
この状態でZ軸の周りに角速度が生じると、基部1を構成する面に平行で、かつ振動方向と直交する方向にコリオリ力が発生する。そのためセンスアーム5A、5BにZ軸の周りの角速度に起因した歪が発生する。これに伴い、コリオリ力に起因して撓むセンスアーム5A、5Bの状態変化によって、センスアーム5A、5B上に設けられた電極に角速度に応じた電流が、上記駆動電流に重畳して発生する。このとき例えば、第2の上部電極12の駆動電流成分の位相と第4の上部電極19の駆動電流成分の位相は逆になっている。
In this state, when an angular velocity is generated around the Z axis, a Coriolis force is generated in a direction parallel to the surface constituting the base 1 and perpendicular to the vibration direction. Therefore, distortion due to the angular velocity around the Z axis occurs in the sense arms 5A and 5B. Along with this, due to a change in the state of the sense arms 5A and 5B which are bent due to the Coriolis force, a current corresponding to the angular velocity is generated on the electrodes provided on the sense arms 5A and 5B in a manner superimposed on the drive current. . At this time, for example, the phase of the drive current component of the second upper electrode 12 and the phase of the drive current component of the fourth upper electrode 19 are reversed.
このようにしてセンスアーム5A、5Bの各上部電極に生じる電流を、次に電圧に変換する。そして第2の上部電極12の電圧と第4の上部電極19の電圧との和を求める。一方、第1の上部電極11の電圧と第3の上部電極18の電圧との和との和を求める。この2つの和の差から基部1を形成する平面に垂直な方向の角速度を検出する。具体的には第2の上部電極12からの電圧線と第4の上部電極19からの電圧線とを接続し、第1の上部電極11の電圧線と第3の上部電極18の電圧線とを接続する。そしてこれらの出力をアンプに入力する。このように、この演算ではZ方向を軸とした軸周りの角速度を検出することができる。
The current generated in the upper electrodes of the sense arms 5A and 5B in this way is then converted into a voltage. Then, the sum of the voltage of the second upper electrode 12 and the voltage of the fourth upper electrode 19 is obtained. On the other hand, the sum of the voltage of the first upper electrode 11 and the sum of the voltage of the third upper electrode 18 is obtained. The angular velocity in the direction perpendicular to the plane forming the base 1 is detected from the difference between the two sums. Specifically, the voltage line from the second upper electrode 12 and the voltage line from the fourth upper electrode 19 are connected, and the voltage line of the first upper electrode 11 and the voltage line of the third upper electrode 18 are connected to each other. Connect. These outputs are input to the amplifier. Thus, in this calculation, the angular velocity around the axis about the Z direction can be detected.
しかしながら面外角速度を精度よく検知することはできない。すなわち、センスアーム5A、5Bが基部1から伸びる方向、すなわち図8におけるY方向を軸とした軸周りの角速度を精度よく検知することはできない。その理由を簡単に説明する。上述のように上部電極からの電圧線が接続されている。そのため、Y方向を軸とした軸周りの角速度を求めるには駆動電流に起因する電圧をアンプに入力する必要がある。その結果、S/N比が低下する。
However, the out-of-plane angular velocity cannot be accurately detected. That is, it is impossible to accurately detect the angular velocity around the axis with the sense arm 5A, 5B extending from the base 1, that is, the Y direction in FIG. The reason will be briefly explained. As described above, the voltage line from the upper electrode is connected. Therefore, in order to obtain the angular velocity around the axis with the Y direction as an axis, it is necessary to input a voltage caused by the drive current to the amplifier. As a result, the S / N ratio decreases.
なお、この出願に関する先行技術文献情報としては、例えば、特許文献1が知られている。
For example, Patent Document 1 is known as prior art document information relating to this application.
本発明の角速度センサは素子と演算部とを有する。素子は、基部と、第1、第2のドライブアームと、第1、第2のセンスアームと、を含む。第1、第2のドライブアームは基部に接続され基部から互いに平行に伸びる部分を有する。第1、第2のセンスアームは、基部に接続され、基部から前記第1、第2のドライブアームに対し反対方向へ伸びるとともに、基部から互いに平行に伸びる部分を有する。
The angular velocity sensor of the present invention has an element and a calculation unit. The element includes a base, first and second drive arms, and first and second sense arms. The first and second drive arms have portions connected to the base and extending parallel to each other from the base. The first and second sense arms are connected to the base and have portions extending from the base in opposite directions to the first and second drive arms and extending in parallel with each other from the base.
第1のセンスアームは、第1の基板と第1、第2の下部電極と第1、第2の圧電体と、第1、第2の上部電極とを有する。第1、第2の下部電極は第1の基板の上に形成されている。第2の下部電極は第1の下部電極よりも第2のセンスアームに近い側に形成されている。第1、第2の圧電体はそれぞれ第1、第2の下部電極の上に形成され、第1、第2の上部電極はそれぞれ第1、第2の圧電体の上に形成されている。
The first sense arm has a first substrate, first and second lower electrodes, first and second piezoelectric bodies, and first and second upper electrodes. The first and second lower electrodes are formed on the first substrate. The second lower electrode is formed closer to the second sense arm than the first lower electrode. The first and second piezoelectric bodies are respectively formed on the first and second lower electrodes, and the first and second upper electrodes are respectively formed on the first and second piezoelectric bodies.
第2のセンスアームは、第2の基板と、第3、第4の下部電極と、第3、第4の圧電体と、第3、第4の上部電極とを有する。第3、第4の下部電極は第2の基板の上に形成されている。第4の下部電極は第3の下部電極よりも前記第1のセンスアームから遠い側に形成されている。第3、第4の圧電体はそれぞれ第3、第4の下部電極の上に形成され、第3、第4の上部電極はそれぞれ第3、第4の圧電体の上に形成されている。
The second sense arm has a second substrate, third and fourth lower electrodes, third and fourth piezoelectric bodies, and third and fourth upper electrodes. The third and fourth lower electrodes are formed on the second substrate. The fourth lower electrode is formed on the side farther from the first sense arm than the third lower electrode. The third and fourth piezoelectric bodies are respectively formed on the third and fourth lower electrodes, and the third and fourth upper electrodes are respectively formed on the third and fourth piezoelectric bodies.
演算部は、第1の上部電極に対する第1の下部電極の電圧信号と第2の上部電極に対する第2の下部電極の電圧信号との和と、第3の上部電極に対する第3の下部電極の電圧信号と第4の上部電極に対する第4の下部電極の電圧信号との和との差を演算する。または、第1の下部電極に対する第1の上部電極の電圧信号と第2の下部電極に対する第2の上部電極の電圧信号との和と、第3の下部電極に対する第3の上部電極の電圧信号と第4の下部電極に対する第4の上部電極の電圧信号との和との差を演算する。この構成により、第1、第2のセンスアームが基部から伸びる方向を軸とした軸周りの角速度を検知することができる。
The computing unit includes a sum of a voltage signal of the first lower electrode with respect to the first upper electrode and a voltage signal of the second lower electrode with respect to the second upper electrode, and the third lower electrode with respect to the third upper electrode. The difference between the voltage signal and the sum of the voltage signal of the fourth lower electrode with respect to the fourth upper electrode is calculated. Alternatively, the sum of the voltage signal of the first upper electrode for the first lower electrode and the voltage signal of the second upper electrode for the second lower electrode, and the voltage signal of the third upper electrode for the third lower electrode And the sum of the voltage signal of the fourth upper electrode with respect to the fourth lower electrode is calculated. With this configuration, it is possible to detect angular velocities around the axis about the direction in which the first and second sense arms extend from the base.
図1は本発明の実施の形態における角速度センサの素子の斜視図、図2は図1の2-2線における断面図である。図3は本発明の実施の形態における角速度センサ全体の構成を示すブロック図である。
FIG. 1 is a perspective view of an element of an angular velocity sensor according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line 2-2 of FIG. FIG. 3 is a block diagram showing the overall configuration of the angular velocity sensor according to the embodiment of the present invention.
図1に示すように、素子20は基部21と、第1のドライブアーム22と、第2のドライブアーム23と、第1のセンスアーム24と、第2のセンスアーム25とを有する。第1のドライブアーム22はU字型の撓み部22Aと撓み部22Aの先端に設けられた錘部22Bとを有する。同様に、第2のドライブアーム23は撓み部23Aと錘部23Bとを有する。また第1のセンスアーム24は撓み部24Aと錘部24Bとを有し、第2のセンスアーム25は撓み部25Aと錘部25Bとを有する。撓み部22A、23A、24A、25Aは基部21に接続されている。撓み部22A、23Aは基部21に接続されている辺で平行になっている。同様に撓み部24A、25Aは基部21に接続されている辺で平行になっている。すなわち、ドライブアーム22、23は基部21に接続され基部21から互いに平行に伸びる部分を有する。センスアーム24、25は、基部21に接続され、基部21からドライブアーム22、23に対し反対方向へ伸びるとともに、基部21から互いに平行に伸びる部分を有する。
As shown in FIG. 1, the element 20 has a base 21, a first drive arm 22, a second drive arm 23, a first sense arm 24, and a second sense arm 25. The first drive arm 22 has a U-shaped bent portion 22A and a weight portion 22B provided at the tip of the bent portion 22A. Similarly, the second drive arm 23 has a bending portion 23A and a weight portion 23B. The first sense arm 24 has a bent portion 24A and a weight portion 24B, and the second sense arm 25 has a bent portion 25A and a weight portion 25B. The bending portions 22A, 23A, 24A, and 25A are connected to the base portion 21. The bent portions 22A and 23A are parallel on the side connected to the base portion 21. Similarly, the bent portions 24 </ b> A and 25 </ b> A are parallel on the side connected to the base portion 21. That is, the drive arms 22 and 23 have a portion connected to the base portion 21 and extending in parallel from the base portion 21. The sense arms 24 and 25 are connected to the base 21 and extend in the opposite direction from the base 21 to the drive arms 22 and 23 and have portions extending in parallel from the base 21.
第1のセンスアーム24、第2のセンスアーム25は第1のドライブアーム22、第2のドライブアーム23に対し略反対方向に形成されている。すなわち、第1のドライブアーム22と第2のドライブアーム23はX軸方向においてY軸に対し線対称に設けられ、第1のドライブアーム22と第1のセンスアーム24はY軸方向においてX軸に対し線対称に設けられている。同様に、第1のセンスアーム24と第2のセンスアーム25はX軸方向においてY軸に対し線対称に設けられ、第2のドライブアーム23と第2のセンスアーム25はY軸方向においてX軸に対し線対称に設けられている。
The first sense arm 24 and the second sense arm 25 are formed in substantially opposite directions with respect to the first drive arm 22 and the second drive arm 23. That is, the first drive arm 22 and the second drive arm 23 are provided symmetrically with respect to the Y axis in the X axis direction, and the first drive arm 22 and the first sense arm 24 are in the X axis direction in the Y axis direction. With respect to the line symmetry. Similarly, the first sense arm 24 and the second sense arm 25 are provided symmetrically with respect to the Y axis in the X-axis direction, and the second drive arm 23 and the second sense arm 25 are X-directional in the Y-axis direction. It is provided in line symmetry with respect to the axis.
図2に示すように、第1のセンスアーム24の撓み部24Aは、第1の基板26と、第1の下部電極27と第2の下部電極28と、第1の圧電体29と第2の圧電体30と、第1の上部電極31と第2の上部電極32とを有する。第1の下部電極27、第2の下部電極28は第1の基板26の上に形成されている。第2の下部電極28は第1の下部電極27よりも第2のセンスアーム25に近い側に形成されている。第1の圧電体29は第1の下部電極27の上に形成され、第2の圧電体30は第2の下部電極28の上に形成されている。第1の上部電極31は第1の圧電体29の上に形成され、第2の上部電極32は第2の圧電体30の上に形成されている。
As shown in FIG. 2, the bending portion 24 </ b> A of the first sense arm 24 includes a first substrate 26, a first lower electrode 27, a second lower electrode 28, a first piezoelectric body 29, and a second piezoelectric element. Piezoelectric body 30, first upper electrode 31, and second upper electrode 32. The first lower electrode 27 and the second lower electrode 28 are formed on the first substrate 26. The second lower electrode 28 is formed closer to the second sense arm 25 than the first lower electrode 27. The first piezoelectric body 29 is formed on the first lower electrode 27, and the second piezoelectric body 30 is formed on the second lower electrode 28. The first upper electrode 31 is formed on the first piezoelectric body 29, and the second upper electrode 32 is formed on the second piezoelectric body 30.
同様に、第2のセンスアーム25の撓み部25Aは、第2の基板33と、第3の下部電極34と第4の下部電極35と、第3の圧電体36と第4の圧電体37と、第3の上部電極38と第4の上部電極39とを有する。下部電極34、35は第2の基板33の上に形成されている。第4の下部電極35は第3の下部電極34よりも第1のセンスアーム24から遠い側に形成されている。圧電体36、37はそれぞれ下部電極34、35の上に形成され、上部電極38、39はそれぞれ圧電体36、37の上に形成されている。なお図示しないが、撓み部22A、23Aも同様の積層構造を有している。
Similarly, the flexible portion 25A of the second sense arm 25 includes a second substrate 33, a third lower electrode 34, a fourth lower electrode 35, a third piezoelectric body 36, and a fourth piezoelectric body 37. And a third upper electrode 38 and a fourth upper electrode 39. The lower electrodes 34 and 35 are formed on the second substrate 33. The fourth lower electrode 35 is formed on the side farther from the first sense arm 24 than the third lower electrode 34. The piezoelectric bodies 36 and 37 are formed on the lower electrodes 34 and 35, respectively, and the upper electrodes 38 and 39 are formed on the piezoelectric bodies 36 and 37, respectively. Although not shown, the bent portions 22A and 23A also have a similar laminated structure.
なお、基部21、第1の基板26、第2の基板33等、素子20のベースはシリコン等で形成されている。圧電体29、30、36、37はチタン酸ジルコン酸鉛(PZT)等で形成されている。なお、水晶、リチウムナイオベート(LiNbO3)等からなる圧電体用いることにより、基部21、第1の基板26、第2の基板33等、素子20と圧電体29、30、36、37とを一体として形成してもよい。
The base of the element 20, such as the base 21, the first substrate 26, and the second substrate 33, is formed of silicon or the like. The piezoelectric bodies 29, 30, 36 and 37 are made of lead zirconate titanate (PZT) or the like. In addition, by using a piezoelectric material made of quartz, lithium niobate (LiNbO 3 ), etc., the base portion 21, the first substrate 26, the second substrate 33, etc., the element 20 and the piezoelectric materials 29, 30, 36, 37 are formed. You may form as one.
以上のように構成された素子20は、図3に示すように駆動部50と演算部70に接続されて角速度センサが構成される。駆動部50の出力は撓み部22A、23Aに形成された各電極に接続されている。一方、素子20の各電極は演算部70に接続されている。すなわち、第1の下部電極27、第2の下部電極28、第1の上部電極31、第2の上部電極32はそれぞれ出力線27A、28A、31A、32Aに接続され、第3の下部電極34、第4の下部電極35、第3の上部電極38、第4の上部電極39はそれぞれ出力線34A、35A、38A、39Aに接続されている。演算部70の出力側には出力線80、90が設けられている。
The element 20 configured as described above is connected to the drive unit 50 and the calculation unit 70 to form an angular velocity sensor as shown in FIG. The output of the drive part 50 is connected to each electrode formed in the bending parts 22A and 23A. On the other hand, each electrode of the element 20 is connected to the calculation unit 70. That is, the first lower electrode 27, the second lower electrode 28, the first upper electrode 31, and the second upper electrode 32 are connected to the output lines 27A, 28A, 31A, and 32A, respectively, and the third lower electrode 34 is connected. The fourth lower electrode 35, the third upper electrode 38, and the fourth upper electrode 39 are connected to output lines 34A, 35A, 38A, and 39A, respectively. Output lines 80 and 90 are provided on the output side of the arithmetic unit 70.
次に図4を参照しながら演算部70において、各電極からの出力電圧を検出する構成を説明する。図4は演算部70における電圧検出方法を示す概念図である。なおここでは代表して第1の下部電極27、第1の上部電極31の組を例に説明する。
Next, the configuration for detecting the output voltage from each electrode in the calculation unit 70 will be described with reference to FIG. FIG. 4 is a conceptual diagram illustrating a voltage detection method in the calculation unit 70. Here, as an example, a set of the first lower electrode 27 and the first upper electrode 31 will be described as an example.
第1の圧電体29が歪むと第1の上部電極31からIs、第1の下部電極27から-Isの電流が発生する。第1の上部電極31の出力線31A、第1の下部電極27の出力線27Aはそれぞれ抵抗Rfに接続されて電流信号が電圧信号に変換される。これらの電圧信号がそれぞれ基準電圧Vrefと比較され、基準電圧Vrefを基準とした電圧波形に変換される。このとき、出力線31A、27Aにおける変換波形は逆位相で同じ振幅になっているので、両者の差の信号の振幅は元の信号の振幅の2倍になる。そのため検出感度が向上する。
When the first piezoelectric body 29 is distorted, a current of Is is generated from the first upper electrode 31 and −Is is generated from the first lower electrode 27. The output line 31A of the first upper electrode 31 and the output line 27A of the first lower electrode 27 are connected to the resistor Rf, respectively, and a current signal is converted into a voltage signal. These voltage signals are respectively compared with the reference voltage Vref and converted into a voltage waveform based on the reference voltage Vref. At this time, since the converted waveforms in the output lines 31A and 27A have the same amplitude in opposite phases, the amplitude of the difference signal between them is twice the amplitude of the original signal. Therefore, the detection sensitivity is improved.
次に図1におけるY軸周りの角速度、Z軸周りの角速度を検出する方法について、図5A~図7Bを参照しながら説明する。図5Aは素子20の駆動状態を示す斜視図、図5Bは素子20にY軸周りの角速度が印加された状態を示す斜視図、図5Cは素子20にZ軸周りの角速度が印加された状態を示す斜視図である。図6は素子20の駆動時、Y軸周りの角速度が印加された状態、Z軸周りの角速度が印加された状態における、各電極の電圧の位相を示している。図7Aは演算部70でY軸周りの角速度を検出する方法を示す概念図、図7Bは演算部70でZ軸周りの角速度を検出する方法を示す概念図である。
Next, a method for detecting the angular velocity around the Y axis and the angular velocity around the Z axis in FIG. 1 will be described with reference to FIGS. 5A to 7B. 5A is a perspective view showing a driving state of the element 20, FIG. 5B is a perspective view showing a state where an angular velocity around the Y axis is applied to the element 20, and FIG. 5C is a state where an angular velocity around the Z axis is applied to the element 20 FIG. FIG. 6 shows the voltage phase of each electrode when the element 20 is driven in a state where an angular velocity around the Y axis is applied and in a state where an angular velocity around the Z axis is applied. FIG. 7A is a conceptual diagram illustrating a method for detecting an angular velocity around the Y axis by the calculation unit 70, and FIG. 7B is a conceptual diagram illustrating a method for detecting the angular velocity around the Z axis by the calculation unit 70.
まず図3に示す駆動部50から第1のドライブアーム22、第2のドライブアーム23にそれぞれ設けられた下部電極と上部電極との組に、第1の基板26等の基板を構成する材料に固有な共振周波数の交流電圧を印加する。すると、図5Aに示すようにドライブアーム22、23が基部21から撓み部22A、23Aの伸びる方向に略垂直な方向で、基部21を形成する面に平行な方向に振動する。この振動に伴ってセンスアーム24、25も同調して振動する。すなわち例えばドライブアーム23の駆動振動41に同調してセンスアーム25に駆動振動42が生じる。
First, the material constituting the substrate such as the first substrate 26 is combined with the pair of the lower electrode and the upper electrode provided on the first drive arm 22 and the second drive arm 23 from the drive unit 50 shown in FIG. An AC voltage with a unique resonance frequency is applied. Then, as shown in FIG. 5A, the drive arms 22 and 23 vibrate in a direction substantially perpendicular to the direction in which the bent portions 22 </ b> A and 23 </ b> A extend from the base portion 21 in a direction parallel to the surface forming the base portion 21. Along with this vibration, the sense arms 24 and 25 also vibrate in synchronization. That is, for example, the drive vibration 42 is generated in the sense arm 25 in synchronization with the drive vibration 41 of the drive arm 23.
このとき、第1のドライブアーム22と第1のセンスアーム24は同位相で振動し、第2のドライブアーム23と第2のセンスアーム25は同位相で振動する。そして第1のドライブアーム22と第2のドライブアーム23は互いに逆位相で振動する。その結果、センスアーム24、25上に設けられた電極にこの振動による電流(駆動電流)が生じる。
At this time, the first drive arm 22 and the first sense arm 24 vibrate in the same phase, and the second drive arm 23 and the second sense arm 25 vibrate in the same phase. The first drive arm 22 and the second drive arm 23 vibrate in opposite phases. As a result, a current (drive current) due to this vibration is generated in the electrodes provided on the sense arms 24 and 25.
この状態で図5Bに示すようにY軸の周りに角速度が生じると、振動方向と直交した方向に例えばドライブアーム23にコリオリ力43が、センスアーム25にコリオリ力44が発生する。その結果、センスアーム24、25にY軸の周りの角速度に起因した歪が発生する。すなわち、撓み部24A、25Aが基部21から伸びる方向を軸とした軸周りの角速度に起因した歪が発生する。これに伴い、コリオリ力に起因して撓むセンスアーム24、25の状態変化によって、センスアーム24、25上に設けられた電極に角速度に応じた電流が、上記駆動電流に重畳して発生する。
In this state, when an angular velocity is generated around the Y axis as shown in FIG. 5B, for example, a Coriolis force 43 is generated in the drive arm 23 and a Coriolis force 44 is generated in the sense arm 25 in a direction orthogonal to the vibration direction. As a result, distortion due to the angular velocity around the Y axis occurs in the sense arms 24 and 25. That is, the distortion resulting from the angular velocity around the axis about the direction in which the bent portions 24A and 25A extend from the base 21 is generated. Along with this, due to a change in the state of the sense arms 24 and 25 that are bent due to the Coriolis force, a current corresponding to the angular velocity is generated on the electrodes provided on the sense arms 24 and 25 so as to be superimposed on the drive current. .
一方、Z軸の周りに角速度が生じた場合も振動方向と直交した方向にコリオリ力45、46が発生するので、図5Cに示すようにセンスアーム24、25にZ軸の周りの角速度に起因した歪が発生する。すなわち、基部21を形成する平面に垂直な方向を軸とした軸周りの角速度に起因した歪が発生する。これに伴い、コリオリ力に起因して撓むセンスアーム24、25の状態変化によって、センスアーム24、25上に設けられた電極に角速度に応じた電流が、上記駆動電流に重畳して発生する。
On the other hand, when an angular velocity is generated around the Z axis, Coriolis forces 45 and 46 are generated in a direction orthogonal to the vibration direction. Therefore, as shown in FIG. 5C, the sense arms 24 and 25 are caused by the angular velocity around the Z axis. Distortion occurs. That is, distortion due to the angular velocity around the axis about the direction perpendicular to the plane forming the base 21 occurs. Along with this, due to a change in the state of the sense arms 24 and 25 that are bent due to the Coriolis force, a current corresponding to the angular velocity is generated on the electrodes provided on the sense arms 24 and 25 so as to be superimposed on the drive current. .
以上の各状態における出力信号の位相を図6に示す。例えば、第1のセンスアーム24と第2のセンスアーム25が離れる方向に駆動されているときには、第1の圧電体29は圧縮され、第2の圧電体30は引き伸ばされる。そのため第1の上部電極31に対する第1の下部電極27の電圧信号の位相は+、第2の上部電極32に対する第2の下部電極28の電圧信号の位相は-になる。以下同様に+、-は位相が同じか、逆かを示している。
The phase of the output signal in each of the above states is shown in FIG. For example, when the first sense arm 24 and the second sense arm 25 are driven in a direction away from each other, the first piezoelectric body 29 is compressed and the second piezoelectric body 30 is stretched. Therefore, the phase of the voltage signal of the first lower electrode 27 with respect to the first upper electrode 31 is +, and the phase of the voltage signal of the second lower electrode 28 with respect to the second upper electrode 32 is −. Similarly, + and-indicate whether the phase is the same or opposite.
なお図6において例えば「下部1」とは第1の上部電極31に対する第1の下部電極27の電圧信号を示す。「上部4」とは第4の下部電極35に対する第4の上部電極39の電圧信号を示す。このように左端の欄は、各上部電極、下部電極の組において、対になる電極に対する当該電極の電圧信号を示している。
In FIG. 6, for example, “lower 1” indicates a voltage signal of the first lower electrode 27 with respect to the first upper electrode 31. “Upper 4” indicates a voltage signal of the fourth upper electrode 39 with respect to the fourth lower electrode 35. Thus, the leftmost column indicates the voltage signal of the electrode with respect to the pair of electrodes in each pair of the upper electrode and the lower electrode.
次に、図7A、図7Bも参照しながら演算部70がY軸、Z軸の周りに角速度を演算する方法について説明する。Y軸の周りの角速度を演算する場合、図7Aに示すように演算部70はまず「下部1」の電圧出力27Bと「下部2」の電圧出力28Bとの和を求める。一方、「下部3」の電圧出力34Bと「下部4」の電圧出力35Bとの和を求める。そしてこの両者の差を求める。図6から明らかなように、Y軸の周りに角速度が印加された場合、「下部1」と「下部2」は同位相、「下部3」と「下部4」は同位相でかつ「下部1」の逆位相である。そのため、図3における出力線80に出力される差信号80Bは単独の電圧出力の4倍の振幅になる。またこれらの演算によって駆動電流に基づく信号成分は相殺され、角速度に起因する成分だけが求められる。
Next, a method of calculating the angular velocity around the Y axis and the Z axis by the calculation unit 70 will be described with reference to FIGS. 7A and 7B. When calculating the angular velocity around the Y axis, as shown in FIG. 7A, the calculating unit 70 first obtains the sum of the voltage output 27B of “lower 1” and the voltage output 28B of “lower 2”. On the other hand, the sum of the voltage output 34B of the “lower 3” and the voltage output 35B of the “lower 4” is obtained. Then, the difference between the two is obtained. As apparent from FIG. 6, when the angular velocity is applied around the Y axis, “lower part 1” and “lower part 2” have the same phase, “lower part 3” and “lower part 4” have the same phase, and “lower part 1”. Is the opposite phase. Therefore, the difference signal 80B output to the output line 80 in FIG. 3 has an amplitude four times that of a single voltage output. Further, the signal component based on the drive current is canceled by these calculations, and only the component due to the angular velocity is obtained.
演算部70はこのようにして得られる差信号80Bを出力線80から外部回路に出力する。外部回路は差信号80Bの振幅を基にY軸の周りに印加された角速度を算出する。あるいは演算部70がこのような機能を含んでいて、角速度に対応する電気信号を出力してもよい。
The calculation unit 70 outputs the difference signal 80B obtained in this way from the output line 80 to an external circuit. The external circuit calculates the angular velocity applied around the Y axis based on the amplitude of the difference signal 80B. Alternatively, the calculation unit 70 may include such a function and output an electrical signal corresponding to the angular velocity.
コリオリの力は角速度の大きさに比例する。一方、Y軸の周りまたはZ軸の周りに角速度が印加されると、コリオリの力に応じてセンスアーム24、25の撓みの大きさが変化し、撓みの大きさに応じた大きさの電流が各電極から発生する。したがって電圧の差信号80Bの振幅の大きさを知ることで角速度を算出することができる。
Coriolis force is proportional to the angular velocity. On the other hand, when an angular velocity is applied around the Y axis or around the Z axis, the magnitude of deflection of the sense arms 24 and 25 changes according to the Coriolis force, and a current having a magnitude corresponding to the magnitude of the deflection. Are generated from each electrode. Therefore, the angular velocity can be calculated by knowing the magnitude of the amplitude of the voltage difference signal 80B.
すなわち、Y方向を軸とした軸周りに、例えば時計回りの角速度が発生すると、第1のセンスアーム24はZ軸方向における負側へ、第2のセンスアーム25はZ軸方向における正側へ移動する。それに伴い、第1の上部電極31に対する第1の下部電極27の電圧出力と第2の上部電極32に対する第2の下部電極28の電圧出力との和の出力の振幅は減少する。一方、第3の上部電極38に対する第3の下部電極34の電圧出力と第4の上部電極39に対する第4の下部電極35の電圧出力との和の出力の振幅は増加する。そのため、それらの差を演算することにより、センスアーム24、25の一部である撓み部24A、24Bが基部21から伸びる方向、すなわち図1に示すY方向を軸とした軸周りの角速度を検知することができる。
That is, for example, when a clockwise angular velocity occurs around an axis with the Y direction as an axis, the first sense arm 24 moves to the negative side in the Z-axis direction, and the second sense arm 25 moves to the positive side in the Z-axis direction. Moving. Accordingly, the output amplitude of the sum of the voltage output of the first lower electrode 27 with respect to the first upper electrode 31 and the voltage output of the second lower electrode 28 with respect to the second upper electrode 32 decreases. On the other hand, the output amplitude of the sum of the voltage output of the third lower electrode 34 to the third upper electrode 38 and the voltage output of the fourth lower electrode 35 to the fourth upper electrode 39 increases. Therefore, by calculating the difference between them, the angular velocity around the axis about the direction in which the flexures 24A and 24B, which are a part of the sense arms 24 and 25, extend from the base 21, that is, the Y direction shown in FIG. can do.
同様にZ軸の周りに角速度を演算する場合、図7Bに示すように演算部70はまず上部1の電圧出力31Bと上部3の電圧出力38Bとの和を求める。一方、上部2の電圧出力32Bと上部4の電圧出力39Bとの和を求める。そしてこの両者の差を求める。図6から明らかなように、Z軸の周りに角速度が印加された場合、上部1と上部3は同位相、上部2と上部4は同位相でかつ上部1の逆位相である。そのため、図3における出力線90に出力される差信号90Bは単独の電圧出力の4倍の振幅になる。
Similarly, when calculating the angular velocity around the Z axis, the calculation unit 70 first obtains the sum of the voltage output 31B of the upper part 1 and the voltage output 38B of the upper part 3 as shown in FIG. 7B. On the other hand, the sum of the voltage output 32B of the upper part 2 and the voltage output 39B of the upper part 4 is obtained. Then, the difference between the two is obtained. As apparent from FIG. 6, when an angular velocity is applied around the Z axis, the upper part 1 and the upper part 3 are in phase, the upper part 2 and the upper part 4 are in phase, and the upper part 1 is in antiphase. Therefore, the difference signal 90B output to the output line 90 in FIG. 3 has an amplitude four times that of a single voltage output.
演算部70はこのようにして得られる差信号90Bを外部回路に出力し、外部回路は差信号90Bの振幅を基にZ軸の周りに角速度を算出する。あるいは演算部70がこのような機能を含んでいて、角速度に対応する電気信号を出力してもよい。
The calculation unit 70 outputs the difference signal 90B thus obtained to the external circuit, and the external circuit calculates the angular velocity around the Z axis based on the amplitude of the difference signal 90B. Alternatively, the calculation unit 70 may include such a function and output an electrical signal corresponding to the angular velocity.
すなわち、Z方向を軸とした軸周りに、例えば時計回りの角速度が発生すると、第1、第2のセンスアーム24、25はX軸方向における負側へ移動する。それに伴い、第2の下部電極28に対する第2の上部電極32の電圧出力と第4の下部電極35に対する第4の上部電極39の電圧出力との和の出力の振幅は増加する。一方、第1の下部電極27に対する第1の上部電極31の電圧出力と第3の下部電極34に対する第3の上部電極38との電圧出力の和の出力の振幅は減少する。そのため、それらの差を演算することにより、基部21を形成する平面に垂直な方向、すなわち図1に示すZ方向を軸とした軸周りの角速度を検出することができる。このように本実施の形態による角速度センサは多軸検知をすることができる。
That is, when, for example, a clockwise angular velocity is generated around an axis about the Z direction, the first and second sense arms 24 and 25 move to the negative side in the X axis direction. Accordingly, the output amplitude of the sum of the voltage output of the second upper electrode 32 with respect to the second lower electrode 28 and the voltage output of the fourth upper electrode 39 with respect to the fourth lower electrode 35 increases. On the other hand, the output amplitude of the sum of the voltage output of the first upper electrode 31 with respect to the first lower electrode 27 and the voltage output of the third upper electrode 38 with respect to the third lower electrode 34 decreases. Therefore, by calculating the difference between them, it is possible to detect the angular velocity around the axis about the direction perpendicular to the plane forming the base 21, that is, the Z direction shown in FIG. Thus, the angular velocity sensor according to the present embodiment can perform multi-axis detection.
なお、Z方向を軸とした軸周りの角速度は以下のようにしても求めることができる。すなわち、演算部70がまず下部2の電圧出力28Bと下部4の電圧出力35Bとの和を求める。一方、下部1の電圧出力27Bと下部3の電圧出力34Bとの和を求める。そしてこの両者の差を求める。しかしながら、この場合にはY軸周りの角速度、Z軸周りの角速度を同じ信号を用いて演算するため、アンプを用いて全ての演算を行う必要がある。そのため、演算部70に多くのアンプが必要になる。
The angular velocity around the axis with the Z direction as the axis can also be obtained as follows. That is, the arithmetic unit 70 first obtains the sum of the voltage output 28B of the lower part 2 and the voltage output 35B of the lower part 4. On the other hand, the sum of the voltage output 27B of the lower part 1 and the voltage output 34B of the lower part 3 is obtained. Then, the difference between the two is obtained. However, in this case, since the angular velocity around the Y axis and the angular velocity around the Z axis are calculated using the same signal, it is necessary to perform all calculations using an amplifier. Therefore, many amplifiers are required for the arithmetic unit 70.
しかしながら上述のようにZ方向を軸とした軸周りの角速度に上部電極の電圧を用いることによって、アンプを用いず結線のみで和演算することができる。したがって演算部70を簡素に構成することができる。駆動電流は角速度に起因する電流の106倍程度であり、アンプに入力する前に駆動電流が相殺できるため、この構成はS/N比の観点からも有効である。
However, as described above, by using the voltage of the upper electrode for the angular velocity around the axis with the Z direction as the axis, the sum can be calculated only by connection without using an amplifier. Therefore, the calculating part 70 can be comprised simply. Drive current is 10 6 times the current due to the angular velocity, because the driving current can be canceled before entering into the amplifier, this arrangement is effective from the viewpoint of S / N ratio.
なお、圧電体29、30、36、37の配向性を考慮して、下部電極27、28、34、35は白金で形成することが好ましい。圧電体をPZTで形成する場合、白金電極は必須である。一方、電気的接続信頼性を考慮して、上部電極31、32、38、39は金で形成することが好ましい。このように、上部電極と下部電極とを異種材料で形成すると材料に固有の比抵抗が異なるため、位相ずれが発生することが懸念される。しかしながら上述のように本実施の形態では最終的に電圧出力の差を求めて角速度を検出する。そのため、位相ずれの発生を抑制することができる。なお、上部電極、下部電極の材料はこの組み合わせに限定されない。
In consideration of the orientation of the piezoelectric bodies 29, 30, 36, and 37, the lower electrodes 27, 28, 34, and 35 are preferably formed of platinum. When the piezoelectric body is formed of PZT, a platinum electrode is essential. On the other hand, in consideration of electrical connection reliability, the upper electrodes 31, 32, 38, and 39 are preferably formed of gold. Thus, if the upper electrode and the lower electrode are formed of different materials, the specific resistances of the materials are different, and there is a concern that a phase shift may occur. However, as described above, in this embodiment, the angular velocity is detected by finally obtaining the difference in voltage output. Therefore, occurrence of phase shift can be suppressed. The material of the upper electrode and the lower electrode is not limited to this combination.
上部電極31、32、38、39は図1に示したZ方向を軸とした軸周りの角速度検知における演算に用いる。下部電極27、28、34、35は図1に示したY方向を軸とした軸周りの角速度検知における演算に用いる。そして上部電極31、32、38、39を全て同一材料の金を用いて形成し、下部電極27、28、34、35を全て同一材料の白金を用いて形成することができる。このように下部電極27、28、34、35と上部電極31、32、38、39とを異種材料で形成したような場合においても位相ずれの発生を抑制することができる。
The upper electrodes 31, 32, 38 and 39 are used for calculation in angular velocity detection around the axis with the Z direction as an axis shown in FIG. The lower electrodes 27, 28, 34, and 35 are used for calculation in angular velocity detection around an axis with the Y direction shown in FIG. 1 as an axis. The upper electrodes 31, 32, 38, and 39 can be formed using gold of the same material, and the lower electrodes 27, 28, 34, and 35 can be formed of platinum of the same material. Thus, even when the lower electrodes 27, 28, 34, and 35 and the upper electrodes 31, 32, 38, and 39 are formed of different materials, the occurrence of phase shift can be suppressed.
なお、センスアーム24、25の各電極から生じる電流は基部21から細い配線部により素子20の端部に導出される。そのため、これらの電流が大きいと電圧降下が大きくなり、位相ずれが起こりやすくなる。特に駆動電流は、前述のように角速度に起因する電流の106倍程度である。このような位相ずれを抑制するために、第1の下部電極27と第2の下部電極28を第1の基板26上で電気的に接続してもよい。また第3の下部電極34と第4の下部電極35を第2の基板33上で電気的に接続してもよい。特に、第1の下部電極27と第2の下部電極28を一体に形成し、第3の下部電極34と第4の下部電極35を一体に形成することが好ましい。これらの構成により、ドライブアーム22、23に同調して生じるセンスアーム24、25の駆動によって生じる大きな電流が各基板26、33上でキャンセルされる。そのため、配線上を流れる電流が小さくなり、位相ずれの影響を小さくすることができる。
Note that currents generated from the electrodes of the sense arms 24 and 25 are led out from the base 21 to the end of the element 20 through a thin wiring portion. For this reason, when these currents are large, the voltage drop becomes large, and a phase shift tends to occur. In particular the drive current is 10 6 times the current due to the angular velocity as described above. In order to suppress such a phase shift, the first lower electrode 27 and the second lower electrode 28 may be electrically connected on the first substrate 26. Further, the third lower electrode 34 and the fourth lower electrode 35 may be electrically connected on the second substrate 33. In particular, it is preferable that the first lower electrode 27 and the second lower electrode 28 are integrally formed, and the third lower electrode 34 and the fourth lower electrode 35 are integrally formed. With these configurations, a large current generated by driving the sense arms 24 and 25 in synchronization with the drive arms 22 and 23 is canceled on the substrates 26 and 33. Therefore, the current flowing on the wiring is reduced, and the influence of phase shift can be reduced.
なお、以上の説明では、演算部70は第1の上部電極31に対する第1の下部電極27の電圧信号と第2の上部電極32に対する第2の下部電極28の電圧信号との和を求める。一方、第3の上部電極38に対する第3の下部電極34の電圧信号と第4の上部電極39に対する第4の下部電極35の電圧信号との和を求める。そしてこの2つの和の差を求める。この差を基に基部21からセンスアーム24、25の伸びる方向を軸とした軸周りの角速度を検知することができる。すなわち図1に示すY方向を軸とした軸周りの角速度を検知することができる。しかしながら、各下部電極に対する、対応する各上部電極の電圧信号を用いて同様の演算をしても図1に示すY方向を軸とした軸周りの角速度を検知することができる。
In the above description, the arithmetic unit 70 obtains the sum of the voltage signal of the first lower electrode 27 for the first upper electrode 31 and the voltage signal of the second lower electrode 28 for the second upper electrode 32. On the other hand, the sum of the voltage signal of the third lower electrode 34 for the third upper electrode 38 and the voltage signal of the fourth lower electrode 35 for the fourth upper electrode 39 is obtained. Then, the difference between the two sums is obtained. Based on this difference, it is possible to detect the angular velocity around the axis with the direction in which the sense arms 24 and 25 extend from the base 21 as the axis. That is, the angular velocity around the axis with the Y direction shown in FIG. 1 as an axis can be detected. However, the angular velocity about the axis about the Y direction shown in FIG. 1 can be detected even if the same calculation is performed using the voltage signal of each corresponding upper electrode for each lower electrode.
すなわち、この場合、演算部70は第1の下部電極27に対する第1の上部電極31の電圧信号と第2の下部電極28に対する第2の上部電極32の電圧信号との和を求める。一方、第3の下部電極34に対する第3の上部電極38の電圧信号と第4の下部電極35に対する第4の上部電極38の電圧信号との和を求める。そしてこの2つの和の差を求める。この差を基に基部21からセンスアーム24、25の伸びる方向を軸とした軸周りの角速度を検知することができる。演算部70はこのように構成されていてもよい。
That is, in this case, the arithmetic unit 70 obtains the sum of the voltage signal of the first upper electrode 31 for the first lower electrode 27 and the voltage signal of the second upper electrode 32 for the second lower electrode 28. On the other hand, the sum of the voltage signal of the third upper electrode 38 for the third lower electrode 34 and the voltage signal of the fourth upper electrode 38 for the fourth lower electrode 35 is obtained. Then, the difference between the two sums is obtained. Based on this difference, it is possible to detect the angular velocity around the axis with the direction in which the sense arms 24 and 25 extend from the base 21 as the axis. The calculation unit 70 may be configured in this way.
またその際、演算部70は第2の上部電極31に対する第2の下部電極28の電圧信号と第4の上部電極39に対する第4の下部電極35の電圧信号との和と、第1の上部電極31に対する第1の下部電極27の電圧信号と第3の上部電極38に対する第3の下部電極34の電圧信号との和との差を演算してもよい。この差から基部21を形成する平面に垂直な方向、すなわち図1に示すZ方向を軸とした軸周りの角速度も検出することができる。
At that time, the arithmetic unit 70 calculates the sum of the voltage signal of the second lower electrode 28 for the second upper electrode 31 and the voltage signal of the fourth lower electrode 35 for the fourth upper electrode 39, and the first upper electrode 31. The difference between the voltage signal of the first lower electrode 27 for the electrode 31 and the sum of the voltage signal of the third lower electrode 34 for the third upper electrode 38 may be calculated. From this difference, it is also possible to detect an angular velocity around an axis about the direction perpendicular to the plane forming the base 21, that is, the Z direction shown in FIG.
このように本実施の形態ではY方向を軸とした軸周りの角速度とZ方向を軸とした軸周りの角速度を、それぞれ下部電極に対する上部電極、下部電極に対する上部電極を別々に利用して求める。そのため、駆動電流の影響を抑制して2軸の角速度を精度よく検出することができる。
Thus, in this embodiment, the angular velocity around the axis with the Y direction as the axis and the angular velocity around the axis with the Z direction as the axis are obtained separately using the upper electrode for the lower electrode and the upper electrode for the lower electrode, respectively. . Therefore, it is possible to accurately detect the biaxial angular velocity while suppressing the influence of the drive current.
演算部70がこのような演算を行う場合でも、下部電極と上部電極の材料構成や、同一センスアームに設けられた2つの下部電極の一体化などによる効果は上述の場合と同様である。
Even when the calculation unit 70 performs such calculation, the effects of the material configuration of the lower electrode and the upper electrode and the integration of the two lower electrodes provided on the same sense arm are the same as those described above.
なお図3における駆動部50は角速度センサに含めず、各ドライブアームに電気的に接続された端子を設けておいて、各ドライブアームに外部回路から駆動信号を供給する構成でもよい。
3 may be configured not to be included in the angular velocity sensor but to provide a terminal electrically connected to each drive arm and to supply a drive signal from an external circuit to each drive arm.
本発明の角速度センサでは、基部から第1、第2のセンスアームの伸びる方向を軸とした軸周りの角速度を検知することができる。この角速度センサは自動車制御やカーナビゲーション装置、デジタルカメラ等において有用である。
The angular velocity sensor of the present invention can detect the angular velocity around the axis with the direction in which the first and second sense arms extend from the base as an axis. This angular velocity sensor is useful in automobile control, car navigation devices, digital cameras, and the like.
20 素子
21 基部
22 第1のドライブアーム
23 第2のドライブアーム
22A,23A,24A,25A 撓み部
22B,23B,24B,25B 錘部
24 第1のセンスアーム
25 第2のセンスアーム
26 第1の基板
27 第1の下部電極
28 第2の下部電極
27A,28A,31A,32A,34A,35A,38A,39A,80,90 出力線
27B,28B,31B,32B,34B,35B,38B,39B 電圧出力
29 第1の圧電体
30 第2の圧電体
31 第1の上部電極
32 第2の上部電極
33 第2の基板
34 第3の下部電極
35 第4の下部電極
36 第3の圧電体
37 第4の圧電体
38 第3の上部電極
39 第4の上部電極
41,42 駆動振動
43,44,45,46 コリオリ力
50 駆動部
70 演算部
80B,90B 差信号 20element 21 base 22 first drive arm 23 second drive arms 22A, 23A, 24A, 25A flexures 22B, 23B, 24B, 25B weight 24 first sense arm 25 second sense arm 26 first Substrate 27 First lower electrode 28 Second lower electrode 27A, 28A, 31A, 32A, 34A, 35A, 38A, 39A, 80, 90 Output line 27B, 28B, 31B, 32B, 34B, 35B, 38B, 39B Voltage Output 29 First piezoelectric body 30 Second piezoelectric body 31 First upper electrode 32 Second upper electrode 33 Second substrate 34 Third lower electrode 35 Fourth lower electrode 36 Third piezoelectric body 37 Four piezoelectric bodies 38 Third upper electrode 39 Fourth upper electrodes 41, 42 Drive vibrations 43, 44, 45, 46 Coriolis force 50 Drive unit 70 Calculation section 80B, 90B difference signal
21 基部
22 第1のドライブアーム
23 第2のドライブアーム
22A,23A,24A,25A 撓み部
22B,23B,24B,25B 錘部
24 第1のセンスアーム
25 第2のセンスアーム
26 第1の基板
27 第1の下部電極
28 第2の下部電極
27A,28A,31A,32A,34A,35A,38A,39A,80,90 出力線
27B,28B,31B,32B,34B,35B,38B,39B 電圧出力
29 第1の圧電体
30 第2の圧電体
31 第1の上部電極
32 第2の上部電極
33 第2の基板
34 第3の下部電極
35 第4の下部電極
36 第3の圧電体
37 第4の圧電体
38 第3の上部電極
39 第4の上部電極
41,42 駆動振動
43,44,45,46 コリオリ力
50 駆動部
70 演算部
80B,90B 差信号 20
Claims (14)
- 素子と演算部とを備えた角速度センサであって、
前記素子は、
基部と、
前記基部に接続され前記基部から互いに平行に伸びる部分を有する第1、第2のドライブアームと、
前記基部に接続され、前記基部から前記第1、第2のドライブアームに対し反対方向へ伸びるとともに、前記基部から互いに平行に伸びる部分を有する第1、第2のセンスアームと、を含み、
前記第1のセンスアームは、第1の基板と、前記第1の基板の上に形成された第1の下部電極と、前記第1の基板の上に、前記第1の下部電極よりも前記第2のセンスアームに近い側に形成された第2の下部電極と、前記第1の下部電極の上に形成された第1の圧電体と、前記第2の下部電極の上に形成された第2の圧電体と、前記第1の圧電体の上に形成された第1の上部電極と、前記第2の圧電体の上に形成された第2の上部電極と、を有し、
前記第2のセンスアームは、第2の基板と、前記第2の基板の上に形成された第3の下部電極と、前記第2の基板の上に、前記第3の下部電極よりも前記第1のセンスアームから遠い側に形成された第4の下部電極と、前記第3の下部電極の上に形成された第3の圧電体と、前記第4の下部電極の上に形成された第4の圧電体と、前記第3の圧電体の上に形成された第3の上部電極と、前記第4の圧電体の上に形成された第4の上部電極と、を有し、
前記演算部は、
前記第1の上部電極に対する前記第1の下部電極の電圧信号と前記第2の上部電極に対する前記第2の下部電極の電圧信号との和と、前記第3の上部電極に対する前記第3の下部電極の電圧信号と前記第4の上部電極に対する前記第4の下部電極の電圧信号との和との差を演算する、
角速度センサ。 An angular velocity sensor including an element and a calculation unit,
The element is
The base,
First and second drive arms having portions connected to the base and extending parallel to each other from the base;
First and second sense arms connected to the base and extending in opposite directions from the base to the first and second drive arms and having portions extending parallel to each other from the base;
The first sense arm includes: a first substrate; a first lower electrode formed on the first substrate; and the first sense arm on the first substrate rather than the first lower electrode. A second lower electrode formed on the side close to the second sense arm; a first piezoelectric body formed on the first lower electrode; and formed on the second lower electrode. A second piezoelectric body, a first upper electrode formed on the first piezoelectric body, and a second upper electrode formed on the second piezoelectric body,
The second sense arm includes a second substrate, a third lower electrode formed on the second substrate, and the second sense arm on the second substrate more than the third lower electrode. A fourth lower electrode formed on the side far from the first sense arm, a third piezoelectric body formed on the third lower electrode, and formed on the fourth lower electrode. A fourth piezoelectric body, a third upper electrode formed on the third piezoelectric body, and a fourth upper electrode formed on the fourth piezoelectric body,
The computing unit is
The sum of the voltage signal of the first lower electrode for the first upper electrode and the voltage signal of the second lower electrode for the second upper electrode, and the third lower electrode for the third upper electrode Calculating the difference between the voltage signal of the electrode and the sum of the voltage signal of the fourth lower electrode with respect to the fourth upper electrode;
Angular velocity sensor. - 前記演算部は、前記第1の上部電極に対する前記第1の下部電極の電圧信号と前記第2の上部電極に対する前記第2の下部電極の電圧信号との前記和と、前記第3の上部電極に対する前記第3の下部電極の電圧信号と前記第4の上部電極に対する前記第4の下部電極の電圧信号との前記和との前記差から、前記基部から前記第1、第2のセンスアームの伸びる方向を軸とした軸周りの角速度を検知する、
請求項1記載の角速度センサ。 The arithmetic unit includes the sum of the voltage signal of the first lower electrode with respect to the first upper electrode and the voltage signal of the second lower electrode with respect to the second upper electrode, and the third upper electrode. From the difference between the sum of the voltage signal of the third lower electrode with respect to and the voltage signal of the fourth lower electrode with respect to the fourth upper electrode, the first and second sense arms from the base Detect angular velocity around the axis with the extending direction as the axis,
The angular velocity sensor according to claim 1. - 前記演算部は、
前記第2の下部電極に対する前記第2の上部電極の電圧信号と前記第4の下部電極に対する前記第4の上部電極の電圧信号との和と、前記第1の下部電極に対する第1の上部電極の電圧信号と前記第3の下部電極に対する前記第3の上部電極の電圧信号との和との差を演算する、
請求項1記載の角速度センサ。 The computing unit is
The sum of the voltage signal of the second upper electrode with respect to the second lower electrode and the voltage signal of the fourth upper electrode with respect to the fourth lower electrode, and the first upper electrode with respect to the first lower electrode And the difference between the voltage signal of the third upper electrode and the voltage signal of the third upper electrode with respect to the third lower electrode,
The angular velocity sensor according to claim 1. - 前記演算部は、前記第2の下部電極に対する前記第2の上部電極の電圧信号と前記第4の下部電極に対する前記第4の上部電極の電圧信号との前記和と、前記第1の下部電極に対する第1の上部電極の電圧信号と前記第3の下部電極に対する前記第3の上部電極の電圧信号との前記和との前記差から、前記基部を形成する平面に垂直な方向を軸とした軸周りの角速度を検出する、
請求項3記載の角速度センサ。 The arithmetic unit includes the sum of the voltage signal of the second upper electrode with respect to the second lower electrode and the voltage signal of the fourth upper electrode with respect to the fourth lower electrode, and the first lower electrode. From the difference between the sum of the voltage signal of the first upper electrode to the third and the voltage signal of the third upper electrode to the third lower electrode, the direction perpendicular to the plane forming the base is the axis Detect angular velocity around the axis,
The angular velocity sensor according to claim 3. - 前記第1、第2、第3、第4の上部電極は同一の材料で形成され、
前記第1、第2、第3、第4の下部電極は同一の材料で形成され、
前記第1、第2、第3、第4の上部電極と前記第1、第2、第3、第4の下部電極とは異種材料で形成された、
請求項1記載の角速度センサ。 The first, second, third and fourth upper electrodes are formed of the same material,
The first, second, third and fourth lower electrodes are formed of the same material,
The first, second, third, and fourth upper electrodes and the first, second, third, and fourth lower electrodes are formed of different materials.
The angular velocity sensor according to claim 1. - 前記第1、第2の下部電極が電気的に接続された、
請求項1記載の角速度センサ。 The first and second lower electrodes are electrically connected;
The angular velocity sensor according to claim 1. - 前記第1、第2の下部電極が一体に形成された、
請求項1記載の角速度センサ。 The first and second lower electrodes are integrally formed;
The angular velocity sensor according to claim 1. - 前記第3、第4の下部電極が電気的に接続された、
請求項1記載の角速度センサ。 The third and fourth lower electrodes are electrically connected;
The angular velocity sensor according to claim 1. - 前記第3、第4の下部電極が一体に形成された、
請求項1記載の角速度センサ。 The third and fourth lower electrodes are integrally formed;
The angular velocity sensor according to claim 1. - 素子と演算部とを備えた角速度センサであって、
前記素子は、
基部と、
前記基部に接続され前記基部から互いに平行に伸びる部分を有する第1、第2のドライブアームと、
前記基部に接続され、前記基部から前記第1、第2のドライブアームに対し反対方向へ伸びるとともに、前記基部から互いに平行に伸びる部分を有する第1、第2のセンスアームと、を含み、
前記第1のセンスアームは、第1の基板と、前記第1の基板の上に形成された第1の下部電極と、前記第1の基板の上に、前記第1の下部電極よりも前記第2のセンスアームに近い側に形成された第2の下部電極と、前記第1の下部電極の上に形成された第1の圧電体と、前記第2の下部電極の上に形成された第2の圧電体と、前記第1の圧電体の上に形成された第1の上部電極と、前記第2の圧電体の上に形成された第2の上部電極と、を有し、
前記第2のセンスアームは、第2の基板と、前記第2の基板の上に形成された第3の下部電極と、前記第2の基板の上に、前記第3の下部電極よりも前記第1のセンスアームから遠い側に形成された第4の下部電極と、前記第3の下部電極の上に形成された第3の圧電体と、前記第4の下部電極の上に形成された第4の圧電体と、前記第3の圧電体の上に形成された第3の上部電極と、前記第4の圧電体の上に形成された第4の上部電極と、を有し、
前記演算部は、
前記第1の下部電極に対する前記第1の上部電極の電圧信号と前記第2の下部電極に対する前記第2の上部電極の電圧信号との和と、前記第3の下部電極に対する前記第3の上部電極の電圧信号と前記第4の下部電極に対する前記第4の上部電極の電圧信号との和との差を演算する、
角速度センサ。 An angular velocity sensor including an element and a calculation unit,
The element is
The base,
First and second drive arms having portions connected to the base and extending parallel to each other from the base;
First and second sense arms connected to the base and extending in opposite directions from the base to the first and second drive arms and having portions extending parallel to each other from the base;
The first sense arm includes: a first substrate; a first lower electrode formed on the first substrate; and the first sense arm on the first substrate rather than the first lower electrode. A second lower electrode formed on the side close to the second sense arm; a first piezoelectric body formed on the first lower electrode; and formed on the second lower electrode. A second piezoelectric body, a first upper electrode formed on the first piezoelectric body, and a second upper electrode formed on the second piezoelectric body,
The second sense arm includes a second substrate, a third lower electrode formed on the second substrate, and the second sense arm on the second substrate more than the third lower electrode. A fourth lower electrode formed on the side far from the first sense arm, a third piezoelectric body formed on the third lower electrode, and formed on the fourth lower electrode. A fourth piezoelectric body, a third upper electrode formed on the third piezoelectric body, and a fourth upper electrode formed on the fourth piezoelectric body,
The computing unit is
The sum of the voltage signal of the first upper electrode for the first lower electrode and the voltage signal of the second upper electrode for the second lower electrode, and the third upper electrode for the third lower electrode Calculating the difference between the voltage signal of the electrode and the sum of the voltage signal of the fourth upper electrode with respect to the fourth lower electrode;
Angular velocity sensor. - 前記演算部は、前記第1の下部電極に対する前記第1の上部電極の電圧信号と前記第2の下部電極に対する前記第2の上部電極の電圧信号との前記和と、前記第3の下部電極に対する前記第3の上部電極の電圧信号と前記第4の下部電極に対する前記第4の上部電極の電圧信号との前記和との前記差から、前記基部から前記第1、第2のセンスアームの伸びる方向を軸とした軸周りの角速度を検知する、
請求項10記載の角速度センサ。 The arithmetic unit includes the sum of the voltage signal of the first upper electrode with respect to the first lower electrode and the voltage signal of the second upper electrode with respect to the second lower electrode, and the third lower electrode. From the difference between the sum of the voltage signal of the third upper electrode with respect to the voltage signal of the fourth upper electrode with respect to the fourth lower electrode, the first and second sense arms from the base Detect angular velocity around the axis with the extending direction as the axis,
The angular velocity sensor according to claim 10. - 前記演算部は、
前記第2の上部電極に対する第2の下部電極の電圧信号と前記第4の上部電極に対する前記第4の下部電極の電圧信号との和と、前記第1の上部電極に対する第1の下部電極の電圧信号と前記第3の上部電極に対する前記第3の下部電極の電圧信号との和との差を演算する、
請求項10記載の角速度センサ。 The computing unit is
The sum of the voltage signal of the second lower electrode with respect to the second upper electrode and the voltage signal of the fourth lower electrode with respect to the fourth upper electrode, and the first lower electrode with respect to the first upper electrode Calculating the difference between the voltage signal and the sum of the voltage signal of the third lower electrode with respect to the third upper electrode;
The angular velocity sensor according to claim 10. - 前記演算部は、前記第2の上部電極に対する第2の下部電極の電圧信号と前記第4の上部電極に対する前記第4の下部電極の電圧信号との前記和と、前記第1の上部電極に対する第1の下部電極の電圧信号と前記第3の上部電極に対する前記第3の下部電極の電圧信号との前記和との前記差から、前記基部を形成する平面に垂直な方向を軸とした軸周りの角速度を検出する、
請求項12記載の角速度センサ。 The arithmetic unit includes the sum of the voltage signal of the second lower electrode with respect to the second upper electrode and the voltage signal of the fourth lower electrode with respect to the fourth upper electrode, and the voltage with respect to the first upper electrode. An axis about the direction perpendicular to the plane forming the base from the difference between the voltage signal of the first lower electrode and the sum of the voltage signal of the third lower electrode with respect to the third upper electrode Detect the angular velocity around,
The angular velocity sensor according to claim 12. - 前記第1、第2、第3、第4の上部電極は同一の材料で形成され、
前記第1、第2、第3、第4の下部電極は同一の材料で形成され、
前記第1、第2、第3、第4の上部電極と前記第1、第2、第3、第4の下部電極とは異種材料で形成された、
請求項10記載の角速度センサ。 The first, second, third and fourth upper electrodes are formed of the same material,
The first, second, third and fourth lower electrodes are formed of the same material,
The first, second, third, and fourth upper electrodes and the first, second, third, and fourth lower electrodes are formed of different materials.
The angular velocity sensor according to claim 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-332553 | 2008-12-26 | ||
JP2008332553 | 2008-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010073576A1 true WO2010073576A1 (en) | 2010-07-01 |
Family
ID=42287226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/007043 WO2010073576A1 (en) | 2008-12-26 | 2009-12-21 | Angular velocity sensor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010073576A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013076942A1 (en) | 2011-11-22 | 2013-05-30 | パナソニック株式会社 | Angular velocity sensor and detection element used therein |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62217115A (en) * | 1986-03-19 | 1987-09-24 | Tokyo Keiki Co Ltd | Gyro device |
WO2008023566A1 (en) * | 2006-08-21 | 2008-02-28 | Panasonic Corporation | Angular velocity sensor |
WO2008035649A1 (en) * | 2006-09-22 | 2008-03-27 | Panasonic Corporation | Inertia force sensor |
-
2009
- 2009-12-21 WO PCT/JP2009/007043 patent/WO2010073576A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62217115A (en) * | 1986-03-19 | 1987-09-24 | Tokyo Keiki Co Ltd | Gyro device |
WO2008023566A1 (en) * | 2006-08-21 | 2008-02-28 | Panasonic Corporation | Angular velocity sensor |
WO2008035649A1 (en) * | 2006-09-22 | 2008-03-27 | Panasonic Corporation | Inertia force sensor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013076942A1 (en) | 2011-11-22 | 2013-05-30 | パナソニック株式会社 | Angular velocity sensor and detection element used therein |
US9400180B2 (en) | 2011-11-22 | 2016-07-26 | Panasonic Intellectual Property Management Co., Ltd. | Angular velocity sensor and detection element used therein |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5206409B2 (en) | Angular velocity sensor | |
JP5205725B2 (en) | Angular velocity sensor | |
JP4599848B2 (en) | Angular velocity sensor | |
CN101501448B (en) | inertial force sensor | |
JP5671245B2 (en) | MEMS gyroscope with reduced magnetic sensitivity | |
JP2019060794A (en) | Physical quantity measurement device, electronic apparatus and moving body | |
JP3489390B2 (en) | Angular velocity sensor device | |
US9482533B2 (en) | Vibrating reed, angular velocity sensor, electronic device, and moving object | |
WO2010073576A1 (en) | Angular velocity sensor | |
JP6337444B2 (en) | Vibrating piece, angular velocity sensor, electronic device and moving object | |
JP4163031B2 (en) | Tuning fork type angular velocity sensor | |
JP4869001B2 (en) | Vibrating gyro | |
JPH08278141A (en) | Ceramic piezoelectric complex type angular velocity sensor | |
JP2010091364A (en) | Angular velocity sensor element and angular velocity sensor using this | |
JP4600590B2 (en) | Angular velocity sensor | |
JP2011209270A (en) | Angular velocity sensor element | |
JP2010169498A (en) | Angular velocity sensor element | |
JP2010025840A (en) | Force detector | |
JP2008203070A (en) | Composite sensor | |
JP2004301575A (en) | Angular velocity sensor | |
JP5516119B2 (en) | Vibrating gyro element, vibrating gyro sensor, and angular velocity detection method using vibrating gyro sensor | |
JP2012237653A (en) | Angular velocity sensor element | |
JP2012093154A (en) | Triaxial detection angular velocity sensor | |
JP2005069801A (en) | Piezoelectric oscillating gyroscopic sensor | |
JP5166585B2 (en) | Inertial sensor element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09834388 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09834388 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |