JPH0429626B2 - - Google Patents

Info

Publication number
JPH0429626B2
JPH0429626B2 JP58201117A JP20111783A JPH0429626B2 JP H0429626 B2 JPH0429626 B2 JP H0429626B2 JP 58201117 A JP58201117 A JP 58201117A JP 20111783 A JP20111783 A JP 20111783A JP H0429626 B2 JPH0429626 B2 JP H0429626B2
Authority
JP
Japan
Prior art keywords
powder
nitrogen
sintered body
silicon nitride
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58201117A
Other languages
Japanese (ja)
Other versions
JPS6096576A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58201117A priority Critical patent/JPS6096576A/en
Publication of JPS6096576A publication Critical patent/JPS6096576A/en
Publication of JPH0429626B2 publication Critical patent/JPH0429626B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、焼結助剤の使用量を少なくしても高
強度窒化珪素焼結体を製造することができる方法
に関するものである。 窒化珪素(Sl3N4)又は、窒化珪素の焼結体は
周知の通り、従来の窯業製品に比べて(1)機械的強
度及び硬度が非常に大きく、高温強度も大きい。
(2)熱衝撃に強く耐火度も大きい。(3)化学的に安定
で耐食性が大きい。(4)電気絶縁性が大きい。など
の性質を具備している。このため、その用途は広
く、金属製錬、窯業、機械工業用などの高級耐火
物、耐火材料、耐摩耗材料、電気絶縁材料などに
使用されている。 また、近年、特に極めて広範囲の温度域に渡つ
て高強度、耐熱性機械的衝撃性が要求されるガス
タービンのような高温材料の原料として注目され
ている。 窒化珪素は、もともと難焼結性であるがため
に、従来からその焼結性を改善する工夫が種々な
されているものの、いまだ満足しうるものは開発
されていない。そして、従来の技術においては、
焼結性を改良すれば、高温強度が低下するという
矛盾が生じ、これら両特性を同時に満足する焼結
体を得ることが困難とされている。例えば、これ
まで開発されている種々の製法により得られた窒
化珪素粉末を常圧焼結等による通常の条件で焼結
した場合は、焼結による収縮はほとんど起こら
ず、このため得られた焼結体の密度は小さく強度
も低く到底、使用目的に耐えうるものではない。
一般に窒化珪素をはじめとして炭化珪素等の難焼
結性材料を焼結助剤等を使用することなく、直接
高密度に焼結するには、ダイヤモンド合成の如
く、超高圧下でホツトプレスすることによつて、
その目的物を得ることも可能であるが、この方法
は、超高圧下で行わなければならず、このためそ
の焼結コストが高く経済的かつ工業的な面で到底
採用しうるものでない。このため、これまで窒化
珪素粉末に焼結助剤として、MgO、Al2O3
Y2O3、ZrO2等の酸化物を10〜20重量%添加する
ことが一般的に行われている。しかし、これらの
焼結助剤を添加して得た窒化珪素の焼結体は、窒
化珪素の結晶粒界に低融点物質を形成しており、
このため焼結が促進され、高密度な焼結体を得る
ことはできるが、一方この低融点物質の形成が逆
に高温強度特性の低下の原因となり、両特性を同
時に満足する焼結体を得ることは困難である。 本発明者等は、先に含窒素シラン化合物と焼結
助剤との混合物を非酸化性雰囲気で加熱すること
を特徴とする焼結性に優れた窒化珪素粉末の製造
法を特許出願した(特願昭57−213995)。この方
法で得た粉末を焼結すると焼結助剤の添加量を低
減しても焼結体は高密度化し、高温強度特性の優
れたものが得られた。しかし、常温強度特性は、
従来の窒化珪素粉末と比較して大きな差異はなか
つた。そのため、上記粉末を更に改良すべく鋭意
研究の結果、高密度でかつ常温および高温強度特
性を同時に満足する窒化珪素の焼結体を経済的か
つ簡便な通常実施している焼結手段で得ることを
可能とした方法を開発し、本発明を完成したもの
である。 即ち、本発明は、含窒素シラン化合物と焼結助
剤とを混合し非酸化性雰囲気下で加熱して含窒素
シラン化合物を結晶化させた後、成形し焼結して
焼結体を製造するに当り、含窒素シラン化合物と
焼結助剤とを解砕と分散の機能を持つ方式で混合
し加熱することを特徴とする窒化珪素焼結体の製
造法を提供するものである。 ここで本発明に用いられる含窒素シラン化合物
としては、ハロゲン化珪素とアンモニアとの反応
生成物であるシリコンジイミド(Si(NH)2)、ハ
ロゲン化アンモニウムの混合物を液体アンモニウ
ムで洗浄して単離したシリコンジイミド、あるい
はSi(NH)2、ハロゲン化アンモニウムの混合物
を非酸化性雰囲気下、例えば400℃〜1300℃で加
熱して得た分解生成物Sl2N3H、非晶質Si3N4
で本発明では、後の熱分解に供するこれらの原料
には、実質的にハロゲンは含まれておらず、例え
含まれていたとしても1重量%以下の極く微量で
ある。焼結助剤としては、Y2O3、Al2O3、MgO
等の酸化物及び加熱して酸化物に変化しうる炭酸
塩、蓚酸塩等、AlN、TiC等の非酸化物である。
これらの混合割合は、17重量%以下、好ましく
は、2〜8重量%更に好ましくは3〜5重量%で
ある。 本発明においては、含窒素シラン化合物と焼結
助剤との混合方法に特徴がある。即ち本発明では
粉末の形状を壊さない混合機であるV型混合機や
水平円筒型混合機等の混合では、含窒素シラン化
合物と焼結助剤が不均一に分散するため、解砕と
分散の両方の機能を同時に有する混合機である撹
拌擂潰機、アトリツシヨンミル、湿式ボールミル
等の混合方式で行うことが必要である。これら混
合方式の混合度の差異を確認するため混合粉末を
非酸化性雰囲気中で加熱した粉末を粉末X線回析
試験および化学分析をおこなつた。前者つまり単
なる混合に於いては、粉末X線回析試験から、焼
結助剤が未反応のまま一部残存していることが判
り、又化学分析によつてサンプル箇所により、焼
結助剤量のかなりのバラツキが確認されたのに対
し後者即ち、解砕と分散を兼ね備えた混合方式で
は、そのような結果は得られなかつた。その理由
は定かではないが含窒素シラン化合物の比表面積
が100〜1000m2/gと極めて大きいため粒子間の
凝集力は極めて強く、その凝集を打ち破つて混合
しないと一次粒子段階での均一な混合は不可能と
推測される。そして混合物の形態は、混合粉末自
体又は該混合粉末を造粒、成型したものを適宜使
用することができる。 本発明における含窒素シラン化合物と焼結助剤
との混合物の加熱は、1200℃〜1700℃の温度で非
酸化性雰囲気で加熱する。そしてこの加熱温度は
加熱時の雰囲気の相違により決定される。即ち、
窒素を主成分とする雰囲気中での加熱温度は1400
℃〜1700℃真空下または水素、アルゴンの1種以
上を主成分とする雰囲気では1200℃〜1350℃の温
度にて加熱する。その理由は窒素を主成分とする
雰囲気で加熱温度1400℃未満で実施した場合は、
含窒素シラン化合物の熱分解が不完全で非晶質の
窒化珪素が生成し、また1700℃を超えると窒化珪
素の粒成長が起こり好ましくないためである。ま
た真空下および水素、アルゴン雰囲気で加熱温度
1200℃未満で実施した場合においても同様に非晶
質窒化珪素が生成し、また1350℃を超えると金属
珪素への分解が起こり好ましくない。含窒素シラ
ン化合物と焼結助剤との混合物を加熱して得た窒
化珪素粉末を焼結した場合、後述のように焼結助
剤の添加量が少ない場合においても、高密度焼結
体が得られる理由は定かではないが、(1)含窒素シ
ラン化合物の比表面積が極めて大きく、添加した
焼結助剤と速やかに反応し、かつ均質となる。(2)
焼結助剤と反応した窒化珪素粉末であるがため焼
結時の金属珪素への分解が抑制されるためと推測
される。 このように含窒素シラン化合物と焼結助剤の混
合物を特定の条件下において加熱することにより
製造した窒化珪素粉末を焼結に供して得た該焼結
体は第1表に示す焼結性、焼結体の常温および高
温での強度特性共に優れた焼結体である。 本発明において、特徴的なことは、本発明によ
れば、驚くべき事実として焼結助剤の添加量が少
なくても優れた高密度焼結体を得ることが可能と
なつたのみならず、通常の方法による焼結体と比
較して高温および常温での曲げ強度も数段優れた
焼結体を得られた。これは、窒化珪素と焼結助剤
を粉末の状態で反応させることにより、焼結体の
組織の均一性が向上したためと推測される。本発
明により得られた窒化珪素は、殊に高強度、信頼
性を要求されるエンジン部品用の原料として最適
である。 次に実施例で本発明を更に詳述する。 実施例1〜4および比較例1〜4 二重仕込管の外管に窒素ガスを般送とした四塩
化珪素飽和蒸気(25℃)を33g/hr、また内管に
アンモニアガスを20g/hrの速度で夫々流し、水
冷で10℃に保つた反応管(60m/mφ×280m/
m)に導入し、両者を連続的に反応させ生成した
微粉末を窒素ガスにより搬送し、反応管下部の容
器に捕集した。次に前記の粉末を石英で形成され
た140m/mφの管状炉に充填したアンモニア雰
囲気下で200℃/hrで昇温し、1000℃の温度下で
2時間保持して白色を呈する非晶質粉末を得た。
化学分析からこの生成粉末の組成はSl2N3Hに極
めて近いものであつた。 上記粉末と第1表に示す焼結助剤を磁器性撹拌
擂潰機で1時間混合した粉末を25m/mφ金型プ
レスにより200Kg・cm2の成形圧で加圧成形し、窒
素雰囲気下1550℃に加熱し、0.5時間保持して4
種の粉末を得た。これをポリエチレン製ボールミ
ルにより解砕し、金型プレスにより5×50×4
(mm)の形状にプレス成形した後1650℃〜1750℃
の窒素雰囲気中で4時間焼成し、焼結体を得た。
この焼結体の表面を#400のダイヤモンド砥石に
より研削した後、密度、曲げ強度の測定を行つ
た。結果を第1表に示した。比較例として、含窒
素シラン化合物と焼結助剤との混合をV型混合機
で行い実施例と同様に焼結体を得、その焼結体の
測定値を第1表に示した。なお曲げ強度は支点間
30mmの3点曲げ試験による値のそれぞれ10個の平
均である。また実施例3と比較例3のY2O3の化
学分析値を表2に示す。任意に5ケ所から約0.2
gずつ取り出したものである。 実施例 5〜8 実施例1〜4と同様にして得たSi(NH)2
NH4Cl混合粉末を−70℃の液体アンモニアで洗
浄し副生したNH4Clを除去し、Si(NH)2を単離
した。このSi(NH)2粉末と第2表に示す焼結助
剤を湿式ボールミルで2時間混合し真空乾燥およ
び加圧成形後、H2雰囲気、1300℃で1時間保持
して4種の粉末を得た。これを実施例1と同様に
焼結し、密度、曲げ強度の測定を行つた。その結
果を第3表に示した。 実施例 9〜12 窒素ガスを搬送とした四塩化珪素飽和蒸気(25
℃)を33g/hr、アンモニアガスを20g/hrの速
度で、1000℃に保つた石英管(50m/mφ×1000
m/m)に導入し、両者を連続的に反応させ生成
した微粉体を窒素ガスにより、500℃に保つた容
器へ捕集した。 上記粉末と第3表に示す焼結助剤を窒化珪素製
アトリツシヨンミルにより20分間混合した粉末を
真空下、1300℃で1時間保持して4種の粉末を得
た。これを実施例1と同様に焼結し、密度、曲げ
強度の測定を行つた。その結果を第4表に示し
た。
The present invention relates to a method that can produce a high-strength silicon nitride sintered body even if the amount of sintering aid used is reduced. As is well known, silicon nitride (Sl 3 N 4 ) or a sintered body of silicon nitride has (1) extremely high mechanical strength and hardness, and high high-temperature strength, compared to conventional ceramic products.
(2) It is resistant to thermal shock and has high fire resistance. (3) Chemically stable and highly corrosion resistant. (4) Great electrical insulation. It has properties such as. Therefore, its applications are wide, and it is used in high-grade refractories, fireproof materials, wear-resistant materials, electrical insulation materials, etc. for metal smelting, ceramics, and machinery industries. In recent years, it has also attracted attention as a raw material for high-temperature materials such as gas turbines, which require high strength, heat resistance, and mechanical impact resistance over an extremely wide temperature range. Since silicon nitride is inherently difficult to sinter, various attempts have been made to improve its sinterability, but nothing satisfactory has yet been developed. And in conventional technology,
If the sinterability is improved, the high-temperature strength is reduced, which is a contradiction in terms, and it is difficult to obtain a sintered body that satisfies both of these properties at the same time. For example, when silicon nitride powder obtained by various manufacturing methods that have been developed so far is sintered under normal conditions such as pressureless sintering, almost no shrinkage occurs due to sintering, and the resulting sintered The density of the aggregate is small and the strength is low, so it cannot withstand the intended use.
In general, in order to directly sinter difficult-to-sinter materials such as silicon nitride and silicon carbide to a high density without using sintering aids, it is necessary to hot press under ultra-high pressure, as in diamond synthesis. Afterwards,
Although it is possible to obtain the desired product, this method must be carried out under ultra-high pressure, and therefore the sintering cost is high and it cannot be adopted from an economical and industrial perspective. For this reason, MgO, Al 2 O 3 ,
It is common practice to add 10 to 20% by weight of oxides such as Y 2 O 3 and ZrO 2 . However, the silicon nitride sintered body obtained by adding these sintering aids forms a low melting point substance at the grain boundaries of silicon nitride.
This accelerates sintering and makes it possible to obtain a high-density sintered body, but on the other hand, the formation of this low-melting point substance causes a decrease in high-temperature strength properties, making it possible to obtain a sintered body that satisfies both properties at the same time. It is difficult to obtain. The present inventors previously filed a patent application for a method for producing silicon nitride powder with excellent sinterability, which is characterized by heating a mixture of a nitrogen-containing silane compound and a sintering aid in a non-oxidizing atmosphere ( (Special application 1987-213995). When the powder obtained by this method was sintered, a sintered body with high density and excellent high-temperature strength properties was obtained even if the amount of sintering aid added was reduced. However, the room temperature strength properties are
There was no major difference compared to conventional silicon nitride powder. Therefore, as a result of intensive research to further improve the above-mentioned powder, it was found that a sintered body of silicon nitride that has high density and satisfies both room temperature and high temperature strength properties can be obtained by an economical and simple sintering method commonly used. The present invention was completed by developing a method that made this possible. That is, the present invention involves mixing a nitrogen-containing silane compound and a sintering aid, heating the mixture in a non-oxidizing atmosphere to crystallize the nitrogen-containing silane compound, and then molding and sintering to produce a sintered body. In doing so, the present invention provides a method for producing a silicon nitride sintered body, which is characterized in that a nitrogen-containing silane compound and a sintering aid are mixed and heated in a method that has the functions of crushing and dispersing. The nitrogen-containing silane compound used in the present invention is isolated by washing a mixture of silicon diimide (Si(NH) 2 ), which is a reaction product of silicon halide and ammonia, and ammonium halide with liquid ammonium. Decomposition products Sl 2 N 3 H, amorphous Si 3 N obtained by heating a mixture of silicon diimide or Si(NH) 2 and ammonium halide in a non-oxidizing atmosphere, for example at 400°C to 1300° C . In the present invention, these raw materials used for subsequent thermal decomposition do not substantially contain halogen, and even if they do contain halogen, it is in a very small amount of 1% by weight or less. Sintering aids include Y 2 O 3 , Al 2 O 3 , MgO
oxides such as carbonates and oxalates that can be converted into oxides by heating, and non-oxides such as AlN and TiC.
The mixing ratio of these is 17% by weight or less, preferably 2 to 8% by weight, and more preferably 3 to 5% by weight. The present invention is characterized by the method of mixing the nitrogen-containing silane compound and the sintering aid. That is, in the present invention, when mixing using a V-type mixer or a horizontal cylindrical mixer, which are mixers that do not destroy the shape of the powder, the nitrogen-containing silane compound and the sintering aid are dispersed unevenly, so it is difficult to crush and disperse the powder. It is necessary to use a mixing method such as an agitator and crusher, an attrition mill, and a wet ball mill, which are mixers that have both functions at the same time. In order to confirm the difference in the degree of mixing between these mixing methods, the mixed powder was heated in a non-oxidizing atmosphere and subjected to a powder X-ray diffraction test and chemical analysis. In the former case, that is, simple mixing, powder X-ray diffraction tests revealed that some of the sintering aids remained unreacted, and chemical analysis revealed that some of the sintering aids remained unreacted depending on the sample location. While considerable variation in the amount was confirmed, such results were not obtained with the latter method, that is, a mixing method that combines crushing and dispersion. The reason for this is not clear, but because the specific surface area of the nitrogen-containing silane compound is extremely large at 100 to 1000 m 2 /g, the cohesive force between particles is extremely strong. It is assumed that mixing is impossible. As for the form of the mixture, the mixed powder itself or the mixed powder granulated and molded can be used as appropriate. In the present invention, the mixture of the nitrogen-containing silane compound and the sintering aid is heated at a temperature of 1200°C to 1700°C in a non-oxidizing atmosphere. The heating temperature is determined by the atmosphere during heating. That is,
The heating temperature in an atmosphere mainly composed of nitrogen is 1400℃.
Heating is carried out at a temperature of 1200°C to 1350°C under vacuum or in an atmosphere containing at least one of hydrogen and argon as a main component. The reason is that if the heating temperature is less than 1400℃ in an atmosphere containing nitrogen as the main component,
This is because thermal decomposition of the nitrogen-containing silane compound is incomplete and amorphous silicon nitride is produced, and if the temperature exceeds 1700°C, grain growth of silicon nitride occurs, which is undesirable. Also, heating temperature under vacuum or hydrogen or argon atmosphere is
If the temperature is lower than 1200°C, amorphous silicon nitride will similarly be produced, and if the temperature exceeds 1350°C, it will decompose into metallic silicon, which is not preferable. When silicon nitride powder obtained by heating a mixture of a nitrogen-containing silane compound and a sintering aid is sintered, a high-density sintered body is obtained even when the amount of the sintering aid added is small, as described below. The reason for this is not clear, but (1) the nitrogen-containing silane compound has an extremely large specific surface area, quickly reacts with the added sintering aid, and becomes homogeneous. (2)
This is presumed to be because the silicon nitride powder reacts with the sintering aid, so decomposition into metallic silicon during sintering is suppressed. The sintered body obtained by sintering the silicon nitride powder produced by heating the mixture of the nitrogen-containing silane compound and the sintering aid under specific conditions has the sinterability shown in Table 1. This sintered body has excellent strength properties both at room temperature and at high temperatures. The characteristic feature of the present invention is that, as a surprising fact, according to the present invention, it is not only possible to obtain an excellent high-density sintered body even with a small amount of sintering aid added; A sintered body with several orders of magnitude better bending strength at high and room temperatures than sintered bodies made using conventional methods was obtained. This is presumed to be because the uniformity of the structure of the sintered body was improved by reacting the silicon nitride and the sintering aid in the powder state. The silicon nitride obtained by the present invention is particularly suitable as a raw material for engine parts that require high strength and reliability. Next, the present invention will be explained in further detail with reference to Examples. Examples 1 to 4 and Comparative Examples 1 to 4 33 g/hr of silicon tetrachloride saturated steam (25°C) with general nitrogen gas supplied to the outer pipe of the double charging pipe, and 20 g/hr of ammonia gas to the inner pipe A reaction tube (60 m/mφ x 280 m/
m), the two were continuously reacted, and the produced fine powder was transported by nitrogen gas and collected in a container at the bottom of the reaction tube. Next, the above powder was heated at 200℃/hr in an ammonia atmosphere filled in a 140m/mφ tubular furnace made of quartz, and kept at a temperature of 1000℃ for 2 hours to form an amorphous powder that turned white. A powder was obtained.
Chemical analysis showed that the composition of the resulting powder was very close to Sl 2 N 3 H. The above powder and the sintering aid shown in Table 1 were mixed for 1 hour using a porcelain stirrer and crusher, and then the powder was pressure-molded using a 25 m/mφ mold press at a molding pressure of 200 Kg/cm 2 under a nitrogen atmosphere. Heat to 4°C and hold for 0.5 hours.
Seed powder was obtained. This was crushed using a polyethylene ball mill, and then 5 x 50 x 4 pieces were crushed using a mold press.
(mm) after press forming to 1650℃~1750℃
A sintered body was obtained by firing in a nitrogen atmosphere for 4 hours.
After the surface of this sintered body was ground with a #400 diamond grindstone, the density and bending strength were measured. The results are shown in Table 1. As a comparative example, a nitrogen-containing silane compound and a sintering aid were mixed in a V-type mixer to obtain a sintered body in the same manner as in the example, and the measured values of the sintered body are shown in Table 1. The bending strength is between the fulcrums.
Each is the average of 10 values obtained by a 30 mm three-point bending test. Further, chemical analysis values of Y 2 O 3 in Example 3 and Comparative Example 3 are shown in Table 2. Approximately 0.2 from 5 arbitrary locations
Each g is taken out. Examples 5-8 Si(NH) 2 obtained in the same manner as Examples 1-4,
The NH 4 Cl mixed powder was washed with -70°C liquid ammonia to remove by-product NH 4 Cl, and Si(NH) 2 was isolated. This Si(NH) 2 powder and the sintering aid shown in Table 2 were mixed in a wet ball mill for 2 hours, vacuum dried and pressure molded, and then held at 1300°C in an H 2 atmosphere for 1 hour to form the four types of powder. Obtained. This was sintered in the same manner as in Example 1, and the density and bending strength were measured. The results are shown in Table 3. Examples 9 to 12 Silicon tetrachloride saturated vapor (25
℃) at a rate of 33 g/hr and ammonia gas at a rate of 20 g/hr.
m/m), the two were continuously reacted, and the resulting fine powder was collected in a container kept at 500°C using nitrogen gas. The above powder and the sintering aid shown in Table 3 were mixed for 20 minutes using a silicon nitride attrition mill, and the powder was held at 1300° C. for 1 hour under vacuum to obtain four types of powder. This was sintered in the same manner as in Example 1, and the density and bending strength were measured. The results are shown in Table 4.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 含窒素シラン化合物と焼結助剤とを混合し非
酸化性雰囲気下で加熱して含窒素シラン化合物を
結晶化させた後、成形し焼結して焼結体を製造す
るに当り、含窒素シラン化合物と焼結助剤とを解
砕と分散の機能を持つ方式で混合し加熱すること
を特徴とする窒化珪素焼結体の製造法。
1. When producing a sintered body by mixing a nitrogen-containing silane compound and a sintering aid and heating the mixture in a non-oxidizing atmosphere to crystallize the nitrogen-containing silane compound, it is then molded and sintered. A method for producing a silicon nitride sintered body, which comprises mixing and heating a nitrogen silane compound and a sintering aid in a method that has the functions of crushing and dispersing.
JP58201117A 1983-10-28 1983-10-28 Manufacture of high sinterability silicon nitride powder Granted JPS6096576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201117A JPS6096576A (en) 1983-10-28 1983-10-28 Manufacture of high sinterability silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201117A JPS6096576A (en) 1983-10-28 1983-10-28 Manufacture of high sinterability silicon nitride powder

Publications (2)

Publication Number Publication Date
JPS6096576A JPS6096576A (en) 1985-05-30
JPH0429626B2 true JPH0429626B2 (en) 1992-05-19

Family

ID=16435681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201117A Granted JPS6096576A (en) 1983-10-28 1983-10-28 Manufacture of high sinterability silicon nitride powder

Country Status (1)

Country Link
JP (1) JPS6096576A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577899B2 (en) * 1987-01-28 1997-02-05 本田技研工業株式会社 Silicon nitride sintered body and method for producing the same

Also Published As

Publication number Publication date
JPS6096576A (en) 1985-05-30

Similar Documents

Publication Publication Date Title
US4612297A (en) Process for preparation of silicon nitride powder of good sintering property
EP0153000B1 (en) Refractories of silicon carbide and related materials having a modified silicon nitride bonding phase
JPS6112844B2 (en)
US4619905A (en) Process for the synthesis of silicon nitride
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
KR100386364B1 (en) Reaction-bonded silicon carbide refractory product
US4716028A (en) Process for preparation of high-type silicon nitride powder
JPS6111886B2 (en)
JPH0429626B2 (en)
US5665661A (en) Crystallization of grain boundery phases in silicon carbide ceramics
JPS6212663A (en) Method of sintering b4c base fine body
JPH01131069A (en) Complex compact calcined under ordinary pressure
JPH03261611A (en) Production of silicon nitride composite powder
US3141737A (en) Method for the preparation of aluminum nitride refractory material
JPH01131062A (en) Complex compact calcined under ordinary pressure
JPS6227003B2 (en)
JPS6172673A (en) Manufacture of ceramic sintered body
JPH01264914A (en) Production of aluminum nitride powder and powder composition
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
JP2584252B2 (en) Method for producing β-sialon / silicon carbide composite powder
JPS5950617B2 (en) Method for producing silicon nitride-silicon carbide composition
JPS6335563B2 (en)
JPS6060909A (en) Manufacture of silicon nitride powder
JPH0454610B2 (en)
JPS6259599A (en) Production of fibrous aggregate consisting of silicon nitride and silicon nitride oxide