JPH04294008A - Manufacture of compound superconductive wire - Google Patents

Manufacture of compound superconductive wire

Info

Publication number
JPH04294008A
JPH04294008A JP3058957A JP5895791A JPH04294008A JP H04294008 A JPH04294008 A JP H04294008A JP 3058957 A JP3058957 A JP 3058957A JP 5895791 A JP5895791 A JP 5895791A JP H04294008 A JPH04294008 A JP H04294008A
Authority
JP
Japan
Prior art keywords
tube
prescribed
metal foil
sheet
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3058957A
Other languages
Japanese (ja)
Inventor
Kaname Matsumoto
要 松本
Kiyoshi Yamada
清 山田
Daisuke Miura
大介 三浦
Yasuzo Tanaka
田中 靖三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3058957A priority Critical patent/JPH04294008A/en
Publication of JPH04294008A publication Critical patent/JPH04294008A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a manufacturing method having an A3B type compound approximate to stoichiometry composition by winding and enhancing pinning force together an A metal foil and a B metal foil, and then coating these with a high melting point metal, and further performing wire drawing thereon. CONSTITUTION:An Nb sheet (A metal foil) 1 having the prescribed thickness and an Sn sheet (B metal foil) 2 having the prescribed thickness are overlapped to have a prescribed ratio of an atomic ratio and to be spirally multiple-winded. These are put into a Ta tube (high melting point metallic tube) 3 having a prescribed diameter. These are put inot a Cu-Ni alloy-made tube 4 and subjected to wire drawing processing followed by melting removal of the tube 4 by nitric acid. Thereby, the sheet 1 and the sheet 2 are covered with a tube 3 so as to form a wire-drawn composite material 5. Further, prescribed pieces of obtained composite material 5 are collected to be subjected to a plurality of times of drawing processing and finally subjected to heat treatment at a prescribed temperature and for a prescribed time. Thereby, a compound superconductive wire having an A3B type compound layer approximate to stoichiometry composition and heightened pinning force can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は化合物超電導線の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing compound superconducting wire.

【0002】0002

【従来の技術】超電導線としては、Nb3 Sn、V3
 Ga、Nb3 Al等のA3 B型化合物(A15型
化合物)の超電導線が知られている。かかる超電導線は
、Nb又はVなどからなるA金属とSn、Ga、又はA
lなどからなるB金属を含む金属とを接合させた後、熱
処理を施して前記A金属と前記B金属とを界面で拡散反
応させてA3 B型化合物層を形成することにより製造
される。例えば、ブロンズ法によるNb3 Sn化合物
超電導線の製造では、複数本のNb芯或いはNb合金芯
をCu−Sn合金からなるブロンズ母材に埋め込んだ後
、熱処理を施してその界面にNb3 Sn層を形成する
方法を行なう。 また、内部拡散法(チューブ法など)によるNb3 S
n化合物超電導線の製造では、Snリッチな合金芯の周
囲にNb管或いはNb合金管を配置した後、熱処理を施
してその界面にNb3 Sn層を形成する方法を行なう
[Prior art] As superconducting wires, Nb3 Sn, V3
Superconducting wires made of A3 B type compounds (A15 type compounds) such as Ga and Nb3 Al are known. Such a superconducting wire is made of A metal made of Nb or V, etc., and Sn, Ga, or A metal.
It is manufactured by bonding a metal containing a B metal such as L and the like, and then performing a heat treatment to cause a diffusion reaction between the A metal and the B metal at the interface to form an A3 B-type compound layer. For example, in manufacturing Nb3Sn compound superconducting wire by the bronze method, multiple Nb cores or Nb alloy cores are embedded in a bronze base material made of a Cu-Sn alloy, and then heat treated to form an Nb3Sn layer at the interface. Do the method. In addition, Nb3S by internal diffusion method (tube method, etc.)
In manufacturing an n-compound superconducting wire, a method is used in which an Nb tube or a Nb alloy tube is placed around a Sn-rich alloy core and then heat treated to form an Nb3Sn layer at the interface.

【0003】しかしながら、上述したブロンズ法では、
Snの拡散が全反応を律速し、NbとSnの化学量論組
成がブロンズ中とNb3 Sn層中のSnの拡散に依存
するためNb芯或いはNb合金芯の中心側ではSnの不
足が起こり易くなる。その結果、超電導特性の低下,特
に高磁場下でのHc2 (臨界磁界)の低下を招く。
However, in the above-mentioned bronze method,
Sn diffusion determines the rate of the entire reaction, and the stoichiometric composition of Nb and Sn depends on the diffusion of Sn in the bronze and Nb3Sn layers, so Sn deficiency tends to occur on the center side of the Nb core or Nb alloy core. Become. As a result, the superconducting properties deteriorate, particularly in Hc2 (critical magnetic field) under high magnetic fields.

【0004】このようなことから、化学量論組成に近似
したA3 B型化合物層を有する超電導線を製造するた
めには十分な熱処理を行なうことが必要となる。このA
3 B型化合物層では、ピンニングセンターが結晶粒界
面となっており、かかる結晶粒界面によるピンニング力
fpは常電導相によるfpよりも本質的に大きくならな
い。 また、ピン密度も結晶粒径の逆数に依存する。前述した
ように化学量論組成のA3 B型化合物層を形成する目
的で十分な熱処理を施すと結晶粒の肥大化を招くため、
前記ピンニング力の低下,つまりピン密度を低下させる
。 従って、高磁界特性,特に高磁場下での臨界電流密度(
Jc)の改善には限界があった。
[0004] For this reason, in order to manufacture a superconducting wire having an A3B type compound layer having a stoichiometric composition, it is necessary to carry out sufficient heat treatment. This A
3 In the B-type compound layer, the pinning center is the crystal grain interface, and the pinning force fp due to the crystal grain interface is essentially not larger than the pinning force fp due to the normal conductive phase. Moreover, the pin density also depends on the reciprocal of the crystal grain size. As mentioned above, if sufficient heat treatment is applied for the purpose of forming an A3 B type compound layer with a stoichiometric composition, the crystal grains will become enlarged.
The pinning force is reduced, that is, the pin density is reduced. Therefore, the high magnetic field characteristics, especially the critical current density (
There were limits to the improvement of Jc).

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来の問題
点を解決するためになされたもので、化学量論組成に近
似したA3 B型化合物層を有し、かつピンニング力を
高めた化合物超電導線を製造し得る方法を提供しようと
するものである。
OBJECTS OF THE INVENTION The present invention has been made in order to solve the problems of the conventional art, and provides a compound having an A3 B type compound layer with a similar stoichiometric composition and an increased pinning force. The present invention aims to provide a method for manufacturing superconducting wires.

【0006】[0006]

【課題を解決するための手段】本発明は、A3 B型化
合物超電導線の製造において、A金属箔とB金属箔とを
巻き合わせた後、これを高融点金属で被覆し、更にこれ
らを伸線して複合材を形成する工程と、前記複合材を複
数本束ねて一体化する工程と、熱処理を施してA3 B
型化合物層を形成する工程とを具備することを特徴とす
る化合物超電導線の製造方法である。
[Means for Solving the Problems] In the production of A3B type compound superconducting wire, the present invention involves winding A metal foil and B metal foil together, coating them with a high melting point metal, and then stretching them. A3 B
A method for manufacturing a compound superconducting wire, comprising a step of forming a mold compound layer.

【0007】前記A3 B型化合物としては、例えばN
b3 Sn、V3 Ga、Nb3 Al、Nb3 (A
l,Sn)、Nb3 Si、Nb3 Ge、Nb3 (
Al,Ge)などが挙げられる。前記A金属箔を形成す
る金属としては、Nb、Vなどが挙げられる。前記B金
属箔を形成する金属としては、Sn、Ga、Al、Ge
、Siなどが挙げられる。
[0007] As the A3 B type compound, for example, N
b3 Sn, V3 Ga, Nb3 Al, Nb3 (A
l, Sn), Nb3 Si, Nb3 Ge, Nb3 (
Al, Ge), etc. Examples of the metal forming the metal foil A include Nb and V. The metals forming the B metal foil include Sn, Ga, Al, and Ge.
, Si, etc.

【0008】前記A金属箔及びB金属箔のうちの少なく
とも一方にTi、Ta、Mg、Hf、Ga、Mnなどを
添加することが可能である。かかるA,B金属箔を用い
れば、前記添加物がA3 B型化合物層中に導入される
ため、高磁場下でのJcをより高めることが可能となる
。 前記A金属箔と前記B金属箔とを巻き合わせる割合は、
通常、原子比(A金属の原子数:B金属の原子数)が3
:1程度となるようにする。
It is possible to add Ti, Ta, Mg, Hf, Ga, Mn, etc. to at least one of the A metal foil and the B metal foil. If such A and B metal foils are used, the additives are introduced into the A3 and B type compound layers, making it possible to further increase Jc under a high magnetic field. The ratio of winding the A metal foil and the B metal foil together is
Usually, the atomic ratio (number of atoms of metal A: number of atoms of metal B) is 3.
: It should be about 1.

【0009】前記高融点金属としては、例えばTa、N
b、Ti、Hfなどが挙げられる。前記高融点金属にM
g、Ga、Mnなどを添加することが可能である。かか
る高融点金属を用いれば、高融点金属がA3 B型化合
物の結晶粒界でピンニングセンターとして作用すると共
に前記添加物が熱処理時に拡散してA3 B型化合物の
結晶粒内に分散して導入されてピンニングセンターとし
て作用するため、高磁場下でのJcをより高めることが
可能となる。
[0009] Examples of the high melting point metal include Ta and N.
b, Ti, Hf, etc. M in the high melting point metal
It is possible to add g, Ga, Mn, etc. If such a high melting point metal is used, the high melting point metal acts as a pinning center at the grain boundary of the A3 B type compound, and the additive is diffused during heat treatment and introduced into the crystal grains of the A3 B type compound. Since it acts as a pinning center, it is possible to further increase Jc under a high magnetic field.

【0010】0010

【作用】本発明の製造方法によれば、A金属箔とB金属
箔とを巻き合わせた後、これを高融点金属で被覆し、更
にこれらを伸線する。この工程において、前記A金属箔
とB金属箔とが前記伸線加工により薄膜化されているた
め、比較的短時間の熱処理で前記A金属、B金属間の拡
散を行なうことができ、化学量論組成に近似したA3 
B型化合物層を容易に形成できると共に、結晶粒の肥大
化を抑制できる。また、前記工程において、前記A3 
B型化合物層の界面に前記高融点金属を導入できる。こ
のため、前記A3 B型化合物層の結晶粒の肥大化抑制
と高融点金属の界面への導入によりピンニング力を向上
できる。従って、超電導特性,特に高磁場下でのHc2
 ,Jcを高めた化合物超電導線を製造できる。
According to the manufacturing method of the present invention, metal foil A and metal foil B are wound together, coated with a high melting point metal, and then wire drawn. In this step, since the A metal foil and the B metal foil have been made into thin films by the wire drawing process, the diffusion between the A metal and B metal can be achieved with a relatively short heat treatment, and the stoichiometric amount A3 approximating the theoretical composition
A B-type compound layer can be easily formed, and enlargement of crystal grains can be suppressed. Further, in the step, the A3
The high melting point metal can be introduced into the interface of the B-type compound layer. Therefore, the pinning force can be improved by suppressing the enlargement of the crystal grains of the A3 B type compound layer and introducing the high melting point metal to the interface. Therefore, the superconducting properties, especially Hc2 under high magnetic field.
, Jc can be manufactured.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 実施例1
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Example 1

【0012】まず、図1(a)に示すように厚さ90μ
mのNbシート(A金属箔)1と厚さ30μmのSnシ
ート(B金属箔)2とを原子比(Nb原子数:Sn原子
数)が3:1となるように重ね合わせて渦巻状に多重巻
する。これを外径25mmφ、内径20mmφのTa管
(高融点金属製管)3内に入れる。つづいて、これらを
Cu−Ni合金製管4内に入れ、スエージャ−とダイス
により伸線加工を施した後、前記Cu−Ni合金製管4
を硝酸で溶解除去する。これにより、図1(b)に示す
ように前記Nbシート1及びSnシート2がTa管3で
被覆され、外径2.3mmφまで伸線された複合材5を
形成する。
First, as shown in FIG. 1(a), a 90μ thick
A Nb sheet (metal foil A) 1 with a thickness of m and a Sn sheet (metal foil B) 2 with a thickness of 30 μm are stacked so that the atomic ratio (number of Nb atoms: number of Sn atoms) is 3:1 and formed into a spiral shape. Make multiple windings. This is put into a Ta tube (high melting point metal tube) 3 having an outer diameter of 25 mmφ and an inner diameter of 20 mmφ. Subsequently, these are put into the Cu-Ni alloy tube 4 and subjected to wire drawing processing using a swager and die.
Dissolve and remove with nitric acid. Thereby, as shown in FIG. 1(b), the Nb sheet 1 and the Sn sheet 2 are covered with the Ta tube 3 to form a composite material 5 drawn to an outer diameter of 2.3 mmφ.

【0013】次いで、図2(a)に示すように前記複合
材5を240本まとめて外径45mmφ、内径35mm
φのCu−Ni合金製管6内に入れ、スエージャ−とダ
イスにより伸線加工を施した後、前記Cu−Ni合金製
管6を硝酸で溶解除去する。これにより、240本の前
記複合材5が束ねられて一体化され、図2(b)に示す
ように外径3.3mmφまで伸線された複合材の束線7
を形成する。
Next, as shown in FIG. 2(a), 240 pieces of the composite material 5 are assembled into an outer diameter of 45 mmφ and an inner diameter of 35 mm.
The wire is placed in a Cu--Ni alloy tube 6 having a diameter of .phi., and after wire drawing is performed using a swager and a die, the Cu--Ni alloy tube 6 is dissolved and removed with nitric acid. As a result, the 240 composite materials 5 are bundled and integrated, and as shown in FIG. 2(b), the composite wire bundle 7 is drawn to an outer diameter of 3.3 mmφ.
form.

【0014】次いで、図3(a)に示すように前記複合
材の束線7を85本まとめて外径45mmφ、内径35
mmφのCu−Ni合金製の管8内に入れ、静水圧押出
しにより伸線加工を施す。これにより、85本の前記束
線7が更に束ねられてCu−Ni合金で被覆され、図3
(b)に示すように対角距離が4mmφの六角状に伸線
された六角線9を形成する。
Next, as shown in FIG. 3(a), 85 wire bundles 7 of the composite material are assembled into a bundle having an outer diameter of 45 mmφ and an inner diameter of 35 mm.
It is placed in a tube 8 made of a Cu-Ni alloy having a diameter of mm, and subjected to wire drawing by hydrostatic extrusion. As a result, the 85 bundled wires 7 are further bundled and coated with Cu-Ni alloy, as shown in FIG.
As shown in (b), a hexagonal wire 9 drawn in a hexagonal shape with a diagonal distance of 4 mmφ is formed.

【0015】次いで、図4(a)に示すように前記六角
線9を55本まとめて外径45mmφ、内径35mmφ
のCu−Ni合金製の管10内に入れ、静水圧押出しに
より伸線加工を施す。これにより、55本の六角線9が
束ねられてCu−Ni合金に被覆され、図4(b)に示
すように外径0.2mmφまで伸線された線材11を形
成する。つづいて、前記線材11を温度780℃、12
0時間の条件下で熱処理を施すことにより、前記Nbシ
ートと前記Snシートとを拡散反応させてNb3 Sn
層が形成された化合物超電導線を製造した。 実施例2
Next, as shown in FIG. 4(a), the 55 hexagonal wires 9 are assembled into a shape having an outer diameter of 45 mmφ and an inner diameter of 35 mmφ.
The wire is placed in a tube 10 made of a Cu-Ni alloy, and subjected to wire drawing by hydrostatic extrusion. As a result, 55 hexagonal wires 9 are bundled and coated with the Cu-Ni alloy to form a wire rod 11 drawn to an outer diameter of 0.2 mm as shown in FIG. 4(b). Subsequently, the wire rod 11 was heated at a temperature of 780° C. for 12
By performing heat treatment under conditions of 0 hours, the Nb sheet and the Sn sheet are caused to undergo a diffusion reaction to form Nb3Sn.
A compound superconducting wire with layers formed thereon was manufactured. Example 2

【0016】実施例1で用いた外径25mmφ、内径2
0mmφのTa管3に代えて外径25mmφ、内径22
.5mmφのTa管を用いた以外、実施例1と同様にし
て化合物超電導線を製造した。 比較例1 ブロンズ法によって実施例1と同じ構成の化合物超電導
線を製造した。
[0016] Outer diameter 25 mmφ and inner diameter 2 used in Example 1
Instead of Ta tube 3 with 0mmφ, outer diameter 25mmφ and inner diameter 22
.. A compound superconducting wire was manufactured in the same manner as in Example 1 except that a 5 mmφ Ta tube was used. Comparative Example 1 A compound superconducting wire having the same structure as in Example 1 was manufactured by a bronze method.

【0017】実施例1,2及び比較例1の化合物超電導
線について、それぞれ液体ヘリウム中、10T,16T
の高磁場下での臨海電流密度(Jc)を測定した。その
結果を下記表1に示す。
The compound superconducting wires of Examples 1 and 2 and Comparative Example 1 were tested in liquid helium at 10T and 16T, respectively.
The critical current density (Jc) under a high magnetic field was measured. The results are shown in Table 1 below.

【0018】   表1から明らかなように実施例1,2の化合物超電
導線は、比較例1の化合物超電導線に比べて高磁場下で
のJc値が大きくなっている。これは、熱処理時のNb
シートとSnシートとが極めて薄くなって拡散し易くな
っているため化学量論組成に近似したNb3 Sn層が
形成されていると共に、Ta管がピンニングセンターと
して働いていることによるものである。
As is clear from Table 1, the compound superconducting wires of Examples 1 and 2 have a larger Jc value under a high magnetic field than the compound superconducting wire of Comparative Example 1. This is due to Nb during heat treatment.
This is because the sheet and the Sn sheet are extremely thin and easily diffused, so that an Nb3Sn layer having a composition close to the stoichiometric composition is formed, and the Ta tube functions as a pinning center.

【0019】[0019]

【発明の効果】以上詳述した如く、本発明によれば化学
量論組成に近似したA3 B型化合物層を有し、かつピ
ンニング力を高め、ひいては高磁場下でのHc2 ,J
cが改善された化合物超電導線を製造し得る方法を提供
することができる。
Effects of the Invention As detailed above, the present invention has an A3B type compound layer having a composition close to the stoichiometric composition, increases the pinning force, and further improves Hc2, J under a high magnetic field.
A method for manufacturing a compound superconducting wire with improved c can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例1の化合物超電導線の製造工程を示す説
明図
[Fig. 1] Explanatory diagram showing the manufacturing process of the compound superconducting wire of Example 1

【図2】実施例1の化合物超電導線の製造工程を示す説
明図
[Fig. 2] Explanatory diagram showing the manufacturing process of the compound superconducting wire of Example 1

【図3】実施例1の化合物超電導線の製造工程を示す説
明図
[Fig. 3] Explanatory diagram showing the manufacturing process of the compound superconducting wire of Example 1

【図4】実施例1の化合物超電導線の製造工程を示す説
明図
[Fig. 4] Explanatory diagram showing the manufacturing process of the compound superconducting wire of Example 1

【符号の説明】[Explanation of symbols]

1…Nbシート(A金属箔)、2…Snシート(B金属
箔)、3…Ta管(高融点金属製管)5…複合材。
1... Nb sheet (metal foil A), 2... Sn sheet (metal foil B), 3... Ta tube (high melting point metal tube) 5... composite material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  A3 B型化合物超電導線の製造にお
いて、A金属箔とB金属箔とを巻き合わせた後、これを
高融点金属で被覆し、更にこれらを伸線して複合材を形
成する工程と、前記複合材を複数本束ねて一体化する工
程と、熱処理を施してA3 B型化合物層を形成する工
程とを具備することを特徴とする化合物超電導線の製造
方法。
[Claim 1] In the production of A3 B-type compound superconducting wire, a metal foil A and a metal foil B are wound together, then coated with a high melting point metal, and then drawn to form a composite material. A method for manufacturing a compound superconducting wire, comprising: a step of bundling and integrating a plurality of the composite materials; and a step of performing heat treatment to form an A3 B-type compound layer.
JP3058957A 1991-03-22 1991-03-22 Manufacture of compound superconductive wire Pending JPH04294008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3058957A JPH04294008A (en) 1991-03-22 1991-03-22 Manufacture of compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3058957A JPH04294008A (en) 1991-03-22 1991-03-22 Manufacture of compound superconductive wire

Publications (1)

Publication Number Publication Date
JPH04294008A true JPH04294008A (en) 1992-10-19

Family

ID=13099323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3058957A Pending JPH04294008A (en) 1991-03-22 1991-03-22 Manufacture of compound superconductive wire

Country Status (1)

Country Link
JP (1) JPH04294008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974643A (en) * 2012-12-14 2013-03-20 西北有色金属研究院 Preparation method of enhanced Cu-based composite wire of Nb tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974643A (en) * 2012-12-14 2013-03-20 西北有色金属研究院 Preparation method of enhanced Cu-based composite wire of Nb tube
CN102974643B (en) * 2012-12-14 2015-04-15 西北有色金属研究院 Preparation method of enhanced Cu-based composite wire of Nb tube

Similar Documents

Publication Publication Date Title
US4161062A (en) Method for producing hollow superconducting cables
JP6270209B2 (en) Method for producing Nb3Sn superconducting wire
US5554448A (en) Wire for Nb3 X superconducting wire
US5504984A (en) Methods of manufacturing Nb3 Al superconducting wire and coil
JPH04294008A (en) Manufacture of compound superconductive wire
JP3948291B2 (en) Nb3Al compound superconducting wire and method for producing the same
EP0609804A1 (en) Wire for Nb3X superconducting wire, Nb3x superconducting wire and method of preparing the same
JP3050629B2 (en) Method for producing NbTi alloy-based superconducting wire
JP3059570B2 (en) Superconducting wire and its manufacturing method
JPH02148620A (en) Manufacture of nb3al superconductive wire
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JP3505894B2 (en) Compound superconducting wire
JPH01292709A (en) Manufacture of nb3al superconductor member
JPS58189909A (en) Method of producing nb3sn superconductor
JPH07302520A (en) Manufacture of nb3sn superconductive wire
JPH06290651A (en) Nb3x type superconductive wire rod and its manufacture
JPH04132118A (en) Manufacture of nb3x multi-core superconducting wire
JPH065138A (en) Manufacture of compound superconductive wire
JPH08212854A (en) Manufacture of compound superconducting wire
JPS60170113A (en) Method of producing nb3sn superconductive lead
JPS6228526B2 (en)
JPH0676662A (en) Manufacture of nb3sn superconducting wire
JPH05135636A (en) Manufacture of compound superconductive wire
JPH06333439A (en) Compound superconductive wire
JPH05101720A (en) Compound superconductive wire and manufacture thereof