JPH06333439A - Compound superconductive wire - Google Patents

Compound superconductive wire

Info

Publication number
JPH06333439A
JPH06333439A JP5139981A JP13998193A JPH06333439A JP H06333439 A JPH06333439 A JP H06333439A JP 5139981 A JP5139981 A JP 5139981A JP 13998193 A JP13998193 A JP 13998193A JP H06333439 A JPH06333439 A JP H06333439A
Authority
JP
Japan
Prior art keywords
wire
compound
copper
layer
mmφ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5139981A
Other languages
Japanese (ja)
Inventor
Kaname Matsumoto
要 松本
Hisaki Sakamoto
久樹 坂本
Yasuzo Tanaka
靖三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5139981A priority Critical patent/JPH06333439A/en
Publication of JPH06333439A publication Critical patent/JPH06333439A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a compound superconductive wire having the excellent superconductivity under the high magnetic field. CONSTITUTION:Multiple basic cluster wires 3, which is obtained by laminating compound superconductor layers 1 and copper layers 2 alternately, are unified to form a compound superconductive wire. Thickness of the copper layer 2 is set in a range at 0.4-5 times of coherence length of the compound superconductor layer 1. Since the copper layers 2, which are distributed finely, has the pinning work, superconductivity under the high magnetic field is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に高磁界下での超電
導特性に優れた化合物超電導線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound superconducting wire having excellent superconducting properties especially under a high magnetic field.

【0002】[0002]

【従来の技術】化合物超電導体にはNb3 Sn、Nb3
Al、V3 Ga等がある。これらは加工性に劣る為、そ
の生成は、例えばNb金属とCu−Sn合金との複合材
を最終形状に加工したのち、加熱処理してSnをNbに
拡散させてNb3 Sn化合物超電導体を反応生成させる
方法によりなされていた。具体的には、ブロンズ(Cu
−Sn系合金)製管内にNb棒材を充填し、これを延伸
加工して複合線材となし、この複合線材を銅製管内に充
填して延伸加工する工程を所望回施して所定の線径に仕
上げ、これを加熱処理するブロンズ法、或いは複合線材
に、Snリッチな合金芯材の周囲にNb層又はNb合金
層を配した複合線材を用いる内部拡散法等がある。
2. Description of the Related Art Nb 3 Sn, Nb 3 are used for compound superconductors.
Examples include Al and V 3 Ga. Since these are inferior in workability, its generation, for example, after processing the composite of the Nb metal and the Cu-Sn alloy to the final shape, the heat treatment by diffusing the Sn into Nb and Nb 3 Sn compound superconducting It was carried out by a method of producing a reaction. Specifically, bronze (Cu
-Sn-based alloy) pipe is filled with Nb rod, and this is drawn to form a composite wire rod. The step of filling this copper wire pipe into a copper pipe and drawing it is performed a desired number of times to obtain a predetermined wire diameter. There are a bronze method of finishing and heat treatment of this, or an internal diffusion method of using a composite wire material in which a Nb layer or an Nb alloy layer is arranged around a Sn-rich alloy core material in the composite wire material.

【0003】[0003]

【発明が解決しようとする課題】前述のような化合物超
電導体の生成方法では、その生成速度はブロンズ中とN
3 Sn層中のSnの拡散速度に律せられる。生成速度
を速めようとして加熱温度を高めるとピンニングに有効
な結晶粒界が減少し、又非超電導体化合物が生成する。
他方、加熱温度を低めるとNb層の中心部でSnが不足
してNb3 Sn超電導体の化学量論的組成が得られなく
なる。このように従来のNb3 Sn等の化合物超電導線
の特性向上には、限界があった。
In the method of producing a compound superconductor as described above, the production rate is in bronze and N.
It is limited by the diffusion rate of Sn in the b 3 Sn layer. When the heating temperature is raised to increase the production rate, the grain boundaries effective for pinning are reduced, and a non-superconductor compound is produced.
On the other hand, when the heating temperature is lowered, Sn is insufficient in the central portion of the Nb layer, and the stoichiometric composition of the Nb 3 Sn superconductor cannot be obtained. Thus, there has been a limit to improving the characteristics of the conventional compound superconducting wire such as Nb 3 Sn.

【0004】[0004]

【課題を解決するための手段】本発明はこのような状況
に鑑み鋭意研究を行った結果なされたもので、その目的
とするところは、特に高磁界での超電導特性に優れた、
化合物超電導線を提供することにある。即ち、本発明
は、化合物超電導体層と銅層とを交互に積層させた基本
クラスタ線の多数本が合体した化合物超電導線であっ
て、前記銅層の厚さが化合物超電導体層のコヒーレンス
長さの 0.4〜5倍の範囲にあることを特徴とするもので
ある。
The present invention has been made as a result of intensive studies in view of such a situation, and an object thereof is to obtain excellent superconducting properties particularly in a high magnetic field,
It is to provide a compound superconducting wire. That is, the present invention is a compound superconducting wire in which a large number of basic cluster wires in which a compound superconductor layer and a copper layer are alternately laminated are combined, and the thickness of the copper layer is a coherence length of the compound superconductor layer. It is characterized by being in the range of 0.4 to 5 times the length.

【0005】本発明化合物超電導線は、銅のような常伝
導体は、結晶粒界と同等以上のピンニング効果を有する
ことに着目し、化合物超電導体層に銅層を微細に分散さ
せて高磁界下での超電導特性を改善したものである。本
発明において、銅層の厚さを化合物超電導体層のコヒー
レンス長さ(ξ:超電導電子数が平衡値に達するまでの
過渡的距離。)の 0.4〜5倍の範囲に限定したのは、銅
層の厚さが化合物超電導体層のコヒーレンス長さの 0.4
倍未満では超電導電子の銅層への浸み出しが起きて、又
5倍を超えるとピンニング効果が低減し、しかも銅層の
占積率が増えて、超電導線全体の特性が低下する為であ
る。本発明において、基本クラスタ線内の銅層の間隔
は、量子化磁束線の格子間隔af (af =1.07×(φ0
/B)1/2 、但しφ0 は磁束量子、Bは磁束密度)程度
にすることがピンニング効率からみて望ましい。
In the compound superconducting wire of the present invention, paying attention to the fact that a normal conductor such as copper has a pinning effect equal to or more than that of a crystal grain boundary, and a copper layer is finely dispersed in a compound superconducting layer to obtain a high magnetic field. This is an improvement of the superconducting properties below. In the present invention, the thickness of the copper layer is limited to 0.4 to 5 times the coherence length of the compound superconductor layer (ξ: transitional distance until the number of superconductors reaches the equilibrium value). The layer thickness is 0.4 of the coherence length of the compound superconductor layer.
If it is less than twice, the superconducting conductor will seep into the copper layer, and if it exceeds 5 times, the pinning effect will be reduced and the space factor of the copper layer will be increased, which will deteriorate the characteristics of the entire superconducting wire. is there. In the present invention, the spacing between the copper layers in the basic cluster line is the lattice spacing a f (a f = 1.07 × (φ 0
/ B) 1/2 , where φ 0 is a magnetic flux quantum and B is a magnetic flux density) is desirable from the viewpoint of pinning efficiency.

【0006】以下に本発明の化合物超電導線を図を参照
して説明する。図1は、本発明の化合物超電導線の態様
を示す断面拡大説明図である。化合物超電導体層1と銅
層2とを交互に積層した基本クラスタ線3が多数本合体
されている。
The compound superconducting wire of the present invention will be described below with reference to the drawings. FIG. 1 is an enlarged cross-sectional explanatory view showing an embodiment of the compound superconducting wire of the present invention. A large number of basic cluster wires 3 in which compound superconductor layers 1 and copper layers 2 are alternately laminated are united.

【0007】次に本発明の化合物超電導線の製造方法を
図を参照して説明する。図2イ〜チはNb3 Sn化合物
超電導線の製造方法の態様を示す工程説明図である。N
b板4と銅板5とを交互に積層して銅製管6内に充填し
て一次複合ビレット7となし(図イ)、この一次複合ビ
レット7を熱間押出して一体化し、これを冷間伸線して
一次複合線材8となし(図ロ)、この一次複合線材8を
再び銅製管6内に充填して二次複合ビレット17となし
(図ハ)、この二次複合ビレット17を再び熱間加工と冷
間伸線して二次複合線材18となし(図ニ)、この二次複
合線材18を再度銅製管6内に充填して三次複合ビレット
27となし(図ホ)、この三次複合ビレット27を再度熱間
加工と冷間伸線して多層複合線材9となし(図ヘ)、こ
の多層複合線材9の外周にSnをメッキし(図ト)、こ
のSnをメッキした多層複合線材に所定の加熱処理を施
してNb層のNbをNb3 Sn超電導体に反応させてN
3 Sn化合物超電導線となす(図チ)。尚、複合ビレ
ットの延伸加工には熱間押出と冷間伸線の他、引抜きや
スエージャー等の加工法が適用される。
Next, a method for producing the compound superconducting wire of the present invention will be described with reference to the drawings. Figure 2 b-Chi are process explanatory views showing an embodiment of the production method of Nb 3 Sn compound superconducting wire. N
b plate 4 and copper plate 5 are alternately laminated and filled in a copper pipe 6 to form a primary composite billet 7 (Fig. A), and this primary composite billet 7 is hot extruded to be integrated and cold drawn. Wire it to the primary composite wire rod 8 (Fig. B), fill the primary composite wire rod 8 again into the copper pipe 6 and leave it as the secondary composite billet 17 (Fig. C), heat the secondary composite billet 17 again. Cold working and cold drawing to form the secondary composite wire rod 18 (Fig. 2). The secondary composite wire rod 18 is filled into the copper pipe 6 again to form the tertiary composite billet.
No. 27 (Fig. E), hot working and cold drawing of this tertiary composite billet 27 again to form a multi-layer composite wire 9 (Fig.), And Sn was plated on the outer periphery of this multi-layer composite wire 9 (Fig. G), a predetermined heat treatment is applied to the Sn-plated multi-layer composite wire to cause Nb in the Nb layer to react with the Nb 3 Sn superconductor to produce N.
b 3 Sn compound Superconducting wire (Fig. C). In addition to the hot extrusion and the cold wire drawing, the drawing process of the composite billet includes drawing and swaging.

【0008】この製造方法によれば、Snをメッキに
より供給するので、必要なSn量を無駄なく供給でき
る。Snは加熱処理直前に供給するので、延伸加工途
中にSnを含む非超電導体化合物が生成することがな
い。Nbと銅は加工性に優れ且つ反応し合わないの
で、最終の多層複合線材まで良好に加工がなされる。
Snメッキした多層複合線材の加熱処理工程において、
Snは銅層を拡散するので拡散速度が速い。Nb層は
薄いので、Nb層の内部まで化学量論的組成のNb3
n超電導体が低温短時間にて形成される。Nb3 Sn
超電導体の形成が低温短時間のうちになされるので、非
超電導体化合物の生成が抑えられる。等の種々の利点が
得られる。
According to this manufacturing method, since Sn is supplied by plating, the required amount of Sn can be supplied without waste. Since Sn is supplied immediately before the heat treatment, a non-superconductor compound containing Sn is not generated during the stretching process. Since Nb and copper are excellent in workability and do not react with each other, the final multilayer composite wire can be processed well.
In the heat treatment process of the Sn-plated multilayer composite wire,
Since Sn diffuses in the copper layer, the diffusion rate is high. Since the Nb layer is thin, the stoichiometric composition of Nb 3 S
The n superconductor is formed at a low temperature in a short time. Nb 3 Sn
Since the superconductor is formed at a low temperature in a short time, the production of non-superconductor compounds is suppressed. Various advantages such as are obtained.

【0009】[0009]

【作用】本発明の化合物超電導線は、化合物超電導体層
と銅層とを交互に積層した基本クラスタ線が合体したも
のであり、且つ銅層の厚さが化合物超電導体層のコヒー
レンス長さの 0.4〜5倍の範囲にあるので、常伝導の銅
層が磁束線を効率よくピンニングして、高磁界下での超
電導特性が向上する。
The compound superconducting wire of the present invention is a combination of basic cluster wires in which compound superconducting layers and copper layers are alternately laminated, and the thickness of the copper layer is equal to the coherence length of the compound superconducting layer. Since it is in the range of 0.4 to 5 times, the normal conductive copper layer efficiently pins the magnetic flux lines, and the superconducting property under a high magnetic field is improved.

【0010】[0010]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 厚さ 4.5mmのNb−1wt%Ti合金製板と厚さ1mmの銅
板とを交互に積層して外径45mmφ, 内径42mmφの銅製管
内に充填して一次複合ビレットとなし、この一次複合ビ
レットを熱間で外径11mmφに押出し、この押出材に冷間
伸線を施して1.3 mmφの一次複合線材となした。次にこ
の一次複合線材 650本を外径45mmφ, 内径38.5mmφの銅
製管内に充填して二次複合ビレットとなし、この二次複
合ビレットに再び熱間押出と冷間伸線を施して 1.3mmφ
の二次線材となした。この二次線材を再び外径45mmφ,
内径38.5mmφの銅製管内に 650本充填して三次複合線材
となし、この三次複合線材に再度熱間押出と冷間伸線を
施して 0.1〜1mmφの範囲内の種々線径の多層複合線材
となした。次にこの多層複合線材にSnを溶融メッキに
より付着させ、これをAr雰囲気中でSnの融点近傍の
温度で24時間保持し、次に 600℃に昇温して48時間、更
に700℃に昇温して24時間保持してNb層のNbをNb
3 Sn化合物超電導体に反応させてNb3 Sn化合物超
電導線を製造した。Snの溶融メッキ付着量は化合物超
電導線に占める銅量の20wt%にした。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 A Nb-1 wt% Ti alloy plate having a thickness of 4.5 mm and a copper plate having a thickness of 1 mm were alternately laminated and filled in a copper pipe having an outer diameter of 45 mmφ and an inner diameter of 42 mmφ to form a primary composite billet. The composite billet was hot extruded to an outer diameter of 11 mmφ, and this extruded material was subjected to cold wire drawing to obtain a 1.3 mmφ primary composite wire. Next, 650 primary composite wire rods were filled into a copper pipe with an outer diameter of 45 mmφ and an inner diameter of 38.5 mmφ to form a secondary composite billet.The secondary composite billet was hot-extruded and cold-drawn again to 1.3 mmφ.
It was made into a secondary wire. This secondary wire rod is reapplied with an outer diameter of 45 mmφ,
650 pieces are filled in a copper pipe with an inner diameter of 38.5 mmφ to form a tertiary composite wire rod, and this tertiary composite wire rod is again subjected to hot extrusion and cold drawing to obtain a multilayer composite wire rod with various wire diameters within the range of 0.1 to 1 mmφ. Done Next, Sn was applied to this multilayer composite wire by hot dip plating, and this was kept in Ar atmosphere at a temperature near the melting point of Sn for 24 hours, then heated to 600 ° C for 48 hours and further raised to 700 ° C. Warm up and hold for 24 hours to remove Nb in Nb layer
An Nb 3 Sn compound superconducting wire was produced by reacting with a 3 Sn compound superconductor. The amount of Sn deposited by hot-dip plating was 20 wt% of the amount of copper in the compound superconducting wire.

【0011】比較例1 実施例1において、多層複合線材の線径を0.06mmφ又は
1.18mmφとした他は、実施例1と同じ方法によりNb3
Sn化合物超電導線を製造した。
Comparative Example 1 In Example 1, the wire diameter of the multilayer composite wire was 0.06 mmφ or
Nb 3 in the same manner as in Example 1 except that 1.18 mmφ was used.
A Sn compound superconducting wire was manufactured.

【0012】比較例2 外径45mmφ, 内径38.5mmφのブロンズ(Cu- 14.3wt%
Sn)製管にNb−1wt%Ti合金棒材を充填し、これ
に熱間押出と冷間伸線を施して外径 1.3mmφの複合素線
となし、この複合素線を外径45mmφ, 内径38.5mmφの銅
管に 650本充填し、これに再び熱間押出と冷間伸線を施
して、外径 0.3mmφの最終線材となした。次にこれをA
r雰囲気中で 700℃×24時間保持してNb3 Sn化合物
超電導線を製造した。
Comparative Example 2 Bronze having an outer diameter of 45 mmφ and an inner diameter of 38.5 mmφ (Cu-14.3 wt%
Sn) tube was filled with Nb-1wt% Ti alloy rod and subjected to hot extrusion and cold drawing to form a composite wire with an outer diameter of 1.3mmφ. 650 copper pipes with an inner diameter of 38.5 mm were filled, and hot extrusion and cold drawing were performed again on this to obtain the final wire rod with an outer diameter of 0.3 mmφ. Next this is A
The Nb 3 Sn compound superconducting wire was manufactured by keeping the temperature at 700 ° C for 24 hours.

【0013】このようにして得られたNb3 Sn化合物
超電導線について、液体He中にて10〜16Tの磁界下で
臨界電流密度(Jc)を測定した。結果を表1に示し
た。尚、得られた化合物超電導体層のコヒーレンス長さ
ξは、約4nmであった。
The critical current density (Jc) of the Nb 3 Sn compound superconducting wire thus obtained was measured in liquid He under a magnetic field of 10 to 16T. The results are shown in Table 1. The coherence length ξ of the obtained compound superconductor layer was about 4 nm.

【0014】[0014]

【表1】 [Table 1]

【0015】表1より明らかなように、本発明例品(No
1〜4)は、高磁界下において、いずれも高いJcを示
した。これは銅層が磁束をピンニングした為である。こ
れに対し、比較例品のNo5は銅層の厚さが薄くなり過ぎ
てそのピンニング効果が低減した為、又No6は化合物超
電導線の断面に占める銅層の割合が大きかった為、又No
7はピンニング点の不足と非超電導体化合物の生成によ
り、いずれもJcが低下した。
As is clear from Table 1, the products of the present invention (No.
1 to 4) exhibited high Jc under a high magnetic field. This is because the copper layer pinned the magnetic flux. On the other hand, No. 5 of the comparative example product had the copper layer too thin to reduce its pinning effect, and No. 6 had a large proportion of the copper layer in the cross section of the compound superconducting wire.
No. 7 had a low Jc due to the lack of pinning points and the formation of non-superconductor compounds.

【0016】実施例2 厚さ 4.5mmのNb板と厚さ1mmの銅板とを交互に積層
し、これを外径45mmφ,内径42mmφの銅製管内に充填し
て一次複合ビレットとなした。次にこの一次複合ビレッ
トを熱間で外径11mmφに押出し、これを1.3 mmφに冷間
伸線して一次線材となした。次にこの一次複合線材 650
本を外径45mmφ, 内径38.5mmφの銅製管内に充填して二
次複合ビレットとなし、この二次複合ビレットに再び熱
間押出と冷間伸線を施して 1.3mmφの二次複合線材とな
し、この二次複合線材を再び外径45mmφ, 内径38.5mmφ
の銅製管内に二次複合線材を 650本充填して三次複合線
材となし、この三次複合線材を延伸加工して 0.1〜1mm
φの範囲内の種々線径の多層複合線材となした。次にこ
の多層複合線材の外周にAlを溶融メッキにより付着さ
せ、これをAr雰囲気中で 380℃×24時間保持し、引続
き 570℃に昇温して48時間、更に 850℃に昇温して48時
間保持してNb層のNbをNb3 Al化合物超電導体に
反応させてNb3 Al化合物超電導線を製造した。上記
においてAlの溶融メッキ付着量は化合物超電導線に占
める銅量の30wt%にした。
Example 2 Nb plates having a thickness of 4.5 mm and copper plates having a thickness of 1 mm were alternately laminated and filled in a copper pipe having an outer diameter of 45 mmφ and an inner diameter of 42 mmφ to form a primary composite billet. Next, this primary composite billet was hot extruded to an outer diameter of 11 mmφ, and this was cold drawn to 1.3 mmφ to obtain a primary wire rod. Next, this primary composite wire 650
The book was filled into a copper tube with an outer diameter of 45 mmφ and an inner diameter of 38.5 mmφ to form a secondary composite billet, and this secondary composite billet was again hot extruded and cold drawn to form a secondary composite wire rod of 1.3 mmφ. , This secondary composite wire again 45mmφ outer diameter, 38.5mmφ inner diameter
650 secondary composite wire rods are filled into the copper pipe to make a tertiary composite wire rod, and this tertiary composite wire rod is stretched to 0.1 to 1 mm.
A multilayer composite wire rod having various wire diameters within the range of φ was prepared. Next, Al was deposited on the outer periphery of this multilayer composite wire by hot dip plating, kept at 380 ° C. for 24 hours in an Ar atmosphere, and subsequently heated to 570 ° C. for 48 hours and further to 850 ° C. the Nb of the Nb layer was held for 48 hours to produce a Nb 3 Al compound superconducting wire were reacted Nb 3 Al compound superconductor. In the above, the amount of Al deposited by hot-dip plating was set to 30 wt% of the amount of copper in the compound superconducting wire.

【0017】比較例3 実施例2において、多層複合線材の線径を0.06又は1.18
mmφとした他は、実施例1と同じ方法によりNb3 Al
化合物超電導線を製造した。
Comparative Example 3 In Example 2, the wire diameter of the multilayer composite wire was 0.06 or 1.18.
Nb 3 Al was formed by the same method as in Example 1 except that mmφ was used.
A compound superconducting wire was manufactured.

【0018】比較例4 外径45mmφ, 内径38mmφのAl−Mn系合金製管にNb
棒材を充填し、これに熱間押出と伸線加工を施して外径
1mmφの複合素線となし、この複合素線を外径45mmφ,
内径38mmφの銅管に1000本充填し、これに再び熱間押出
と伸線加工を施して、外径 0.2mmφの最終線材となし
た。次にこれをAr雰囲気中で 850℃×48時間保持して
Nb3 Al化合物超電導線を製造した。
Comparative Example 4 Nb was applied to an Al-Mn alloy pipe having an outer diameter of 45 mmφ and an inner diameter of 38 mmφ.
The rod is filled, hot extruded and drawn to form a composite wire with an outer diameter of 1 mmφ. This composite wire has an outer diameter of 45 mmφ,
1000 copper tubes with an inner diameter of 38 mmφ were filled and again subjected to hot extrusion and wire drawing to obtain a final wire rod with an outer diameter of 0.2 mmφ. Next, this was kept in an Ar atmosphere at 850 ° C. for 48 hours to produce a Nb 3 Al compound superconducting wire.

【0019】このようにして得られたNb3 Al化合物
超電導線について、液体He中にて10〜16Tの磁場下で
臨界電流密度(Jc)を測定した。結果を表1に示し
た。尚、得られた化合物超電導体層のコヒーレンス長さ
ξは、約4nmであった。
The critical current density (Jc) of the Nb 3 Al compound superconducting wire thus obtained was measured in liquid He under a magnetic field of 10 to 16T. The results are shown in Table 1. The coherence length ξ of the obtained compound superconductor layer was about 4 nm.

【0020】[0020]

【表2】 [Table 2]

【0021】表1より明らかなように、本発明例品(No
8〜11)は、いずれの高磁界下においても高いJcを示
した。これは銅層が磁束をピンニングした為である。こ
れに対し、比較例品のNo12は銅層が薄くなり過ぎてその
ピンニング効果が低減した為、又No13は化合物超電導線
の断面に占める銅層の割合が大きくなり過ぎた為、又No
14はピンニング点の不足と非超電導体化合物の生成によ
り、いずれもJcが低下した。
As is clear from Table 1, the products of the present invention (No.
8 to 11) exhibited high Jc under any high magnetic field. This is because the copper layer pinned the magnetic flux. On the other hand, No12 of the comparative example product has a thin copper layer and its pinning effect is reduced, and No13 has a too large proportion of the copper layer in the cross section of the compound superconducting wire.
No. 14 had a low Jc due to the lack of pinning points and the formation of non-superconductor compounds.

【0022】[0022]

【効果】以上述べたように、本発明の化合物超電導線
は、ピンニング効果を有する銅層が微細に分布したもの
なので高磁界下におけるJcが向上し、工業上顕著な効
果を奏する。
As described above, in the compound superconducting wire of the present invention, since the copper layer having the pinning effect is finely distributed, the Jc under a high magnetic field is improved, and a remarkable industrial effect is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の化合物超電導線の態様を示す断面拡大
説明図である。
FIG. 1 is an enlarged cross-sectional explanatory view showing an embodiment of a compound superconducting wire of the present invention.

【図2】本発明の化合物超電導線の製造方法の態様を示
す工程説明図である。
FIG. 2 is a process explanatory view showing an embodiment of a method for producing a compound superconducting wire of the present invention.

【符号の説明】[Explanation of symbols]

1 化合物超電導体層 2 銅層 3 基本クラスタ線 4 Nb板 5 銅板 6 銅製管 7,17,27 複合ビレット 8,18 複合線材 9 多層複合線材 1 compound superconductor layer 2 copper layer 3 basic cluster wire 4 Nb plate 5 copper plate 6 copper pipe 7,17,27 composite billet 8,18 composite wire material 9 multi-layer composite wire material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化合物超電導体層と銅層とを交互に積層
させた基本クラスタ線の多数本が合体した化合物超電導
線であって、前記銅層の厚さが化合物超電導体層のコヒ
ーレンス長さの 0.4〜5倍の範囲にあることを特徴とす
る化合物超電導線。
1. A compound superconducting wire in which a large number of basic cluster lines in which a compound superconductor layer and a copper layer are alternately laminated are united, and the thickness of the copper layer is the coherence length of the compound superconductor layer. The compound superconducting wire is characterized by being in the range of 0.4 to 5 times.
JP5139981A 1993-05-19 1993-05-19 Compound superconductive wire Pending JPH06333439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5139981A JPH06333439A (en) 1993-05-19 1993-05-19 Compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5139981A JPH06333439A (en) 1993-05-19 1993-05-19 Compound superconductive wire

Publications (1)

Publication Number Publication Date
JPH06333439A true JPH06333439A (en) 1994-12-02

Family

ID=15258170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5139981A Pending JPH06333439A (en) 1993-05-19 1993-05-19 Compound superconductive wire

Country Status (1)

Country Link
JP (1) JPH06333439A (en)

Similar Documents

Publication Publication Date Title
GB2050878A (en) Making superconductors
US4646428A (en) Method of fabricating multifilament intermetallic superconductor
JPS61194155A (en) Production of nb3sn superconductive wire
US4224735A (en) Method of production multifilamentary intermetallic superconductors
JPS6215967B2 (en)
US4447946A (en) Method of fabricating multifilament intermetallic superconductor
US4489219A (en) A-15 Superconducting composite wires and a method for making
EP3961658B1 (en) Blank for producing a long nb3 sn-based superconducting wire
EP0498413B1 (en) Method of manufacturing Nb3Sn superconducting wire
JPH06333439A (en) Compound superconductive wire
JPH0737445A (en) Compound superconductive wire
US5174830A (en) Superconductor and process for manufacture
JPH02148620A (en) Manufacture of nb3al superconductive wire
JP3353217B2 (en) Method for producing Nb-3 Sn-based superconducting wire
JPH01292709A (en) Manufacture of nb3al superconductor member
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH06309968A (en) Manufacture of nb3sn superconducting wire for ac
JPH08287752A (en) Manufacture of superconducting wire material
JPH08212847A (en) Composite multicore superconducting wire
JPH05114322A (en) Manufacture of nb3sn superconducting lead wire
JPH06309969A (en) Manufacture of nb3sn superconducting wire
JPH0620536A (en) Nb3sn compound superconducting wire and manufacture thereof
JPH04109513A (en) Compound superconductor wire rod and manufacture thereof
Głowacki et al. Design and fabrication of Sn Nb Cu Ta C composites for multifilamentary superconducting Nb3Sn wires by using the modified tube technique
JPH06101001A (en) Compound superconductor