JPH0737445A - Compound superconductive wire - Google Patents

Compound superconductive wire

Info

Publication number
JPH0737445A
JPH0737445A JP5200105A JP20010593A JPH0737445A JP H0737445 A JPH0737445 A JP H0737445A JP 5200105 A JP5200105 A JP 5200105A JP 20010593 A JP20010593 A JP 20010593A JP H0737445 A JPH0737445 A JP H0737445A
Authority
JP
Japan
Prior art keywords
compound
wire
layer
mmφ
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5200105A
Other languages
Japanese (ja)
Inventor
Tomonori Yamada
知礼 山田
Hisaki Sakamoto
久樹 坂本
Kaname Matsumoto
要 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5200105A priority Critical patent/JPH0737445A/en
Publication of JPH0737445A publication Critical patent/JPH0737445A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a compound superconductive wire with excellent superconductive properties in highly magnetic field. CONSTITUTION:A compound superconductive wire is composed by uniting a large number of basic cluster wires 3 prepared by reciprocally layering a compound superconductor layer 1 and a silver layer 2. The thickness of the silver layer 2 is made 0.3-5 times the coherence length of the compound superconductor layer 1. As a result, the finely distributed silver layer 2 has pinning function, so that the superconductive properties in a highly magnetic field are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に高磁界下での超電
導特性に優れた化合物超電導線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound superconducting wire having excellent superconducting properties especially under a high magnetic field.

【0002】[0002]

【従来の技術】化合物超電導体にはNb3 Sn、Nb3
Al、V3 Ga等がある。これらは加工性に劣る為、そ
の生成は、例えばNb金属とCu−Sn合金との複合材
を最終形状に加工したのち、加熱処理してSnをNbに
拡散させてNb3 Sn化合物超電導体を反応生成させる
方法によりなされていた。具体的には、ブロンズ(Cu
−Sn系合金)製管内にNb棒材を充填し、これを延伸
加工して複合線材となし、この複合線材を銅製管内に充
填して延伸加工する工程を所望回施して所定の線径に仕
上げ、これを加熱処理するブロンズ法、或いはSnリッ
チな合金芯材の周囲にNb層又はNb合金層を配した複
合線材を延伸加工し、最後に加熱処理する内部拡散法
(例えばチューブ法)等がある。
2. Description of the Related Art Nb 3 Sn, Nb 3 are used for compound superconductors.
Examples include Al and V 3 Ga. Since these are inferior in workability, its generation, for example, after processing the composite of the Nb metal and the Cu-Sn alloy to the final shape, the heat treatment by diffusing the Sn into Nb and Nb 3 Sn compound superconducting It was carried out by a method of producing a reaction. Specifically, bronze (Cu
-Sn-based alloy) pipe is filled with Nb rod, and this is drawn to form a composite wire rod. The step of filling this copper wire pipe into a copper pipe and drawing it is performed a desired number of times to obtain a predetermined wire diameter. Finishing, bronze method of heat-treating this, or internal diffusion method (eg, tube method) of drawing a composite wire rod in which Nb layer or Nb alloy layer is arranged around Sn-rich alloy core material, and finally heat-treating There is.

【0003】[0003]

【発明が解決しようとする課題】前述のような化合物超
電導体の生成方法では、その生成速度はブロンズ中とN
3 Sn層中のSnの拡散速度に律せられる。生成速度
を速めようとして加熱温度を高めるとピンニングに有効
な結晶粒界が減少し、又非超電導体化合物が生成する。
他方、加熱温度を低めるとNb層の中心部でSnが不足
してNb3 Sn超電導体の化学量論的組成が得られなく
なる。このように従来のNb3 Sn等の化合物超電導線
の特性向上には限界があった。
In the method of producing a compound superconductor as described above, the production rate is in bronze and N.
It is limited by the diffusion rate of Sn in the b 3 Sn layer. When the heating temperature is raised to increase the production rate, the grain boundaries effective for pinning are reduced, and a non-superconductor compound is produced.
On the other hand, when the heating temperature is lowered, Sn is insufficient in the central portion of the Nb layer, and the stoichiometric composition of the Nb 3 Sn superconductor cannot be obtained. Thus, there has been a limit to improving the characteristics of the conventional compound superconducting wire such as Nb 3 Sn.

【0004】[0004]

【課題を解決するための手段】本発明はこのような状況
に鑑み鋭意研究を行ない、常伝導体は結晶粒界と同等以
上のピンニング効果を有すること、常伝導体の中でも銀
はNbやNb合金等と非反応性の為熱処理後も良好なピ
ンニング点となり得ることを知見し、更に研究を重ねて
本発明を完成するに至ったものである。即ち、本発明
は、化合物超電導体層と銀層とを交互に積層させた基本
クラスタ線の多数本が合体した化合物超電導線であっ
て、前記銀層の厚さが化合物超電導体層のコヒーレンス
長さの 0.3〜5倍の範囲にあることを特徴とする化合物
超電導線である。
The present invention has conducted intensive studies in view of such a situation. The normal conductor has a pinning effect equal to or higher than that of a grain boundary. Among normal conductors, silver is Nb or Nb. The present inventors have found that they can be a good pinning point even after heat treatment because they are non-reactive with alloys and the like, and have further researched to complete the present invention. That is, the present invention provides a compound superconducting wire in which a large number of basic cluster lines in which a compound superconductor layer and a silver layer are alternately laminated are combined, and the thickness of the silver layer is the coherence length of the compound superconductor layer. It is a compound superconducting wire characterized by being in the range of 0.3 to 5 times the length.

【0005】本発明において、銀層の厚さを化合物超電
導体層のコヒーレンス長さ(ξ:超電導電子数が平衡値
に達するまでの過渡的距離。)の 0.3〜5倍の範囲に限
定したのは、銅層の厚さが化合物超電導体層のコヒーレ
ンス長さの 0.3倍未満では超電導電子の銀層への浸み出
しが起きて、又5倍を超えるとピンニング効果が低減
し、しかも銀層の占積率が増えて、超電導線全体の特性
が低下する為である。本発明において、基本クラスタ線
内の銀層の間隔は、量子化磁束線の格子間隔af (af
=1.07×(φ0 /B)1/2 、但しφ0 は磁束量子、Bは
磁束密度)程度にすることがピンニング効率からみて望
ましい。
In the present invention, the thickness of the silver layer is limited to a range of 0.3 to 5 times the coherence length of the compound superconductor layer (ξ: a transitional distance until the number of superconductors reaches the equilibrium value). When the thickness of the copper layer is less than 0.3 times the coherence length of the compound superconductor layer, leaching of superconducting conductors into the silver layer occurs, and when it exceeds 5 times, the pinning effect decreases and the silver layer This is because the space factor increases and the characteristics of the entire superconducting wire deteriorate. In the present invention, the spacing of the silver layers within the basic cluster line is the lattice spacing a f (a f of the quantized magnetic flux lines ).
= 1.07 × (φ 0 / B) 1/2 , where φ 0 is a magnetic flux quantum and B is a magnetic flux density) is desirable from the viewpoint of pinning efficiency.

【0006】以下に本発明の化合物超電導線を図を参照
して説明する。図1は、本発明の化合物超電導線の態様
を示す断面拡大図である。化合物超電導体層1と銀層2
とを交互に積層した基本クラスタ線3が多数本合体され
ている。
The compound superconducting wire of the present invention will be described below with reference to the drawings. FIG. 1 is an enlarged cross-sectional view showing an embodiment of the compound superconducting wire of the present invention. Compound superconductor layer 1 and silver layer 2
A large number of basic cluster lines 3 in which and are alternately laminated are united.

【0007】次に本発明の化合物超電導線の製造方法を
図を参照して説明する。図2イ〜チはNb3 Sn化合物
超電導線の製造方法の態様を示す工程説明図である。N
b板4と銀板5とを交互に積層して銀製管6内に充填し
て一次ビレット7となし(図イ)、この一次ビレット7
を熱間押出して一体化し、これを冷間伸線して一次線材
8となし(図ロ)、この一次線材8を再び銀製管6内に
充填して二次ビレット17となし(図ハ)、この二次ビレ
ット17を再び熱間加工と冷間伸線して二次線材18となし
(図ニ)、この二次線材18を再度銅製管10内に充填して
三次ビレット27となし(図ホ)、この三次ビレット27を
再度熱間加工と冷間伸線して多層複合線材9となし(図
ヘ)、この多層複合線材9の外周表面にSnをメッキし
(図ト)、このSnをメッキした多層複合線材に所定の
加熱処理を施してNb層のNbをNb3 Sn超電導体に
反応させてNb3 Sn化合物超電導線となす(図チ)。
尚、複合ビレットの延伸加工には熱間押出と冷間伸線の
他、引抜きやスエージャー等の加工法が適用される。
Next, a method for producing the compound superconducting wire of the present invention will be described with reference to the drawings. Figure 2 b-Chi are process explanatory views showing an embodiment of the production method of Nb 3 Sn compound superconducting wire. N
The b plate 4 and the silver plate 5 are alternately laminated and filled in the silver tube 6 to form the primary billet 7 (Fig. A).
Was extruded and integrated, and then cold drawn to form a primary wire rod 8 (Fig. B). The primary wire rod 8 was filled again in the silver pipe 6 to form a secondary billet 17 (Fig. C). , This secondary billet 17 is hot-worked and cold-drawn again to form a secondary wire rod 18 (Fig. 2), and this secondary wire rod 18 is filled into the copper pipe 10 again to form a tertiary billet 27 (Fig. (Fig. E), the tertiary billet 27 is hot worked and cold drawn again to form the multilayer composite wire 9 (Fig. F), and Sn is plated on the outer peripheral surface of the multilayer composite wire 9 (Fig.). The multilayered composite wire plated with Sn is subjected to a predetermined heat treatment to react the Nb in the Nb layer with the Nb 3 Sn superconductor to form an Nb 3 Sn compound superconducting wire (Fig. H).
In addition to the hot extrusion and the cold wire drawing, the drawing process of the composite billet includes drawing and swaging.

【0008】この製造方法には、Snをメッキにより
供給するので、必要なSn量を無駄なく供給できる。
Snは加熱処理直前に供給するので、延伸加工途中にS
nを含む非超電導体化合物が生成することがない。N
bと銀とは加工性に優れ且つ反応し合わないので、最終
の多層複合線材まで良好に加工がなされる。Snメッ
キした多層複合線材の加熱処理工程において、Snは銅
層、及び銀層を拡散するので拡散速度が速い。Nb層
は薄いので、Nb層の内部まで化学量論的組成のNb3
Sn超電導体が低温短時間にて形成される。Nb3
n超電導体の形成が低温短時間のうちになされるので、
非超電導体化合物の生成が抑えられる。ピンニング点
となす銀層のサイズ、形状、分布形態、体積分率等は一
次ビレットの組立時に自由に設計できる。等の種々の利
点がある。
In this manufacturing method, since Sn is supplied by plating, the required amount of Sn can be supplied without waste.
Since Sn is supplied immediately before the heat treatment, S is added during the stretching process.
A non-superconductor compound containing n is not generated. N
Since b and silver are excellent in processability and do not react with each other, the final multilayer composite wire can be processed well. In the heat treatment step of the Sn-plated multilayer composite wire, Sn diffuses the copper layer and the silver layer, so that the diffusion rate is high. Since the Nb layer is thin, Nb 3 having a stoichiometric composition is extended to the inside of the Nb layer.
The Sn superconductor is formed at a low temperature in a short time. Nb 3 S
Since n superconductors are formed in a short time at low temperature,
Generation of non-superconductor compounds is suppressed. The size, shape, distribution form, volume fraction, etc. of the silver layer that forms the pinning point can be freely designed when the primary billet is assembled. There are various advantages such as.

【0009】[0009]

【作用】本発明の化合物超電導線は、化合物超電導体層
と銀層とを交互に積層した基本クラスタ線が合体したも
のであり、且つ銀層の厚さが化合物超電導体層のコヒー
レンス長さの 0.3〜5倍の範囲にあるので、常伝導の銀
層が磁束線を効率よくピンニングして、高磁界下での超
電導特性が向上する。
The compound superconducting wire of the present invention is a combination of basic cluster wires in which compound superconducting layers and silver layers are alternately laminated, and the thickness of the silver layer is equal to the coherence length of the compound superconducting layer. Since it is in the range of 0.3 to 5 times, the normal-conducting silver layer efficiently pins the magnetic flux lines, and the superconducting property under a high magnetic field is improved.

【0010】[0010]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 厚さ 4.5mmのNb−1wt%Ti合金製板と厚さ1mmの銀板
とを交互に積層し、これを外径45mmφ, 内径42mmφの銀
製管内に充填して一次ビレットとなした。次にこの一次
ビレットを外径11mmφの押出材に熱間押出し、この押出
材に冷間伸線を施して1.3 mmφの一次線材となした。次
にこの一次線材 650本を外径45mmφ, 内径38.5mmφの銀
製管内に充填して二次ビレットとなし、この二次ビレッ
トに再び熱間押出と冷間伸線を施して 1.3mmφの二次線
材となした。この二次線材を再び外径45mmφ, 内径38.5
mmφの銅製管内に 650本充填して三次ビレットとなし、
この三次ビレットに再度熱間押出と冷間伸線を施して0.
06〜1mmφの範囲内の種々の線径の多層複合線材となし
た。次にこの多層複合線材表面にSnを溶融メッキによ
り付着させ、これをAr雰囲気中でSnの融点近傍の温
度で24時間保持し、次に 600℃に昇温して48時間、更に
700℃に昇温して24時間保持してSnをNb層中に拡散
させ、該Nbと反応させてNb3 Sn化合物超電導体と
し、Nb3 Sn化合物超電導線を製造した。Snの溶融
メッキ付着量は化合物超電導線に占める銀量の20wt%に
した。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 Nb-1 wt% Ti alloy plates having a thickness of 4.5 mm and silver plates having a thickness of 1 mm were alternately laminated and filled in a silver tube having an outer diameter of 45 mmφ and an inner diameter of 42 mmφ to form a primary billet. . Next, this primary billet was hot extruded into an extruded material having an outer diameter of 11 mmφ, and this extruded material was subjected to cold drawing to obtain a 1.3 mmφ primary wire material. Next, 650 pieces of this primary wire rod were filled into a silver tube with an outer diameter of 45 mmφ and an inner diameter of 38.5 mmφ to form a secondary billet. Made into a wire rod. This secondary wire rod is again used with an outer diameter of 45 mm and an inner diameter of 38.5
Filling 650 pieces in a mmφ copper tube to form a third billet,
This tertiary billet was again subjected to hot extrusion and cold wire drawing.
Made into a multi-layer composite wire rod with various wire diameters within the range of 06 to 1 mmφ. Next, Sn was deposited on the surface of this multilayer composite wire by hot dip plating, and this was held in an Ar atmosphere at a temperature near the melting point of Sn for 24 hours, then heated to 600 ° C. for 48 hours, and further.
The temperature was raised to 700 ° C. and kept for 24 hours to diffuse Sn into the Nb layer, and reacted with the Nb to form an Nb 3 Sn compound superconductor, and an Nb 3 Sn compound superconducting wire was manufactured. The amount of Sn deposited by hot-dip plating was 20 wt% of the amount of silver in the compound superconducting wire.

【0011】比較例1 実施例1において、多層複合線材の線径を0.05mmφ又は
1.18mmφとした他は、実施例1と同じ方法によりNb3
Sn化合物超電導線を製造した。
Comparative Example 1 In Example 1, the wire diameter of the multilayer composite wire was 0.05 mmφ or
Nb 3 in the same manner as in Example 1 except that 1.18 mmφ was used.
A Sn compound superconducting wire was manufactured.

【0012】比較例2 外径45mmφ, 内径38mmφのブロンズ(Cu-14.3wt%S
n)製管にNb−1wt%Ti合金棒材を充填し、これに熱
間押出と冷間伸線を施して外径 1.3mmφの複合素線とな
し、この複合素線を外径45mmφ, 内径38.5mmφの銅管に
650本充填し、これに再び熱間押出と冷間伸線を施し
て、外径 0.3mmφの最終線材となした。次にこれをAr
雰囲気中で 700℃×24時間保持してNb3 Sn化合物超
電導線を製造した。
Comparative Example 2 Bronze having an outer diameter of 45 mmφ and an inner diameter of 38 mmφ (Cu-14.3 wt% S
n) A Nb-1wt% Ti alloy rod is filled in a pipe and subjected to hot extrusion and cold drawing to form a composite element wire with an outer diameter of 1.3 mmφ. This composite element wire has an outer diameter of 45 mmφ, For copper tubes with an inner diameter of 38.5 mmφ
650 pieces were filled, and hot extrusion and cold drawing were performed again on this to obtain a final wire rod having an outer diameter of 0.3 mmφ. Next this is Ar
The Nb 3 Sn compound superconducting wire was manufactured by keeping the temperature at 700 ° C. for 24 hours.

【0013】このようにして得られたNb3 Sn化合物
超電導線について、液体He中にて10〜16Tの磁界下で
臨界電流密度(Jc)を測定した。結果を表1に示し
た。尚、得られた化合物超電導体層のコヒーレンス長さ
ξは、約4nmであった。
The critical current density (Jc) of the Nb 3 Sn compound superconducting wire thus obtained was measured in liquid He under a magnetic field of 10 to 16T. The results are shown in Table 1. The coherence length ξ of the obtained compound superconductor layer was about 4 nm.

【0014】[0014]

【表1】 *Nb3 Snフィラメントの単位断面積(含む銀層)当
たりの臨界電流密度。
[Table 1] * Critical current density per unit cross-sectional area (including silver layer) of Nb 3 Sn filament.

【0015】表1より明らかなように、本発明例品(No
1〜5)は、高磁界下において、いずれも高いJcを示
した。これは銀層が磁束をピンニングした為である。こ
れに対し、比較例品のNo6は銀層の厚さが薄くなり過ぎ
てそのピンニング効果が低減した為、又No7は化合物超
電導線の断面に占める銀層の割合が大きかった為、又No
8はピンニング点の不足と非超電導体化合物の生成によ
り、いずれもJcが低下した。
As is clear from Table 1, the products of the present invention (No.
1 to 5) all showed high Jc under a high magnetic field. This is because the silver layer pinned the magnetic flux. On the other hand, No. 6 of the comparative example product had the silver layer too thin to reduce its pinning effect, and No. 7 had a large proportion of the silver layer in the cross section of the compound superconducting wire.
No. 8 had a low Jc due to the lack of pinning points and the formation of non-superconductor compounds.

【0016】実施例2 厚さ 4.5mmのNb板と厚さ1mmの銀板とを交互に積層
し、これを外径45mmφ,内径42mmφの銀製管内に充填し
て一次ビレットとなした。次にこの一次ビレットを熱間
押出して外径11mmφの押出材となし、これを1.3 mmφに
冷間伸線して一次線材となした。次にこの一次複合線材
650本を外径45mmφ, 内径38.5mmφの銀製管内に充填し
て二次ビレットとなし、この二次ビレットに再び熱間押
出と冷間伸線を施して 1.3mmφの二次線材となした。次
にこの二次線材を再び外径45mmφ,内径38.5mmφの銅製
管内に 650本充填して三次ビレットとなし、この三次ビ
レットに再度熱間押出と冷間伸線を施して0.06〜1mmφ
の範囲内の種々の線径の多層複合線材となした。次にこ
の多層複合線材の表面にAlを溶融メッキにより付着さ
せ、これをAr雰囲気中で 380℃×24時間保持し、引続
き 570℃に昇温して48時間、更に 850℃に昇温して48時
間保持してAlをNb層中に拡散させ、該Nbと反応さ
せてNb3 Al化合物超電導体とし、Nb3 Al化合物
超電導線を製造した。上記においてAlの溶融メッキ付
着量は化合物超電導線に占める銀量の30wt%にした。
Example 2 Nb plates having a thickness of 4.5 mm and silver plates having a thickness of 1 mm were alternately laminated and filled in a silver tube having an outer diameter of 45 mmφ and an inner diameter of 42 mmφ to form a primary billet. Next, this primary billet was hot extruded to form an extruded material having an outer diameter of 11 mmφ, which was cold drawn to 1.3 mmφ to form a primary wire rod. Next, this primary composite wire
650 pieces were filled in a silver tube having an outer diameter of 45 mmφ and an inner diameter of 38.5 mmφ to form a secondary billet, and this secondary billet was again subjected to hot extrusion and cold drawing to form a secondary wire rod of 1.3 mmφ. Next, 650 pieces of this secondary wire were again filled into a copper tube with an outer diameter of 45 mmφ and an inner diameter of 38.5 mmφ to form a tertiary billet. The tertiary billet was hot extruded and cold drawn again to 0.06 to 1 mmφ.
The multi-layer composite wire rod has various wire diameters within the range. Next, Al was deposited on the surface of this multilayer composite wire by hot dip plating, kept at 380 ° C for 24 hours in an Ar atmosphere, and subsequently heated to 570 ° C for 48 hours and further heated to 850 ° C. It was kept for 48 hours to diffuse Al into the Nb layer and reacted with the Nb to form an Nb 3 Al compound superconductor, thereby manufacturing an Nb 3 Al compound superconducting wire. In the above, the amount of Al deposited by hot dipping was set to 30 wt% of the amount of silver in the compound superconducting wire.

【0017】比較例3 実施例2において、多層複合線材の線径を0.05mmφ又は
1.18mmφとした他は、実施例1と同じ方法によりNb3
Al化合物超電導線を製造した。
Comparative Example 3 In Example 2, the wire diameter of the multi-layer composite wire was 0.05 mmφ or
Nb 3 in the same manner as in Example 1 except that 1.18 mmφ was used.
An Al compound superconducting wire was manufactured.

【0018】比較例4 外径45mmφ, 内径38mmφのAl−Mn系合金製管にNb
棒材を充填し、これに熱間押出と伸線加工を施して外径
1mmφの複合素線となし、この複合素線を外径45mmφ,
内径38mmφの銅管に1000本充填し、これに再び熱間押出
と冷間伸線を施して、外径 0.2mmφの最終線材となし
た。次にこれをAr雰囲気中で 850℃×48時間保持して
Nb3 Al化合物超電導線を製造した。
Comparative Example 4 Nb was applied to an Al-Mn alloy pipe having an outer diameter of 45 mmφ and an inner diameter of 38 mmφ.
The rod is filled, hot extruded and drawn to form a composite wire with an outer diameter of 1 mmφ. This composite wire has an outer diameter of 45 mmφ,
A copper tube having an inner diameter of 38 mmφ was filled with 1000 pieces, and hot extrusion and cold drawing were performed again on this to obtain a final wire rod having an outer diameter of 0.2 mmφ. Next, this was kept in an Ar atmosphere at 850 ° C. for 48 hours to produce a Nb 3 Al compound superconducting wire.

【0019】このようにして得られたNb3 Al化合物
超電導線について、液体He中にて10〜16Tの磁場下で
臨界電流密度(Jc)を測定した。結果を表1に示し
た。尚、得られた化合物超電導体相のコヒーレンス長さ
ξは、約4nmであった。
The critical current density (Jc) of the Nb 3 Al compound superconducting wire thus obtained was measured in liquid He under a magnetic field of 10 to 16T. The results are shown in Table 1. The coherence length ξ of the obtained compound superconductor phase was about 4 nm.

【0020】[0020]

【表2】 *Nb3 Alフィラメントの単位断面積(含む銀層)当
たりの臨界電流密度。
[Table 2] * Critical current density per unit cross-sectional area (including silver layer) of Nb 3 Al filament.

【0021】表1より明らかなように、本発明例品(No
9〜13)は、高磁界下においていずれも高いJc値を示
した。これは銀層が磁束をピンニングした為である。こ
れに対し、比較例品のNo14は銀層が薄くなり過ぎてその
ピンニング効果が低減した為、又No15は化合物超電導線
の断面に占める銀層の割合が大きくなり過ぎた為、又No
16はピンニング点の不足と非超電導体化合物の生成によ
り、いずれもJc値が低下した。
As is clear from Table 1, the products of the present invention (No.
9 to 13) all showed high Jc values under a high magnetic field. This is because the silver layer pinned the magnetic flux. On the other hand, No. 14 of the comparative example product has a too thin silver layer to reduce its pinning effect, and No. 15 has a too large proportion of the silver layer in the cross section of the compound superconducting wire.
No. 16 had a low Jc value due to a lack of pinning points and the formation of non-superconductor compounds.

【0022】以上、Nb3 Sn及びNb3 Al化合物超
電導線について説明したが、本発明はV3 Ga等の他の
化合物超電導線に応用しても同様の効果が得られる。
Although the Nb 3 Sn and Nb 3 Al compound superconducting wires have been described above, the same effects can be obtained by applying the present invention to other compound superconducting wires such as V 3 Ga.

【0023】[0023]

【効果】以上述べたように、本発明の化合物超電導線
は、ピンニング効果を有する銀層が微細に分布したもの
なので高磁界下におけるJc値が向上し、工業上顕著な
効果を奏する。
As described above, in the compound superconducting wire of the present invention, the silver layer having the pinning effect is finely distributed, so that the Jc value in a high magnetic field is improved, and a remarkable effect is industrially exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の化合物超電導線の態様を示す断面拡大
説明図である。
FIG. 1 is an enlarged cross-sectional explanatory view showing an embodiment of a compound superconducting wire of the present invention.

【図2】本発明の化合物超電導線の製造方法の態様を示
す工程説明図である。
FIG. 2 is a process explanatory view showing an embodiment of a method for producing a compound superconducting wire of the present invention.

【符号の説明】 1 化合物超電導体層 2 銀層 3 基本クラスタ線 4 Nb板 5 銀板 6 銀製管 7,17,27 複合ビレット 8,18 複合線材 9 多層複合線材 10 銅製管[Explanation of symbols] 1 compound superconductor layer 2 silver layer 3 basic cluster wire 4 Nb plate 5 silver plate 6 silver pipe 7,17,27 composite billet 8,18 composite wire rod 9 multi-layer composite wire rod 10 copper pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化合物超電導体層と銀層とを交互に積層
させた基本クラスタ線の多数本が合体した化合物超電導
線であって、前記銀層の厚さが化合物超電導体層のコヒ
ーレンス長さの 0.3〜5倍の範囲にあることを特徴とす
る化合物超電導線。
1. A compound superconducting wire in which a large number of basic cluster lines in which a compound superconductor layer and a silver layer are alternately laminated are united, and the thickness of the silver layer is the coherence length of the compound superconductor layer. The compound superconducting wire is characterized by being in the range of 0.3 to 5 times.
JP5200105A 1993-07-19 1993-07-19 Compound superconductive wire Pending JPH0737445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5200105A JPH0737445A (en) 1993-07-19 1993-07-19 Compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200105A JPH0737445A (en) 1993-07-19 1993-07-19 Compound superconductive wire

Publications (1)

Publication Number Publication Date
JPH0737445A true JPH0737445A (en) 1995-02-07

Family

ID=16418923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200105A Pending JPH0737445A (en) 1993-07-19 1993-07-19 Compound superconductive wire

Country Status (1)

Country Link
JP (1) JPH0737445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131482B2 (en) 1999-08-05 2006-11-07 Pyrotek Engineering Materials Limited Distributor device for use in metal casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131482B2 (en) 1999-08-05 2006-11-07 Pyrotek Engineering Materials Limited Distributor device for use in metal casting

Similar Documents

Publication Publication Date Title
GB2050878A (en) Making superconductors
US4646428A (en) Method of fabricating multifilament intermetallic superconductor
US5926942A (en) Method for manufacturing superconducting wire
US4363675A (en) Process for producing compound based superconductor wire
US4224735A (en) Method of production multifilamentary intermetallic superconductors
US4447946A (en) Method of fabricating multifilament intermetallic superconductor
JPH0737445A (en) Compound superconductive wire
EP0498413B1 (en) Method of manufacturing Nb3Sn superconducting wire
EP3961658A1 (en) Blank for producing a long nb3 sn-based superconducting wire
JPH06333439A (en) Compound superconductive wire
JP2007042455A (en) MANUFACTURING METHOD FOR Nb3Al SUPERCONDUCTIVE WIRE ROD, PRIMARY COMPOSITE FOR MANUFACTURING Nb3Al SUPERCONDUCTIVE WIRE ROD AND ITS MANUFACTURING METHOD, AND MULTICORE COMPOSITE FOR MANUFACTURING Nb3Al SUPERCONDUCTIVE WIRE ROD
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH06309968A (en) Manufacture of nb3sn superconducting wire for ac
JPH05342933A (en) Manufacture of nb3sn compound superconductive wire
Xu et al. Development of internal-tin diffusion multifilamentary Nb/sub 3/Sn conductors including hydrostatic extrusion
JPH06309969A (en) Manufacture of nb3sn superconducting wire
JPH05114322A (en) Manufacture of nb3sn superconducting lead wire
JPS6116139B2 (en)
JPH0620536A (en) Nb3sn compound superconducting wire and manufacture thereof
JPH05242742A (en) Superconducting wire and its manufacture
JPH05334920A (en) Nb3sn superconductive wire
JPH0495316A (en) Manufacture of compound linear body
JPS5838404A (en) Method of producing stabilized superconductor
JPH08287752A (en) Manufacture of superconducting wire material