JPH04132118A - Manufacture of nb3x multi-core superconducting wire - Google Patents

Manufacture of nb3x multi-core superconducting wire

Info

Publication number
JPH04132118A
JPH04132118A JP2252326A JP25232690A JPH04132118A JP H04132118 A JPH04132118 A JP H04132118A JP 2252326 A JP2252326 A JP 2252326A JP 25232690 A JP25232690 A JP 25232690A JP H04132118 A JPH04132118 A JP H04132118A
Authority
JP
Japan
Prior art keywords
diameter
segment
primary
superconducting wire
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2252326A
Other languages
Japanese (ja)
Other versions
JP2808874B2 (en
Inventor
Kazuya Daimatsu
一也 大松
Yuichi Yamada
雄一 山田
Masayuki Nagata
永田 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2252326A priority Critical patent/JP2808874B2/en
Publication of JPH04132118A publication Critical patent/JPH04132118A/en
Application granted granted Critical
Publication of JP2808874B2 publication Critical patent/JP2808874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce each thickness of Nb and Al so as to obtain high critical current density by inserting a plurality of primary segments into Cu or a Cu alloy so as to form a secondary stack, reducing the diameter to form a secondary segment, and reducing the diameter. CONSTITUTION:An Nb sheet 1 and an Al sheet 2 in a superposed relation are wound around a Cu rod 3 into a roll form, to be inserted into a Cu pipe 4 as a matrix pipe, followed by hydrostatically extruding, whereby the diameter is reduced. The obtained primary segment is drawn, thus forming the primary segment 6. A plurality of primary segments 6 are arranged inside another Cu pipe 7 as a matrix pipe, thereby obtaining a secondary stack. The secondary stack is hydrostatically extruded again, thus forming a secondary segment, followed by drawing. Therefore, it is possible to obtain a Nb3Al multi-core superconducting wire having a desired diameter.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、たとえば核融合炉用およびSMES用など
の超電導線材として用いることのできるNb3X多芯超
電導線の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a Nb3X multicore superconducting wire that can be used as a superconducting wire for, for example, nuclear fusion reactors and SMES.

[従来の技術] Nb、AI超電導材料は、30Tを超えると言われてい
る高い臨界磁界を有しており、歪特性もNb3 Snよ
り良好なことから、NbTiおよびNb3 Snに続く
第3の実用的な超電導材料として期待されており、特に
核融合炉の超電導マグネット用線材として期待されてい
る。
[Prior art] Nb and AI superconducting materials have a high critical magnetic field said to exceed 30T, and have better strain characteristics than Nb3Sn, so they are the third practical material following NbTi and Nb3Sn. It is expected to be used as a superconducting material, especially as a wire for superconducting magnets in nuclear fusion reactors.

また、近年、Nb3At超電導線において、■bおよび
Atの厚みを0.1μm程度にまで薄くすると、臨界電
流密度が上昇し、Nb3 Snの臨界電流密度と同等か
、あるいはこれを超える高い値が得られると報告されて
いる。
In addition, in recent years, in Nb3At superconducting wires, when the thickness of b and At is reduced to about 0.1 μm, the critical current density increases, and a high value equal to or exceeding the critical current density of Nb3Sn can be obtained. It is reported that

しかしながら、NbとAIの加工性がよくないため、工
業的には長尺化が困難であり、長尺の超電導線として得
ることができないという問題があった。ジェリーロール
法およびNbパイプ法等により、NbaALの長尺線材
化が試みられているが、未だ十分な成果は得られていな
い。たとえば、核融合炉の超電導マグネットに用いる線
材としては、少なくとも600mの長さが必要であり、
現在の目標としては1000m以上の長尺化が要望され
ている。また、Cu−10%Niをシースとした線材化
が一部試みられているが、安定化材としてはCuを用い
ることが必要である。
However, due to the poor workability of Nb and AI, it is difficult to lengthen it industrially, and there is a problem that it is impossible to obtain a long superconducting wire. Attempts have been made to make NbaAL into a long wire by the jelly roll method, the Nb pipe method, etc., but sufficient results have not yet been obtained. For example, wire rods used for superconducting magnets in fusion reactors need to be at least 600 m long.
The current goal is to have a length of 1,000 meters or more. Further, although some attempts have been made to make wire rods using Cu-10%Ni as sheaths, it is necessary to use Cu as a stabilizing material.

[発明が解決しようとする課題] このように、Nb3At多芯超電導線において長尺化が
困難な理由は、NbとAIの積層部における相互の界面
が、面積的に大きいことと、異種金属同士であるために
、伸線加工中におけるAtとNbの変形量が相違し、密
着性が不良になり、断線が生じることによる。
[Problem to be solved by the invention] As described above, the reason why it is difficult to increase the length of Nb3At multicore superconducting wires is that the mutual interface in the laminated part of Nb and AI is large in area, and the mutual interface between different metals Therefore, the amount of deformation of At and Nb during wire drawing is different, resulting in poor adhesion and wire breakage.

長尺線材の製作が可能なNbとAIの厚さは、従来は、
0.8μmおよび0,2μm程度である。
Conventionally, the thickness of Nb and AI that allows the production of long wire rods is
They are about 0.8 μm and 0.2 μm.

このような厚みでは、熱処理しても、高い臨界電流密度
(J c)は得られず、200A/mm2(12T)程
度である。このため、現在実用化されているNb3 S
n超電導線の半分程度でしかない。
With such a thickness, even if heat treated, a high critical current density (J c ) cannot be obtained, which is about 200 A/mm 2 (12 T). For this reason, Nb3S, which is currently in practical use,
It is only about half that of n superconducting wire.

この発明の目的は、このような従来の問題点を解消し、
NbおよびAtの厚さをさらに薄くして高い臨界電流密
度を得ることのできるNb3AlなどのNb3X系多芯
超電導線の製造方法を提供することにある。
The purpose of this invention is to solve such conventional problems,
It is an object of the present invention to provide a method for manufacturing a multicore superconducting wire based on Nb3X such as Nb3Al, which can obtain a high critical current density by further reducing the thickness of Nb and At.

[課題を解決するための手段] この発明の製造方法は、Nb金属またはNb合金からな
るNb含有シートとNbと反応して超電導性を示す化合
物を作る元素Xまたは元素Xを含む合金からなるX含有
シートを重ね合せてロール状に巻き、CuまたはCu合
金パイプ中に挿入した1次スタックを少なくとも1回の
押出より縮径加工して1次セグメントとするステップと
、複数の1次セグメントをCuまたはCu合金パイプ中
に挿入して2次スタックを形成し、この2次スタックを
押出により縮径加工して2次セグメントとするステップ
と、2次セグメントを所望の線径まで縮径加工するステ
ップと、2次セグメントを加熱処理してNb3Xを形成
するステップとを備えている。
[Means for Solving the Problems] The manufacturing method of the present invention provides an Nb-containing sheet made of an Nb metal or an Nb alloy, and an Nb-containing sheet made of an element X or an alloy containing the element A step of stacking the containing sheets and winding them into a roll, and reducing the diameter of the primary stack inserted into a Cu or Cu alloy pipe through at least one extrusion to form a primary segment; Or inserting it into a Cu alloy pipe to form a secondary stack, reducing the diameter of this secondary stack by extrusion to form a secondary segment, and reducing the diameter of the secondary segment to a desired wire diameter. and heat treating the secondary segment to form Nb3X.

Nbと反応して超電導性を示す化合物を作る元素Xとし
ては、たとえばAl、SnまたはGeなどがある。
Examples of the element X that reacts with Nb to form a compound exhibiting superconductivity include Al, Sn, and Ge.

Nb合金および/または元素Xを含む合金中の含有合金
元素としては、T I SS t s Hf N T 
a sZr、MgまたはBeなどが挙げられる。
The alloying elements contained in the Nb alloy and/or the alloy containing element X include T I SS t s Hf N T
Examples include a sZr, Mg, and Be.

[発明の作用効果] この発明では、押出により縮径加工して1次セグメント
を形成しているので、Cu、XおよびNbの相互の界面
の密着性が良好となり、したがって線材全体の加工性が
向上する。
[Operations and Effects of the Invention] In this invention, since the primary segment is formed by diameter reduction processing by extrusion, the adhesion of the mutual interface between Cu, X and Nb is improved, and therefore the workability of the entire wire is improved. improves.

この発明において、1次セグメントを形成する際の押出
法として、は、熱間押出法および静水圧押出法などを採
用することができる。
In this invention, as the extrusion method for forming the primary segment, hot extrusion method, hydrostatic extrusion method, etc. can be adopted.

また、この発明において、1次セグメントを形成する際
に複数回押出すれば、NbとXの厚みを極限まで薄くす
ることができる。このため、臨界電流密度(J c)を
飛躍的に向上させることができる。また複数回押出すこ
とにより、Cu、NbおよびXの・相互の密着性をより
向上させることができ、線材全体の加工性を高めること
ができる。
Furthermore, in the present invention, by extruding multiple times when forming the primary segment, the thickness of Nb and X can be made as thin as possible. Therefore, the critical current density (Jc) can be dramatically improved. Moreover, by extruding multiple times, the mutual adhesion of Cu, Nb, and X can be further improved, and the workability of the entire wire can be improved.

また、この発明に従えば、1次セグメントを形成するの
に押出を用いており、押出は1回の加工度を大きくとる
ことができるので、生産性も向上させることができる。
Further, according to the present invention, extrusion is used to form the primary segment, and since extrusion can increase the degree of processing per time, productivity can also be improved.

[実施例] 実施例1 第1図に示すように、Nbシート1の上にAtシート2
を並べて配置し、Nbシート1とAtシート2をCu棒
3を中心にして巻込み重ね合せてロール状にした。これ
をマトリックスパイプとしてのCuパイプ4中に挿入し
た。この後電子ビーム溶接により両端をCuで蓋をして
、静水圧押出法により直径70mmから直径25mmに
押出し縮径加工した。
[Example] Example 1 As shown in FIG. 1, an At sheet 2 was placed on a Nb sheet 1.
were arranged side by side, and the Nb sheet 1 and the At sheet 2 were wound around the Cu rod 3 and overlapped to form a roll. This was inserted into a Cu pipe 4 as a matrix pipe. Thereafter, both ends were capped with Cu by electron beam welding, and the diameter was reduced by extrusion from 70 mm to 25 mm by hydrostatic extrusion.

第2図は、このようにして得られた1次セグメント5を
示す断面図である。
FIG. 2 is a sectional view showing the primary segment 5 thus obtained.

このようにして得られた1次セグメントを線引加工して
断面六角形状の一層セグメント6とした後、第3図に示
すように、マトリックスパイプとしてのCuパイプ7中
に複数配置して2次スタックとした。この2次スタック
を再度静水圧押出して2次セグメントとした後、この2
次セグメントを伸線加工して所望の線径のNb3At多
芯超電導線とした。
After drawing the primary segment thus obtained into a single-layer segment 6 with a hexagonal cross section, a plurality of them are arranged in a Cu pipe 7 as a matrix pipe to create a secondary segment, as shown in FIG. Stacked. After this secondary stack is hydrostatically extruded again to form secondary segments, the secondary stack is
The next segment was drawn to obtain a Nb3At multicore superconducting wire with a desired wire diameter.

第4図は、このようにして得られたNb3At多芯超電
導線を示す断面図である。第4図を参照して、Cuマト
リックス8中には多数の1次セグメント6が形成されて
いる。この実施例では、表1に示すように最終線径が0
.81mmとなるように伸線加工され、Nb5ALフイ
ラメント中のNb層の厚みが295nm、A1層の厚み
が80nmとなるように、使用するNbシートおよびA
tシートの厚みを定めている。
FIG. 4 is a cross-sectional view showing the Nb3At multicore superconducting wire obtained in this manner. Referring to FIG. 4, a large number of primary segments 6 are formed in the Cu matrix 8. In this example, the final wire diameter is 0 as shown in Table 1.
.. The Nb sheet used and the A
The thickness of the t-sheet is determined.

実施例2 1次スタックを縮径加工して1次セグメントとする際の
押出を2回の静水圧押出とする以外は、上記の実施例1
と同様にしてNb3At多芯超電導線を作製した。
Example 2 Example 1 above, except that the extrusion when reducing the diameter of the primary stack to form the primary segment was carried out twice using hydrostatic extrusion.
A Nb3At multicore superconducting wire was produced in the same manner as described above.

最終的な超電導線の線径において、NbおよびAtの厚
みは、それぞれ110nmおよび30nmとなり、実施
例1に比べると非常に薄くなった。
In the final wire diameter of the superconducting wire, the thicknesses of Nb and At were 110 nm and 30 nm, respectively, which were much thinner than in Example 1.

実施例3 この実施例では、実施例2と同様に1次スタックから1
次セグメントに縮径加工する際の押出を2回の熱間直接
押出により行なった。ただし最終的なNbおよびAIの
厚みが、上記実施例1とほぼ同じになるように、予めN
bシートおよびAtシートの厚みを調整しておいた。
Example 3 In this example, as in Example 2, one
Extrusion for diameter reduction into the next segment was carried out by two hot direct extrusions. However, Nb and AI should be prepared in advance so that the final thicknesses of Nb and AI are almost the same as in Example 1 above.
The thicknesses of the b sheet and the At sheet were adjusted in advance.

比較例 1次スタックを1次セグメントに縮径加工するのに、押
出ではなく伸線加工を用いた以外は、上記の実施例と同
様にしてNb3At多芯超電導線を作製した。
Comparative Example A Nb3At multifilamentary superconducting wire was produced in the same manner as in the above example, except that wire drawing was used instead of extrusion to reduce the diameter of the primary stack into primary segments.

上記実施例1〜3および比較例の最終線径におけるNb
層およびAt層の厚み、ならびに単長(最終的な伸線加
工により得られた線材の平均長さ)、および12T、4
.2Kにおける非端部当りの臨界電流密度(J c)を
併せて表1に示した。
Nb in the final wire diameter of Examples 1 to 3 and Comparative Example above
The thickness of the layer and the At layer, and the unit length (average length of the wire obtained by the final wire drawing process), and 12T, 4
.. The critical current density (Jc) per non-end portion at 2K is also shown in Table 1.

(珠−ト今りン 表1 表1から明らかなように、この発明に従い、1次スタッ
クから1次セグメントに縮径加工する際の加工方法を押
出とした実施例1〜3は、最終的な線材の長さを従来の
比較例のものより長くすることができ、またJcの高い
超電導線を得ることができた。
(Tamamarin Table 1 As is clear from Table 1, in Examples 1 to 3, in which extrusion was used as the processing method when reducing the diameter from the primary stack to the primary segment according to the present invention, the final The length of the wire material could be made longer than that of the conventional comparative example, and a superconducting wire with a high Jc could be obtained.

また実施例2からも明らかなように、1次スタックから
1次セグメントに縮径加工する際の押出を複数回行なう
ことにより、より一層Nb層およびAt層の厚みを薄く
することができ、より高いJcを得ることのできること
がわかった。
Furthermore, as is clear from Example 2, by performing extrusion multiple times when reducing the diameter from the primary stack to the primary segment, the thickness of the Nb layer and the At layer can be made even thinner. It was found that high Jc can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に従い1次スタックを形成する方法
を示す斜視図である。 第2図は、この発明に従い形成された1次セグメントを
示す断面図である。 第3図は、この発明に従い2次スタックを形成する方法
を示す斜視図である。 第4図は、この発明に従い形成された2次セグメントを
示す断面図である。 図において、lはNbシート、2はAIレシート3はC
u棒、4はCuパイプ、5は1次セグメント、6は六角
形状にされた1次セグメント、7はCuバイブ、8はC
uマトリックス、9は2次セグメントを示す。 2図
FIG. 1 is a perspective view illustrating a method of forming a primary stack according to the present invention. FIG. 2 is a cross-sectional view of a primary segment formed in accordance with the present invention. FIG. 3 is a perspective view illustrating a method of forming a secondary stack according to the present invention. FIG. 4 is a cross-sectional view of a secondary segment formed in accordance with the present invention. In the figure, l is Nb sheet, 2 is AI receipt, 3 is C
U rod, 4 is Cu pipe, 5 is primary segment, 6 is hexagonal primary segment, 7 is Cu vibe, 8 is C
u matrix, 9 indicates the secondary segment. Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)Nb金属またはNb合金からなるNb含有シート
とNbと反応して超電導性を示す化合物を作る元素Xま
たは元素Xを含む合金からなるX含有シートを重ね合せ
てロール状に巻き、CuまたはCu合金パイプ中に挿入
した1次スタックを少なくとも1回の押出により縮径加
工して1次セグメントとするステップと、 複数の前記1次セグメントをCuまたはCu合金パイプ
中に挿入して2次スタックを形成し、この2次スタック
を押出により縮径加工して2次セグメントとするステッ
プと、 前記2次セグメントを所望の線径まで縮径加工するステ
ップと 前記2次セグメントを加熱処理してNb_3Xを形成す
るステップと を備える、Nb_3X多芯超電導線の製造方法。
(1) A Nb-containing sheet made of Nb metal or Nb alloy and an X-containing sheet made of element A step of reducing the diameter of a primary stack inserted into a Cu alloy pipe by extrusion at least once to form a primary segment; and inserting a plurality of the primary segments into a Cu or Cu alloy pipe to form a secondary stack. and reducing the diameter of this secondary stack by extrusion to obtain a secondary segment; reducing the diameter of the secondary segment to a desired wire diameter; and heat-treating the secondary segment to form Nb_3X. A method for manufacturing a Nb_3X multicore superconducting wire, comprising the step of forming a Nb_3X multicore superconducting wire.
(2)前記元素Xが、Al、SnおよびGeからなるグ
ループより選ばれる少なくとも1種である、請求項1に
記載のNb_3X多芯超電導線の製造方法。
(2) The method for manufacturing a Nb_3X multicore superconducting wire according to claim 1, wherein the element X is at least one selected from the group consisting of Al, Sn, and Ge.
(3)前記Nb合金および/または前記元素Xを含む合
金中の含有合金元素が、Ti、Si、Hf、Ta、Zr
、MgおよびBeからなるグループより選ばれる少なく
とも1種である、請求項1に記載のNb_3X多芯超電
導線の製造方法。
(3) The alloying elements contained in the Nb alloy and/or the alloy containing the element X are Ti, Si, Hf, Ta, and Zr.
, Mg, and Be.
JP2252326A 1990-09-21 1990-09-21 Nb (3) Manufacturing method of Al multi-core superconducting wire Expired - Lifetime JP2808874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2252326A JP2808874B2 (en) 1990-09-21 1990-09-21 Nb (3) Manufacturing method of Al multi-core superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252326A JP2808874B2 (en) 1990-09-21 1990-09-21 Nb (3) Manufacturing method of Al multi-core superconducting wire

Publications (2)

Publication Number Publication Date
JPH04132118A true JPH04132118A (en) 1992-05-06
JP2808874B2 JP2808874B2 (en) 1998-10-08

Family

ID=17235710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252326A Expired - Lifetime JP2808874B2 (en) 1990-09-21 1990-09-21 Nb (3) Manufacturing method of Al multi-core superconducting wire

Country Status (1)

Country Link
JP (1) JP2808874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609804A1 (en) * 1993-02-02 1994-08-10 Sumitomo Electric Industries, Limited Wire for Nb3X superconducting wire, Nb3x superconducting wire and method of preparing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130699A (en) * 1973-04-13 1974-12-14
JPH02148620A (en) * 1988-11-30 1990-06-07 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al superconductive wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130699A (en) * 1973-04-13 1974-12-14
JPH02148620A (en) * 1988-11-30 1990-06-07 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al superconductive wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609804A1 (en) * 1993-02-02 1994-08-10 Sumitomo Electric Industries, Limited Wire for Nb3X superconducting wire, Nb3x superconducting wire and method of preparing the same

Also Published As

Publication number Publication date
JP2808874B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
US5174831A (en) Superconductor and process of manufacture
US5223348A (en) APC orientation superconductor and process of manufacture
JPH04132118A (en) Manufacture of nb3x multi-core superconducting wire
JP3050629B2 (en) Method for producing NbTi alloy-based superconducting wire
JPH04132119A (en) Manufacture of nb3x multi-core superconducting wire
JPH04132115A (en) Manufacture of nb3x multi-core superconducting wire
JPH04132114A (en) Manufacture of nb3x multi-core superconducting wire
JPH04132113A (en) Manufacture of nb3x multi-core superconducting wire
JP3050580B2 (en) Method for producing Nb-Ti alloy superconducting wire
JPH03101012A (en) Nb3-al multicore superconducting wire
JPS58189909A (en) Method of producing nb3sn superconductor
JPS60253114A (en) Method of producing nb3al superconductive wire
JPH04132116A (en) Manufacture of nb3x multi-core superconducting wire
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH07302520A (en) Manufacture of nb3sn superconductive wire
JP2749136B2 (en) Aluminum stabilized superconducting wire
JPH04132117A (en) Manufacture of nb3x multi-core superconducting wire
JPH04132120A (en) Manufacture of nb3x multi-core superconducting wire
JPH08227621A (en) Compound superconducting wire material
JPH01292709A (en) Manufacture of nb3al superconductor member
JPH1012057A (en) Nb3al-type superconductive wire material and manufacture thereof
JPH04294008A (en) Manufacture of compound superconductive wire
JPH04132109A (en) Compound superconducting wire
JPH04129107A (en) Manufacture of compound group superconductive wire
JPH05101720A (en) Compound superconductive wire and manufacture thereof