JPH04286302A - Composition for rare earth-fe-b bonded magnet and manufacture thereof - Google Patents

Composition for rare earth-fe-b bonded magnet and manufacture thereof

Info

Publication number
JPH04286302A
JPH04286302A JP3075611A JP7561191A JPH04286302A JP H04286302 A JPH04286302 A JP H04286302A JP 3075611 A JP3075611 A JP 3075611A JP 7561191 A JP7561191 A JP 7561191A JP H04286302 A JPH04286302 A JP H04286302A
Authority
JP
Japan
Prior art keywords
rare earth
powder
weight
composition
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3075611A
Other languages
Japanese (ja)
Inventor
Junichi Ishii
純一 石井
Nobumitsu Oshimura
信満 押村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3075611A priority Critical patent/JPH04286302A/en
Publication of JPH04286302A publication Critical patent/JPH04286302A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a rare earth-Fe-B bonded magnet composition, having excellent powder feeding property for a mold and also having excellent magnetic characteristics, and the manufacturing method thereof when it is molded into a magnet through compression molding requiring no high molding pressure without shortening the life of the mold. CONSTITUTION:An alloy thin band, having the composition in atomic ratio of 12.2% of rare earth, 76.8% of Fe, 5.5% of Co and 4.9% of B, is formed using a copper roll which rotates at rotational speed of 20m/sec. This alloy thin band is granulated by a stamping mill into powder which passes through 35 meshes entirely. The granulated powder is vibratory pulverized on a screen of 80 to 100 meshes together with spheres. An epoxy resin binder of 0.5 to 2.5 pts.wt. is added to the above-mentioned powder of 100 pts.wt., and a rare earth-Fe-B bonded composition, with which the objective effect can be displayed, is manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、給粉性、成型性、磁気
特性に優れた希土類−Fe−B系ボンド磁石を製造する
ための希土類−Fe−B系ボンド磁石用組成物及びその
製造方法に関するものである。
[Industrial Application Field] The present invention relates to a rare earth-Fe-B bonded magnet composition for producing a rare earth-Fe-B bonded magnet with excellent powder feeding properties, moldability, and magnetic properties, and its production. It is about the method.

【0002】0002

【従来の技術】希土類−Fe−B系永久磁石は、その優
れた磁気特性から、一般家電製品や通信・音響機器、医
療機器、一般産業機器に亘る広い分野で応用されつつあ
る。しかして、この系の磁石として、熱硬化性樹脂又は
熱可塑性樹脂をバインダーとして圧縮成形又は射出成形
して得られるボンドタイプと、合金粉末を焼結熱処理し
て得られる焼結タイプとがあり、その中でボンドタイプ
の磁石は、焼結タイプの磁石に較べて、磁気特性は低い
ものの、焼結加工のような加工が不要であり、複雑形状
や薄肉形状の磁石が容易に実現できることから、近年、
需要が急激にのびてきている。
2. Description of the Related Art Due to their excellent magnetic properties, rare earth-Fe-B permanent magnets are being applied in a wide range of fields including general home appliances, communication and audio equipment, medical equipment, and general industrial equipment. There are two types of magnets of this type: a bonded type obtained by compression molding or injection molding using a thermosetting resin or thermoplastic resin as a binder, and a sintered type obtained by sintering heat treatment of alloy powder. Among them, bond type magnets have lower magnetic properties than sintered type magnets, but they do not require processing such as sintering, and magnets with complex shapes and thin walls can be easily created. recent years,
Demand is rapidly increasing.

【0003】このための希土類−Fe−B系ボンド磁石
用組成物(以下、組成物という)として実用化されてい
るものは、液体急冷法によって得られた厚さ約20μm
、幅約300μmの希土類、Fe及びBを主成分とする
合金急冷薄帯をスタンプミルなどで粗砕し、エポキシ樹
脂のような熱硬化性樹脂やポリアミド樹脂のような熱可
塑性樹脂をバインダーとして加えて製造されている。 又、この粗砕した磁石用粉末を、さらに振動ボールミル
、カップミルなどで二次粉砕する方法によって製造され
ている。
[0003] For this purpose, a composition for a rare earth-Fe-B bonded magnet (hereinafter referred to as a composition) that has been put to practical use has a thickness of about 20 μm obtained by a liquid quenching method.
, a quenched alloy ribbon with a width of approximately 300 μm mainly composed of rare earths, Fe, and B is coarsely crushed using a stamp mill, etc., and a thermosetting resin such as an epoxy resin or a thermoplastic resin such as a polyamide resin is added as a binder. Manufactured by Further, it is manufactured by further pulverizing the coarsely crushed magnet powder using a vibrating ball mill, a cup mill, or the like.

【0004】0004

【発明が解決しようとする課題】しかしながら、合金急
冷薄帯をスタンプミルなどで粗砕したものは、最大粒径
が300μm以上であり、平均粒子径が約200μmと
いう大きな粒子の粉末を使用しているために、磁石形状
に圧縮成形する際に、面圧5〜10t/cm2といった
高い成形圧力を必要とし、金型の寿命短縮や破損に連が
るという問題があり、金型への給粉性がバラツキが大き
いために、磁石の高さのバラツキに連がり、製品化率の
低下が生じるという問題がある。又、二次粉砕を行なう
方法では、粒径が35μm以下の細粒が約10%もある
といったように細かくなり過ぎて磁気特性が低下したり
、合金粉末が酸化してしまうといった問題がある。
[Problems to be Solved by the Invention] However, when a rapidly solidified alloy ribbon is coarsely crushed using a stamp mill or the like, the maximum particle size is 300 μm or more, and the average particle size is about 200 μm. Therefore, when compression molding into a magnetic shape, a high molding pressure of 5 to 10 t/cm2 is required, which can shorten the life of the mold and lead to damage. There is a problem in that the large variations in properties lead to variations in the height of the magnets, resulting in a decrease in the production rate. Further, in the method of performing secondary pulverization, there are problems in that the particles become too fine, with approximately 10% of the particles having a particle size of 35 μm or less, resulting in deterioration of magnetic properties and oxidation of the alloy powder.

【0005】本発明は、圧縮成形して磁石化する際に、
高い成形圧力を必要とせず、金型の寿命を短縮したり破
損したりせず、金型への給粉性に優れ、かつ、磁気特性
に優れた希土類−Fe−B系ボンド磁石用組成物及びそ
の製造方法を得ることを目的とするものである。
[0005] In the present invention, when magnetizing by compression molding,
A rare earth-Fe-B bonded magnet composition that does not require high molding pressure, does not shorten the life of the mold or cause damage, has excellent powder feeding properties to the mold, and has excellent magnetic properties. The object of the present invention is to obtain a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者等は、前記問題
を解決し、前記目的を達成するために鋭意研究の結果、
特定粒径で特定厚さの磁石用合金粉に特定量のバインダ
ーを含有させた組成物、及び、そのような組成物を合金
急冷薄帯を粗砕した後、球体とともに特定目数の篩上で
振動粉砕し、特定量のバインダーを加えることによって
得るようにすることによって目的を達し得ることを見出
して本発明を完成するに至った。すなわち、本発明の第
1の実施態様は、希土類、Fe及びBを主成分とし、最
大粒径が190〜250μm、平均粒径が120〜15
0μm、粒径が35μm以下の粒子が2〜5重量%であ
り、かつ、厚さが17〜23μmである平板状の磁石用
粉末100重量部とエポキシ樹脂バインダー0.5〜2
.5重量部とを含有してなる希土類−Fe−B系ボンド
磁石用組成物であり、第2の実施態様は、第1の実施態
様の磁石用粉末の主成分のFeを一部がFe以外の少な
くとも1種の遷移金属で置換されているFeとした希土
類−Fe−B系ボンド磁石用組成物であり、第3の実施
態様は、液体急冷法により製造した希土類、Fe及びB
を主成分とする合金急冷薄帯を粗砕し、ついで粗砕粉を
球体とともに80〜100メッシュの篩上で振動させて
粉砕し、粉砕した粉末100重量部にエポキシ樹脂バイ
ンダー0.5〜2.5重量部を加えた希土類−Fe−B
系ボンド用組成物の製造方法である。
[Means for Solving the Problems] In order to solve the above-mentioned problems and achieve the above-mentioned objects, the present inventors have conducted intensive research and found that
A composition in which alloy powder for magnets with a specific particle size and thickness contains a specific amount of binder, and such a composition is crushed into a quenched alloy ribbon and then passed through a sieve with a specific number of meshes together with spheres. The present inventors have discovered that the object can be achieved by vibration-pulverizing the powder and adding a specific amount of binder, thereby completing the present invention. That is, the first embodiment of the present invention contains rare earth elements, Fe, and B as main components, has a maximum particle size of 190 to 250 μm, and has an average particle size of 120 to 15 μm.
100 parts by weight of flat magnet powder having a particle size of 0 μm, 2 to 5% by weight of particles with a particle size of 35 μm or less and a thickness of 17 to 23 μm, and 0.5 to 2 parts of an epoxy resin binder.
.. 5 parts by weight of a rare earth-Fe-B bonded magnet composition, and the second embodiment is a rare earth-Fe-B bonded magnet composition containing 5 parts by weight of Fe, which is the main component of the magnet powder of the first embodiment. A third embodiment is a rare earth-Fe-B bonded magnet composition in which Fe is substituted with at least one transition metal.
The quenched alloy ribbon mainly composed of .5 parts by weight of rare earth-Fe-B
This is a method for producing a composition for bonding.

【0007】本発明の組成物は、希土類は、Ndを主と
して使用し、Dy、Prなども使用できる。又、Feの
一部を置換する遷移金属としては、Co以外の遷移金属
群の中の少なくとも1種類を使用する。その他、Co、
V、Si、Zrなどの磁気特性を改善する元素を添加元
素として使用してもよい。組成物の組成範囲は、希土類
11〜14、Fe78〜85、B4〜8(原子%)であ
ることが好ましい。しかして、液体急冷法によって製造
したこのような組成の厚さが17〜23μmの合金急冷
薄帯を粉砕したものが好適であり、最大粒径が190〜
250μm、平均粒径が120〜150μm、粒径が3
5μm以下の粒が2〜5重量%であり、かつ、厚さが1
7〜23μmの平板状であることが必要である。すなわ
ち、最大粒径が250μmを超える粉末を含んだり、平
均粒径が150μmを超える粉末から構成するときは、
金型への給粉性が悪く、圧縮成形体の密度も均一でなく
、圧縮成形体の高さがバラツキ、歪が発生する。又、最
大粒径が190μm未満である粉末を含んだり、平均粒
径が120μm未満であり、粒径が35μm以下の粉末
が5重量%を超えて含有する粉末から構成されるときは
、硬化による磁気性能の低下が生じ、たとえば、B−H
ループ第2象限の角型性が劣化するので前記諸範囲に限
定したものである。なお、粒径が35μm以下の粒は、
粗砕工程において必然的に2重量%以上含むものである
[0007] In the composition of the present invention, as the rare earth element, Nd is mainly used, but Dy, Pr, etc. can also be used. Further, as the transition metal to partially replace Fe, at least one type of transition metal group other than Co is used. Others, Co,
Elements that improve magnetic properties, such as V, Si, and Zr, may be used as additive elements. The composition range of the composition is preferably 11 to 14 rare earth elements, 78 to 85 Fe, and 4 to 8 B (atomic %). Therefore, it is preferable to use a pulverized quenched alloy ribbon having a thickness of 17 to 23 μm and having a maximum particle size of 190 to 23 μm.
250 μm, average particle size 120-150 μm, particle size 3
2 to 5% by weight of grains of 5 μm or less and a thickness of 1
It is necessary to have a flat plate shape of 7 to 23 μm. In other words, when it contains powder with a maximum particle size of more than 250 μm or is composed of powder with an average particle size of more than 150 μm,
Powder feeding into the mold is poor, the density of the compression molded product is not uniform, and the height of the compression molded product varies and distortion occurs. In addition, if it contains powder with a maximum particle size of less than 190 μm, or has an average particle size of less than 120 μm, and contains more than 5% by weight of powder with a particle size of 35 μm or less, it will be hardened due to hardening. Deterioration of magnetic performance occurs, e.g. B-H
Since the squareness of the second quadrant of the loop deteriorates, it is limited to the above ranges. In addition, particles with a particle size of 35 μm or less,
It is necessarily contained in an amount of 2% by weight or more in the crushing process.

【0008】又、バインダーは、エポキシ樹脂を使用す
るものであって、これは、磁石用合金粉末との密着性が
優れており、圧縮成形し、エポキシ樹脂を硬化させて機
械的強度を高める特性を示すものであり、磁石用合金粉
末100重量部に対して、0.5〜2.5重量部加える
ものであって、これは、0.5重量部未満では、圧縮成
形体の機械的強度が十分でないために割れ易く、2.5
重量部を超えると磁気特性が低下し、圧縮成形時に過剰
の樹脂が金型に付着するために圧縮成形体を金型から破
損させずに取り出すのが困難となるからである。このエ
ポキシ樹脂を硬化させるには、通常行なわれているよう
に、硬化剤を加えなければならず、たとえば、1級アミ
ン、2級アミン、3級アミン、酸無水物、フェノールな
どの中の少なくとも1種類を1〜50%添加するもので
、とくに、3級アミンを用いて硬化させる際には、高温
度、長時間の処理条件が必要となるので、硬化触媒を併
用して硬化温度を低下させ、硬化時間を短縮するように
することが望ましい。
[0008] Furthermore, the binder uses epoxy resin, which has excellent adhesion with the alloy powder for magnets, and has the property of increasing mechanical strength by compression molding and curing the epoxy resin. 0.5 to 2.5 parts by weight is added to 100 parts by weight of alloy powder for magnets, and if it is less than 0.5 parts by weight, the mechanical strength of the compression molded product It is easy to break due to insufficient 2.5
This is because if the amount exceeds 1 part by weight, the magnetic properties deteriorate and excessive resin adheres to the mold during compression molding, making it difficult to take out the compression molded product from the mold without damaging it. To cure this epoxy resin, as is customary, a curing agent must be added, such as at least one of primary amines, secondary amines, tertiary amines, acid anhydrides, phenols, etc. 1 to 50% of one type is added. In particular, when curing using tertiary amines, high temperature and long processing conditions are required, so a curing catalyst is also used to lower the curing temperature. It is desirable to shorten the curing time.

【0009】本発明の組成物は、合金急冷薄帯を粗砕し
、ついで球体と80〜100メッシュの篩上で振動粉砕
し、粉砕した粉末にエポキシ樹脂バインダーを加えて製
造する。この際に使用する球体としては、外径8〜16
mmのステンレス製球体又はアルミナなどのようなセラ
ミック製球体、あるいは、外径12〜25mmのナイロ
ン製球体、アクリロニトリル・ブタジエン・スチレン共
重合体(ABS)製球体、ポリエチレン製球体、ポリプ
ロピレン製球体などを使用することが好ましい。
The composition of the present invention is produced by coarsely crushing a quenched alloy ribbon, then vibrationally crushing it on a sphere and a sieve of 80 to 100 mesh, and adding an epoxy resin binder to the crushed powder. The sphere used in this case has an outer diameter of 8 to 16
mm stainless steel spheres or ceramic spheres such as alumina, or nylon spheres with an outer diameter of 12 to 25 mm, acrylonitrile-butadiene-styrene copolymer (ABS) spheres, polyethylene spheres, polypropylene spheres, etc. It is preferable to use

【0010】篩上における粉砕の程度は、篩の目開き、
振動数、被粉砕物量、球体の大きさや材質及び数量など
によって影響されるが、大きく影響するのは篩の目開き
であり、粉砕の程度の調節は、篩のメッシュ数の変更で
実施するのがよい。本発明においては、80〜100メ
ッシュの篩を使用する。これは、80メッシュ未満の場
合は、粉砕粉末に有機合成樹脂バインダーを混合してプ
レス成形する際に、プレス成形物の密度が大きくならな
いためにボンド磁石の磁気特性が十分でなく、篩のメッ
シュ数が100メッシュを超える場合には、微細な粉末
が多くなるために、かえって圧縮成形体の密度が大きく
ならなかったり、微細な粉末の酸化がよりおこるために
ボンド磁石の磁気特性がやや劣化するからである。
[0010] The degree of crushing on the sieve is determined by the opening of the sieve,
It is affected by the frequency of vibration, the amount of material to be crushed, the size, material, and quantity of the spheres, but the major influence is the opening of the sieve, and the degree of crushing can be adjusted by changing the number of meshes of the sieve. Good. In the present invention, a sieve of 80 to 100 mesh is used. This is because when the pulverized powder is mixed with an organic synthetic resin binder and press-molded with less than 80 mesh, the density of the press-molded product does not become large and the magnetic properties of the bonded magnet are insufficient, resulting in the mesh of the sieve. If the number exceeds 100 meshes, the number of fine powders increases, so the density of the compacted compact may not increase, or the fine powders will be more oxidized, resulting in a slight deterioration of the magnetic properties of the bonded magnet. It is from.

【0011】振動数は、2000〜4000rpv(1
分間当りの振動回数)が望ましい。
[0011] The vibration frequency is 2000 to 4000 rpv (1
(number of vibrations per minute) is desirable.

【0012】粉砕の程度を調査し、調節するのは、厳密
には、粉砕粉末の粒度分布を測定してやらなければなら
ないが、希土類−Fe−B系磁石用粉末は、磁石化しな
くても微視的には弱く磁性を帯びているので、微細な粉
末同志は完全には分離し難く正確な粒度分布測定はでき
ない。したがって、粉砕粉末に有機合成樹脂バインダー
を混合し、プレス成形、硬化、磁化の工程によりボンド
磁石を作製し、磁石の磁気特性を測定してその値から粉
砕の程度を判断するようにする。
Strictly speaking, the degree of pulverization must be investigated and adjusted by measuring the particle size distribution of the pulverized powder, but rare earth-Fe-B magnet powder can be microscopically Since it is weakly magnetic, it is difficult to completely separate fine powders from each other, making accurate particle size distribution measurement impossible. Therefore, a bonded magnet is produced by mixing an organic synthetic resin binder with pulverized powder, press molding, curing, and magnetization steps, and the magnetic properties of the magnet are measured and the degree of pulverization is determined from the measured value.

【0013】[0013]

【作用】本発明の組成物は、厚さ17〜23μmの合金
急冷薄帯の粗砕粉末を80〜100メッシュの篩上で球
体とともに振動させて粉砕し、粉砕した粉末にバインダ
ーを加えて製造するものであるから、球体が合金急冷薄
帯に弱い衝撃を与えるだけで割れるものであって、ボー
ルミル粉砕のときのように摩擦力で粉砕されることが少
なく、篩のメッシュ数が適切であれば粉砕され過ぎて微
粉が多くなり過ぎることがなく、すぐに篩の目開き部か
ら落下して下部の容器中に集められる。又、本発明組成
物は、磁気特性が劣化せずに給粉性が良好であるが、こ
れは、希土類−Fe−B系ボンド磁石にとっては非常に
大切な特性である。何故ならば、希土類−Fe−B系ボ
ンド磁石は、成形性がよく、かつ、磁気的性能が優れて
おり、小型の精密機器用として多く使用されるものであ
るから、肉厚が0.N〜Nmmといったような極薄品と
して製造される。したがって、圧縮成型用金型もダイス
とコアとの間隙も狭くなり、その間隙に組成物を自然落
下させて給粉する際に均一に充填することが容易でない
からである。
[Operation] The composition of the present invention is produced by crushing a coarsely crushed powder of a quenched alloy ribbon with a thickness of 17 to 23 μm by vibrating it with a sphere on an 80 to 100 mesh sieve, and adding a binder to the crushed powder. Therefore, the spheres will break when they give a weak impact to the quenched alloy ribbon, and they will not be crushed by frictional force as in ball milling, and if the mesh number of the sieve is appropriate. This prevents the powder from being crushed too much, resulting in too much fine powder, which immediately falls through the openings of the sieve and is collected in the container at the bottom. Furthermore, the composition of the present invention has good powder feeding properties without deteriorating its magnetic properties, which is a very important property for rare earth-Fe-B bonded magnets. This is because rare earth-Fe-B bonded magnets have good moldability and excellent magnetic performance, and are often used for small precision instruments, so the wall thickness is 0. It is manufactured as an extremely thin product with a thickness of N to Nmm. Therefore, the gap between the compression molding mold and the die and the core becomes narrow, and it is not easy to fill the gap uniformly when the composition is allowed to fall naturally into the gap.

【0014】かくして、本発明組成物は、大きな粒径の
粉末、及び、小さな粒径の粉末が少なく、粒度分布がシ
ャープな磁石用合金粉末とエポキシ樹脂バインダーとか
ら構成することにより、圧縮成形して磁石化する際に圧
縮成形用の金型への給粉性が改善され、圧縮成形時の成
形圧力も低くても良く、したがって金型の寿命を短縮し
たり、破損したりせず、又、硬化による磁気性能の低下
をおこさないものである。
[0014] Thus, the composition of the present invention has a small amount of large particle size powder and small particle size powder, and is composed of an alloy powder for magnets with a sharp particle size distribution and an epoxy resin binder, so that it can be compression molded. The ability to feed powder into the mold for compression molding is improved when magnetizing it, and the molding pressure during compression molding can be lower, so the life of the mold is not shortened or damaged, and , which does not cause a decrease in magnetic performance due to hardening.

【0015】[0015]

【実施例】次に、本発明の実施例を述べる。 実施例  1 1)  磁石用合金粉末の調製 周速度20m/秒で回転する1個の銅製ロールに溶融物
を吹き付ける単ロール液体急冷装置により幅約0.3m
m、厚さ約20μmの希土類−Fe−B系合金急冷薄帯
を製造し、この薄帯をスタンプミルを使用してすべてが
35メッシュ以下となるように粗砕した。希土類−Fe
−B系合金急冷薄帯の組成は、原子比で、Nd12.2
%、Fe76.8%、Co5.5%、B4.9%であっ
た。
[Example] Next, an example of the present invention will be described. Example 1 1) Preparation of alloy powder for magnets A single roll liquid quencher sprays the melt onto one copper roll rotating at a circumferential speed of 20 m/sec to form a width of approximately 0.3 m.
A quenched rare earth-Fe-B alloy ribbon having a thickness of approximately 20 μm was produced, and this ribbon was coarsely crushed using a stamp mill so that the size of the ribbon was 35 mesh or less. Rare earth - Fe
-The composition of the B-based alloy quenched ribbon is, in atomic ratio, Nd12.2
%, Fe76.8%, Co5.5%, and B4.9%.

【0016】ついで、この粗砕粉末20Kgを篩目が1
00メッシュで外径が600mmの篩と篩のすぐ上の被
粉砕物と粉砕用のSUS製φ12mm球体300個とが
収容される容器とを振動発生部によって振動させ、篩を
通過した粉末が自然に排出されるようにされた装置に装
入し、振動数3000r.p.vで10分間振動させ、
篩上に粉末がなくなるまで処理した。
[0016] Next, 20 kg of this coarsely crushed powder was sieved to
A container containing a 00 mesh sieve with an outer diameter of 600 mm, the material to be crushed immediately above the sieve, and 300 SUS φ12 mm spheres for crushing is vibrated by a vibration generator, and the powder passing through the sieve is naturally It was charged into a device designed to discharge at a frequency of 3000 r. p. Vibrate for 10 minutes at
It was processed until there was no powder on the sieve.

【0017】この粉砕時の条件を表1に示し、粉砕して
得られた粉末の粒径分布を走査型電子顕微鏡を用いて測
定した結果を表2に示す。又、得られた粉末の走査型電
子顕微鏡写真を図1に示す。
Table 1 shows the conditions during this pulverization, and Table 2 shows the results of measuring the particle size distribution of the powder obtained by pulverization using a scanning electron microscope. Furthermore, a scanning electron micrograph of the obtained powder is shown in FIG.

【0018】2)  組成物の調製 粉末状のクレゾールノボラック型エポキシ樹脂15gを
、メチルエチルケトン(試薬1級)200mlに溶解し
、さらに硬化剤としてジシアンジアミド(試薬1級)1
.5gと硬化触媒として3−ヒドロキシピリジン(試薬
1級)0.03gを加えて混合した。
2) Preparation of composition 15 g of powdered cresol novolak type epoxy resin was dissolved in 200 ml of methyl ethyl ketone (1st class reagent), and 1 ml of dicyandiamide (1st class reagent) was added as a curing agent.
.. 5 g and 0.03 g of 3-hydroxypyridine (first class reagent) as a curing catalyst were added and mixed.

【0019】この混合液に、1)で調製した合金粉末1
Kgを添加し、ミキサーで1時間混合し、大部分のメチ
ルエチルケトンを揮発した後、常温の真空乾燥機で3時
間真空引きし、メチルエチルケトンの残分を完全に揮発
させてボンド磁石用組成物を調製した。
[0019] Add the alloy powder 1 prepared in 1) to this mixed solution.
Kg was added, mixed in a mixer for 1 hour to volatilize most of the methyl ethyl ketone, and then vacuumed for 3 hours in a vacuum dryer at room temperature to completely volatilize the remaining methyl ethyl ketone to prepare a composition for a bonded magnet. did.

【0020】3)  ボンド磁石の調製外径φ20mm
、内径φ18mm、高さ30mmの空間を有するように
製作した圧縮成型用金型に、2)で得た組成物0.5K
gを装填した給粉用フィーダを3往復させて組成物を給
粉した。さらに、圧縮圧力を面圧7t/cm2で成形し
、得られた成形体を130℃で30分間加熱してエポキ
シ樹脂を硬化させた。
3) Preparation outer diameter of bonded magnet φ20mm
, 0.5K of the composition obtained in 2) was placed in a compression molding mold manufactured to have a space with an inner diameter of 18 mm and a height of 30 mm.
The composition was fed by making three reciprocating movements of a powder feeder loaded with 10 g. Further, the molded product was molded at a surface pressure of 7 t/cm 2 , and the resulting molded product was heated at 130° C. for 30 minutes to harden the epoxy resin.

【0021】硬化後の成形体について、高さ寸法、マイ
クロメーターによって測定した密度、及び、JIS  
Z  2502に基づいて測定した組成物の流動性を示
す安息角を表3に示す。
[0021] Regarding the molded product after curing, the height dimension, the density measured by a micrometer, and the JIS
The angle of repose, which indicates the flowability of the composition, measured based on Z 2502 is shown in Table 3.

【0022】次に、このようにして得られた成形体を3
5KOeの磁界をパルス着磁器で印加して磁石とし、直
流自記磁束計で磁気特性として残留磁気密度、最大エネ
ルギー積を測定した。これらの結果を表4に示す。なお
、表4に併記したHkは、角型性の指針であり、Br×
0.9値における保磁力である。 実施例  2 実施例1−1)における篩上の粉砕時の球体をセラミッ
ク製φ15mm球体300個とした以外は、実施例1と
同様に処理し、実施例1と同様な諸測定を行なった。得
られた結果を表1乃至表4に示す。 実施例  3 実施例1−1)における篩の粉砕時の球体をナイロン製
φ20mm球体300個とした以外は、実施例1と同様
に処理し、実施例1と同様な諸測定を行なった。得られ
た結果を表1乃至表4に示す。 実施例  4 実施例1−1)における篩上の粉砕時の球体をSUS製
φ8mm球体、粉砕時間を15分間とした以外は、実施
例1と同様に処理し、実施例1と同様な諸測定を行なっ
た。得られた結果を表1乃至表4に示す。 実施例  5 実施例1−1)において使用する篩のメッシュ数を80
メッシュとし、篩上の粉砕時間を7分とした以外は、実
施例1と同様に処理し、実施例1と同様に諸測定を行な
った。得られた結果を表1乃至表4に示す。 比較例  1 実施例1−1)において使用する篩を60メッシュ篩と
し、粉砕時間を4分間とした以外は、実施例1と同様に
処理し、実施例1と同様な諸測定を行なった。得られた
結果を表1乃至表4に示す。 比較例  2 実施例1−1)において使用する篩を150メッシュと
し、粉砕時間を20分間とした以外は、実施例1と同様
にして処理し、実施例1と同様な諸測定を行なった。得
られた結果を表1乃至表4に示す。 比較例  3 合金急冷薄帯を実施例1−1)と同様に調製し、同様に
粗砕しただけの粗砕粉末を使用し、以後の処理を実施例
1と同様に行ない、実施例と同様な諸試験を行なった。 得られた結果を表1乃至表4に示す。 比較例  4 合金急冷薄帯を実施例1−1)と同様に調製し、同様に
粗砕し、ついで粗砕粉末5Kgを容量が3000mlの
ボールミルを使用してエタノール中で粉砕した以外は、
以後の処理を実施例と同様に行ない、実施例と同様な諸
試験を行なった。得られた結果を表1乃至表4に示す。 比較例  5 粉砕時間を5分間とした以外は、比較例4と同様にして
処理し、実施例1と同様な諸試験を行なった。得られた
結果を表1乃至表4に示す。 実施例  6〜9 実施例1−1)で得た合金粉末を使用して、組成物を調
製する際のエポキシ樹脂量を、0.5重量%(実施例6
)、1.0重量%(実施例7)、2.0重量%(実施例
8)、2.5重量%(実施例9)と変化させた以外は、
実施例1と同様に処理し、曲げ強度を、組成物2.5g
を5×6×15mmの角状の金型を用いて6t/m2の
圧力で成形した試験片を支点間12mmの治具上に固定
し、中央を可動プレートで圧縮し、試験が破断したとき
の荷重をロードセルで検出する型式のオートグラフで測
定して求め、又、実施例1と同様に磁気的特性を測定し
た。これらの結果を表5に示す。 比較例  6、7 組成物を調製する際に使用するエポキシ樹脂量を、0.
3重量%(比較例6)、3.0重量%(比較例7)とし
た以外は、実施例6と同様に処理し、実施例6と同様な
諸試験を行なった。得られた結果を表5に示す。
[0022] Next, the molded body thus obtained was
A magnetic field of 5 KOe was applied using a pulse magnetizer to create a magnet, and the residual magnetic density and maximum energy product were measured as magnetic properties using a DC self-recording magnetometer. These results are shown in Table 4. In addition, Hk listed in Table 4 is a guideline for squareness, and Br×
This is the coercive force at a value of 0.9. Example 2 The same process as in Example 1 was carried out, and the same measurements as in Example 1 were carried out, except that 300 ceramic φ15 mm spheres were used for crushing on the sieve in Example 1-1). The results obtained are shown in Tables 1 to 4. Example 3 The same process as in Example 1 was carried out, and the same measurements as in Example 1 were carried out, except that 300 nylon φ20 mm spheres were used for crushing the sieve in Example 1-1). The results obtained are shown in Tables 1 to 4. Example 4 The same process as in Example 1 was carried out, except that the spheres used for crushing on the sieve in Example 1-1) were SUS φ8 mm spheres and the crushing time was 15 minutes, and the same measurements as in Example 1 were carried out. I did it. The results obtained are shown in Tables 1 to 4. Example 5 The number of meshes of the sieve used in Example 1-1) was 80.
The process was carried out in the same manner as in Example 1, except that a mesh was used and the grinding time on the sieve was changed to 7 minutes, and various measurements were performed in the same manner as in Example 1. The results obtained are shown in Tables 1 to 4. Comparative Example 1 The same treatment as in Example 1 was carried out, and the same measurements as in Example 1 were carried out, except that the sieve used in Example 1-1) was a 60 mesh sieve and the crushing time was 4 minutes. The results obtained are shown in Tables 1 to 4. Comparative Example 2 The same treatment as in Example 1 was carried out, except that the sieve used in Example 1-1) was 150 mesh and the grinding time was 20 minutes, and the same measurements as in Example 1 were performed. The results obtained are shown in Tables 1 to 4. Comparative Example 3 A quenched alloy ribbon was prepared in the same manner as in Example 1-1), the coarsely crushed powder was used, and the subsequent treatments were carried out in the same manner as in Example 1. Various tests were conducted. The results obtained are shown in Tables 1 to 4. Comparative Example 4 A quenched alloy ribbon was prepared in the same manner as in Example 1-1) and coarsely crushed in the same manner, except that 5 kg of the coarsely crushed powder was crushed in ethanol using a ball mill with a capacity of 3000 ml.
The subsequent treatments were carried out in the same manner as in the examples, and the same tests as in the examples were conducted. The results obtained are shown in Tables 1 to 4. Comparative Example 5 The same treatment as in Comparative Example 4 was carried out, except that the grinding time was changed to 5 minutes, and the same tests as in Example 1 were conducted. The results obtained are shown in Tables 1 to 4. Examples 6 to 9 Using the alloy powder obtained in Example 1-1), the amount of epoxy resin when preparing a composition was 0.5% by weight (Example 6
), 1.0% by weight (Example 7), 2.0% by weight (Example 8), and 2.5% by weight (Example 9).
It was treated in the same manner as in Example 1, and the bending strength was determined using 2.5 g of the composition.
A test piece molded using a 5 x 6 x 15 mm square mold at a pressure of 6 t/m2 was fixed on a jig with a distance of 12 mm between supports, and the center was compressed with a movable plate. The load was measured using an autograph that uses a load cell, and the magnetic properties were also measured in the same manner as in Example 1. These results are shown in Table 5. Comparative Examples 6 and 7 The amount of epoxy resin used when preparing the composition was 0.
The same treatment as in Example 6 was carried out, and the same tests as in Example 6 were conducted, except that the amounts were 3% by weight (Comparative Example 6) and 3.0% by weight (Comparative Example 7). The results obtained are shown in Table 5.

【0023】[0023]

【表1】[Table 1]

【0024】[0024]

【表2】[Table 2]

【0025】[0025]

【表3】[Table 3]

【0026】[0026]

【表4】[Table 4]

【0027】[0027]

【表5】[Table 5]

【0028】これらの結果から、実施例1〜5と比較例
1〜5とを比較して、請求項1、2以外の条件の組成物
は、安息角が大きく、この組成物を圧縮成形した際に成
形体高さが高く、密度が小さく、このような粉末は金型
への給粉性が悪いことがわかり、前記の圧縮成形体を磁
石化した際に、残留磁束密度が低く、最大エネルギー積
が低く、あるいは、角型性が悪く、磁気性能が悪いこと
がわかる。さらに、実施例6〜9と比較例6、7とを比
較して、エポキシ樹脂バインダー量が0.5〜2.5重
量部の範囲外の組成物は、曲げ強度が低かったり、ある
いは磁化したときに磁気特性が悪いことがわかる。さら
に、請求項3以外の条件の製造方法では、請求項1、2
の組成物が得られないことがわかる。
[0028] From these results, when comparing Examples 1 to 5 and Comparative Examples 1 to 5, the compositions under conditions other than claims 1 and 2 had a large angle of repose, and when this composition was compression molded, In this case, the height of the molded product is high and the density is low, and it was found that such powder has poor powder feeding properties to the mold. It can be seen that the magnetic performance is poor due to the low product or poor squareness. Furthermore, by comparing Examples 6 to 9 and Comparative Examples 6 and 7, it was found that compositions with an epoxy resin binder amount outside the range of 0.5 to 2.5 parts by weight had low bending strength or were magnetized. Sometimes the magnetic properties are found to be poor. Furthermore, in a manufacturing method with conditions other than claim 3, claims 1 and 2
It can be seen that the composition cannot be obtained.

【0029】[0029]

【発明の効果】本発明は、特定粒度範囲、特定の厚さ範
囲の磁石合金粉末と特定量のバインダーとを含有する組
成物であり、特定厚さの合金急冷薄帯を粗砕した後、特
定メッシュ数の篩上で球体とともに振動粉砕し、特定量
のバインダーを加える製造方法であるから、圧縮成形に
おける金型への給粉性に優れ。磁石の寸法精度が向上し
、成形圧力も低くし得、生産性に優れているなど顕著な
効果が認められる。
Effects of the Invention The present invention is a composition containing magnetic alloy powder in a specific particle size range and a specific thickness range and a specific amount of binder. This manufacturing method involves vibratory crushing together with spheres on a sieve with a specific mesh number, and adding a specific amount of binder, which provides excellent powder feeding into the mold during compression molding. Remarkable effects have been recognized, such as improved dimensional accuracy of the magnet, lower molding pressure, and superior productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明における合金粉末の状態の一例を示す走
査型電子顕微鏡による粒子構造を示す写真(×140)
である。
[Figure 1] A photograph (x140) showing the particle structure taken by a scanning electron microscope showing an example of the state of the alloy powder in the present invention.
It is.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  希土類、Fe及びBを主成分とし、最
大粒径が190〜250μm、平均粒径が120〜15
0μm、粒径が35μm以下の粒子が2〜5重量%であ
り、かつ、厚さが17〜23μmである平板状の磁石用
粉末100重量部とエポキシ樹脂バインダー0.5〜2
.5重量部とを含有してなることを特徴とする希土類−
Fe−B系ボンド磁石用組成物。
Claim 1: The main components are rare earth elements, Fe, and B, and the maximum particle size is 190 to 250 μm, and the average particle size is 120 to 15 μm.
100 parts by weight of flat magnet powder having a particle size of 0 μm, 2 to 5% by weight of particles with a particle size of 35 μm or less and a thickness of 17 to 23 μm, and 0.5 to 2 parts of an epoxy resin binder.
.. A rare earth characterized by containing 5 parts by weight of
Composition for Fe-B bonded magnets.
【請求項2】  希土類、一部がFe以外の少なくとも
1種の遷移金属で置換されているFe及びBを主成分と
し、最大粒径が190〜250μm、平均粒径が120
〜250μm、粒径が35μm以下の粒子が2〜5重量
%であり、かつ、厚さが17〜23μmである平板状の
磁石用粉末100重量部とエポキシ樹脂バインダー0.
5〜2.5重量部とを含有してなることを特徴とする希
土類−Fe−B系ボンド磁石用組成物。
[Claim 2] The main component is rare earth, Fe and B partially substituted with at least one transition metal other than Fe, and has a maximum particle size of 190 to 250 μm and an average particle size of 120 μm.
250 μm and 2 to 5 weight % of particles with a particle size of 35 μm or less, and 100 parts by weight of a flat magnet powder having a thickness of 17 to 23 μm and 0.0 parts by weight of an epoxy resin binder.
5 to 2.5 parts by weight of a rare earth-Fe-B bonded magnet composition.
【請求項3】  液体急冷却により製造した希土類、F
e及びBを主成分とする合金急冷薄帯を粗砕し、ついで
粗砕粉を球体とともに80〜100メッシュの篩上で振
動させて粉砕し、粉砕した粉末100重量部にエポキシ
樹脂バインダー0.5〜2.5重量部を加えることを特
徴とする希土類−Fe−B系ボンド磁石用組成物の製造
方法。
[Claim 3] Rare earth produced by liquid quenching, F
A quenched alloy ribbon containing E and B as main components is coarsely crushed, and then the coarsely crushed powder is crushed together with spheres by vibrating on a sieve of 80 to 100 mesh, and 100 parts by weight of the crushed powder is mixed with 0.00 parts by weight of an epoxy resin binder. A method for producing a rare earth-Fe-B bonded magnet composition, which comprises adding 5 to 2.5 parts by weight.
JP3075611A 1991-03-15 1991-03-15 Composition for rare earth-fe-b bonded magnet and manufacture thereof Pending JPH04286302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3075611A JPH04286302A (en) 1991-03-15 1991-03-15 Composition for rare earth-fe-b bonded magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3075611A JPH04286302A (en) 1991-03-15 1991-03-15 Composition for rare earth-fe-b bonded magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04286302A true JPH04286302A (en) 1992-10-12

Family

ID=13581182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3075611A Pending JPH04286302A (en) 1991-03-15 1991-03-15 Composition for rare earth-fe-b bonded magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04286302A (en)

Similar Documents

Publication Publication Date Title
EP0239031B1 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
JPWO2015199096A1 (en) Method for producing rare earth magnet compact
Yang et al. Effect of molding pressure on structure and properties of ring-shaped bonded NdFeB magnet
JPH01205403A (en) Rare earth iron resin coupling type magnet
US20220362843A1 (en) Methods of producing bonded magnet and compound for bonded magnets
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPH11204319A (en) Rare-earth bonded magnet and its manufacture
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPH04286302A (en) Composition for rare earth-fe-b bonded magnet and manufacture thereof
KR102118955B1 (en) Magnetic powder, compressed powder core and method of preparation thereof
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JP3275055B2 (en) Rare earth bonded magnet
JPH0616448B2 (en) Resin-bonded permanent magnet and its binder
JPH1012472A (en) Manufacture of rare-earth bond magnet
JPH0786070A (en) Manufacture of bond magnet
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JPS63308904A (en) Manufacture of bond magnet
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JP3300968B2 (en) Rare earth anisotropic bonded magnet and method of manufacturing the same
JPS63146414A (en) Manufacture of bonded magnet
WO2001011636A1 (en) Method for producing rare earth-iron based resin magnet
JPH05175025A (en) Rare earth permanent magnet
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JP2726991B2 (en) Rare earth composite magnet material
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet