JPH0428265A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0428265A
JPH0428265A JP13309590A JP13309590A JPH0428265A JP H0428265 A JPH0428265 A JP H0428265A JP 13309590 A JP13309590 A JP 13309590A JP 13309590 A JP13309590 A JP 13309590A JP H0428265 A JPH0428265 A JP H0428265A
Authority
JP
Japan
Prior art keywords
gate
insulating film
thickness
gate electrode
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13309590A
Other languages
Japanese (ja)
Other versions
JP2719642B2 (en
Inventor
Shigeto Inoue
成人 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2133095A priority Critical patent/JP2719642B2/en
Publication of JPH0428265A publication Critical patent/JPH0428265A/en
Application granted granted Critical
Publication of JP2719642B2 publication Critical patent/JP2719642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To hold down the occurrence of interface level so as to obtain a semiconductor device of high reliability by a method wherein the thickness of a gate electrode is twice or less as large as that of an gate insulating film and larger than that of a monomolecular layer. CONSTITUTION:An N<+> source region 1 and an N<+> drain region 2 are provided sandwiching a P-type channel region provided to the surface of a P-type silicon substrate 8 between them. A gate oxide film 3 is deposited on a P-type channel region, a gate electrode 4 of polycrystalline silicone whose thickness is twice or less as large as that of the gate insulating film 3 and larger than that of a monomolecular layer is formed thereon. The upper limit of the thickness of an impurity doped polycrystalline silicon gate is set twice or less as large as that of an oxide film, and the lower limit is set larger than that of a monomolecular layer which is able to function as an gate electrode, practically, it is preferable that the thickness of the silicon gate is equal to those of 5-10 monomolecular layers. By this setup, electrons are prevented from being trapped in a gate insulating film and an interface level is also prevented from occurring at the injection of electrons into the insulating film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子機器に用いられるMISFET(Met
al−Insulator−5emiconducto
r Field−EffectTrans is to
r)型の半導体装置およびその製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to MISFET (Met) used in electronic equipment.
al-Insulator-5emiconducto
r Field-EffectTrans is to
r) type semiconductor device and its manufacturing method.

(発明の概要) 本発明は、半導体装置においてゲート電極の膜厚をゲー
ト絶縁膜の膜厚の2倍以下かつ単分子層以上とすること
により、絶縁膜中の電子トラップの発生と、絶縁膜への
電子注入の際に起こる界面準位の発生を抑えたものであ
る。
(Summary of the Invention) The present invention prevents the generation of electron traps in the insulating film and prevents the formation of electron traps in the insulating film by making the thickness of the gate electrode in a semiconductor device less than twice the thickness of the gate insulating film and more than a monomolecular layer. This suppresses the generation of interface states that occur when electrons are injected into the surface.

(従来の技術) 従来、半導体装置のゲート絶縁膜と多結晶シリコンゲー
ト等から成るゲート電極のそれぞれの膜厚比は半導体装
置がMO3型トランジスタであれば通常1対6から1対
8程度(第2図)、半導体装置がフローティングゲート
型メモリトランジスタであれば1対10以上であった(
第3図)。なお、第2図と第3図において1はn゛ソー
ス領域2はn゛ ドレイン領域、3はゲート絶縁膜、8
はP型シリコン基板、4はゲート電極、5はフローティ
ングゲート電極、6はコントロールゲート電極である。
(Prior Art) Conventionally, the film thickness ratio of the gate insulating film of a semiconductor device and the gate electrode made of a polycrystalline silicon gate, etc., is usually about 1:6 to 1:8 (1:8) if the semiconductor device is an MO3 type transistor. (Figure 2), and if the semiconductor device was a floating gate memory transistor, the ratio was more than 1:10 (
Figure 3). In FIGS. 2 and 3, 1 is an n source region, 2 is an n drain region, 3 is a gate insulating film, and 8 is a gate insulating film.
4 is a P-type silicon substrate, 4 is a gate electrode, 5 is a floating gate electrode, and 6 is a control gate electrode.

C−V曲線の電圧シフトを第5図や第6図の絶縁膜と酸
化膜中と界面準位にトラップされた電子数の割合の関係
に用いることができるが、従来は第5図や第6図の点C
に示すように100や200人の絶縁膜に対し3000
人程度0ゲート電極を形成している。
The voltage shift of the C-V curve can be used to determine the relationship between the ratio of the number of electrons trapped in the insulating film, oxide film, and interface states in Figures 5 and 6; Point C in figure 6
As shown in Figure 3, 3000 insulating film for 100 or 200 people.
Approximately 0 gate electrodes are formed.

(発明が解決しようとする課題) 従来のように、ゲート絶縁膜厚に比べ多結晶シリコンゲ
ート等から成るゲート電極膜厚が厚い場合には、絶縁膜
中に電子トラップが多(、また絶縁膜への電子注入によ
って絶縁膜とSi基板の間に界面準位が多く発生し半導
体装置のの経時変化を起こしていた。よって半導体装置
がMOS)ランジスタであればトランジスタのしきい値
の変化を起こしていた。また半導体装置がフローティン
グゲー(・型メモリトランジスタであればゲート絶縁膜
中と界面準位に電子がトラップされてメモリの書換え回
数限界の低下を起こしていた。
(Problem to be solved by the invention) As in the past, when the gate electrode film made of polycrystalline silicon gate etc. is thicker than the gate insulating film thickness, there are many electron traps in the insulating film (and the insulating film Many interface states were generated between the insulating film and the Si substrate due to electron injection into the silicon substrate, causing changes in the semiconductor device over time.Thus, if the semiconductor device is a transistor (MOS), it causes a change in the threshold value of the transistor. was. Furthermore, if the semiconductor device is a floating gate type memory transistor, electrons are trapped in the gate insulating film and in the interface level, causing a reduction in the number of times the memory can be rewritten.

(課題を解決するだめの手段) 本発明では、半導体装置の多結晶シリコンゲート等のゲ
ート電極の膜厚をゲート絶縁膜膜厚の2倍以下かつ単分
子層以上にした。
(Means for Solving the Problems) In the present invention, the thickness of a gate electrode such as a polycrystalline silicon gate of a semiconductor device is made to be less than twice the thickness of a gate insulating film and more than a monomolecular layer.

(作用) 本発明のように形成された半導体装置は、ゲート絶縁膜
中の電子トラップと、ゲート絶縁膜への電子注入によっ
て発生ずる界面準位が少ないために、半導体装置の経時
変化を少なくすることができる。
(Function) A semiconductor device formed as in the present invention has fewer electron traps in the gate insulating film and fewer interface states generated by electron injection into the gate insulating film, so that changes over time of the semiconductor device are reduced. be able to.

(実施例) 以下に、本発明の半導体装置及びその製造方法の実施例
を図面にもとづいて説明する。実施例においてはゲート
絶縁膜にシリコン酸化膜を用いたMO3型半導体装置に
ついて説明するが、シリコン酸化膜に限定する必要はな
いことば言うまでもない。またゲート電極は多結晶シリ
コンゲートについて説明するがシリサイドもしくはポリ
サイドなどであっても構わない。
(Example) Examples of the semiconductor device and its manufacturing method of the present invention will be described below based on the drawings. In the embodiment, an MO3 type semiconductor device using a silicon oxide film as the gate insulating film will be described, but it goes without saying that the invention is not limited to the silicon oxide film. Furthermore, although a polycrystalline silicon gate will be described as the gate electrode, it may be made of silicide, polycide, or the like.

(実施例1) 第1図は、本発明によるSiのNチャネルMO8型トラ
ンジスタの構造断面図である。P型シリコン基板8の表
面部分のP型チャネル領域を挟んで、n“ソース領域1
及びn+ ドレイン領域2が設けられ、P型チャネル領
域上にゲート酸化膜3が形成され、更にその上にはゲー
ト酸化膜の膜厚の2倍以下かつ単分子層以上の膜厚を有
する多結晶シリコンから成るゲート電極4が形成されて
いる。 第5図のC−V曲線の電圧シフトを100人の
ゲート酸化膜を用いたときのゲート電極膜厚と絶縁膜中
と界面準位にトラップされた電子数の割合の関係に用い
ることができる。ここにおいて、曲線aは乾燥(ドライ
:Dry)酸化により製造された本発明の半導体装置の
特性を表し、また曲線すはCl(クロロ)を混入した酸
化により製造された本発明の半導体装置の特性を表して
いる。
(Example 1) FIG. 1 is a structural cross-sectional view of a Si N-channel MO8 type transistor according to the present invention. An n" source region 1 is formed on both sides of the P-type channel region on the surface of the P-type silicon substrate 8.
and an n+ drain region 2, a gate oxide film 3 is formed on the P-type channel region, and a polycrystalline film having a film thickness of at most twice the thickness of the gate oxide film and at least a monomolecular layer is formed thereon. A gate electrode 4 made of silicon is formed. The voltage shift of the CV curve in Figure 5 can be used to determine the relationship between the gate electrode film thickness and the ratio of the number of electrons trapped in the insulating film and in the interface state when using a gate oxide film of 100 people. . Here, curve a represents the characteristics of the semiconductor device of the present invention manufactured by dry oxidation, and curve a represents the characteristics of the semiconductor device of the present invention manufactured by oxidation mixed with Cl (chloro). represents.

曲線aより不純物ドープされた多結晶シリコン膜厚の範
囲は上限は酸化膜厚の2倍以下、また下限はゲート電極
としで機能する単分子層以上であればよいが実用上は5
〜10層が好ましい。この範囲内にしたときに電子トラ
ップが著しく減少することが判る。また酸素のみもしく
は希釈された酸素による酸化膜においても効果はあるが
、酸化膜中にCl(クロロ)を混入することにより、さ
らに電子トラップは顕著に減少することが曲線すより理
解される。膜厚の範囲においては曲線aと同様である。
From curve a, the upper limit of the thickness of the impurity-doped polycrystalline silicon film should be less than twice the oxide film thickness, and the lower limit should be at least 5 times the monomolecular layer that functions as a gate electrode.
~10 layers are preferred. It can be seen that when the value is within this range, electron traps are significantly reduced. Although an oxide film made of only oxygen or diluted oxygen is effective, it is understood from the curve that electron traps are further significantly reduced by mixing Cl (chloro) into the oxide film. The range of film thickness is similar to curve a.

デーl−酸化膜中にCl(クロロ)を混入する方法には
HCl酸化、TCA ()リクロロエタン)、TCE 
()リクロロエチレン)を!素中に混入した酸化法、C
lのイオン注入などがあるがここでは一般的なTCAを
酸素中に混入する酸化(TCA酸化)について説明する
。TCA酸化を用いる場合には、950°C−1050
’cの範囲内で行うと効果的である。また第6図のC−
V曲線の電圧シフトを200人のゲート酸化膜を用いた
ときのゲート電極膜厚と絶縁膜中と界面準位にトラップ
された電子数の割合の関係に用いることができる。ここ
においても第5図と同様に曲線aは乾燥(ドライ:Dr
y)酸化により製造された本発明の半導体装置の特性を
表し、また曲線すはCl(クロロ)を混入した酸化によ
り製造された本発明の半導体装置の特性を表しており、
第5図と同様の範囲において従来技術に比べ特性が改善
されている。
- Methods of mixing Cl (chloro) into the oxide film include HCl oxidation, TCA (lichloroethane), TCE
() Lichlorethylene)! Oxidation method mixed in the base, C
There is ion implantation of 1,000 yen, etc., but here we will explain the general oxidation in which TCA is mixed into oxygen (TCA oxidation). When using TCA oxidation, 950°C-1050
It is effective to do this within the range of 'c. Also, C- in Figure 6
The voltage shift of the V curve can be used to determine the relationship between the gate electrode film thickness and the ratio of the number of electrons trapped in the insulating film and in the interface state when a 200-layer gate oxide film is used. Here, as in Fig. 5, the curve a is dry (Dry: Dr
y) represents the characteristics of the semiconductor device of the present invention manufactured by oxidation, and the curve represents the characteristics of the semiconductor device of the present invention manufactured by oxidation mixed with Cl (chloro),
In the same range as shown in FIG. 5, the characteristics are improved compared to the prior art.

(実施例2) 第4図は、本発明によるフローティングゲート型メモリ
トランジスタの構造断面図である。P型シリコン基板8
のP型チャネル領域を挾んで、n”ソース領域1及びn
“ ドレイン領域2が設けられ、P型チャネル領域上に
ゲート酸化膜3が設けられ更にその上にゲート酸化膜厚
の2倍以下かつ単分子層以上の膜厚をもつ多結晶シリコ
ンから成るフローティングゲート電極5を設け、さらに
その上に絶縁膜7を介してコントロールゲート電極6を
設けた構造になっている。
(Example 2) FIG. 4 is a structural cross-sectional view of a floating gate type memory transistor according to the present invention. P-type silicon substrate 8
sandwiching the P-type channel region of n'' source region 1 and n
“ A floating gate made of polycrystalline silicon in which a drain region 2 is provided, a gate oxide film 3 is provided on the P-type channel region, and the film thickness is less than twice the gate oxide film thickness and more than a monomolecular layer. It has a structure in which an electrode 5 is provided, and a control gate electrode 6 is further provided on the electrode 5 with an insulating film 7 interposed therebetween.

(実施例3) 本発明によるSiのNチャネルMO8型トランジスタの
製造工程順断面図を説明する。第7図(a)は、P型シ
リコン基板8のP型チャネル領域上にゲート酸化膜3を
形成したところを示している。ゲート酸化膜の形成方法
には熱酸化法やCVD法によるものがあるがここでは熱
酸化によるものを用いた。第7図(b)はゲート酸化膜
の膜厚の2倍以下かつ単分子層以上の膜厚を持つ不純物
トープされた多結晶シリコン膜9を形成したところを示
している。ゲート酸化膜の膜厚の2倍以下かつ単分子層
以上の不純物ドープされた薄い膜厚のゲート電極を形成
する方法にはCVD法や減圧CVD法によりデー1−電
極を形成した後、  POCliなどにより不純物ドー
プする方法などがあるが、膜厚制御の点ではM L E
(Molecular Layer !Epitaxy
 )法による薄い膜厚のゲート電極形成後に不純物ドー
プする方法が優れている。また不純物ドープしながら薄
い膜厚のゲート電極を形成する方法には、PH3などの
ガスを混入して行うCVD法や減圧CVD法等があるが
、膜厚制御の点ではM L D (Molecular
 Layer Doping)法が特に優れている。第
7図(C)はレジストもしくはレジストおよびゲート電
極4をマスクとしてゲート酸化膜3を介してPやA3な
どのn型不純物のイオン注入によってn゛ソース領域1
及びn゛ ドレイン領域2を形成した後、レジストを除
去したところを示している。
(Embodiment 3) A cross-sectional view of the manufacturing process of a Si N-channel MO8 type transistor according to the present invention will be explained. FIG. 7(a) shows the gate oxide film 3 formed on the P-type channel region of the P-type silicon substrate 8. As shown in FIG. There are methods for forming the gate oxide film by thermal oxidation and CVD, but thermal oxidation was used here. FIG. 7(b) shows the formation of an impurity-doped polycrystalline silicon film 9 having a thickness less than twice the thickness of the gate oxide film and more than a monomolecular layer. A method for forming a thin gate electrode doped with impurities, which is less than twice the thickness of the gate oxide film and more than a monomolecular layer, is to form a first electrode by CVD or low pressure CVD, and then use POCli, etc. There are methods such as doping with impurities, but in terms of film thickness control, MLE
(Molecular Layer! Epitaxy
) is an excellent method to dope impurities after forming a thin gate electrode. Methods for forming a gate electrode with a thin film thickness while doping impurities include the CVD method in which a gas such as PH3 is mixed and the low pressure CVD method, but in terms of film thickness control, MLD (Molecular
The Layer Doping method is particularly excellent. In FIG. 7(C), an n-type impurity such as P or A3 is ion-implanted into the n source region 1 through the gate oxide film 3 using the resist or the resist and the gate electrode 4 as a mask.
and n゛ After forming the drain region 2, the resist is removed.

(実施例4) 本発明によるSiのNチャネルMO3型トランジスタの
他の製造工程順断面図を説明する。第8図(a)は、P
型シリコン基板8のP型チャネル領域上にゲート酸化膜
3を形成したところを示している。第8図(b)は多結
晶シリコン膜9を形成後にPOCL等のガスを用いn型
に不純物ドープしたところを示している。第8図(C)
はエツチングにより多結晶シリコン膜9をゲート絶縁膜
の2倍以下かつ単分子層以上の膜厚まで薄くしたところ
を示している。第8図(d)はレンストもしくはレジス
トおよびゲート電極4をマスクとしてゲート酸化膜3を
介してPやAsなどのn型不純物のイオン注入によって
n゛ソース領域1及びn+ ドレイン領域2を形成した
後、レジストを除去したところを示している。
(Embodiment 4) Next, sectional views of another manufacturing process of a Si N-channel MO3 type transistor according to the present invention will be explained. FIG. 8(a) shows P
A gate oxide film 3 is shown formed on a P-type channel region of a type silicon substrate 8. FIG. 8(b) shows a state in which the polycrystalline silicon film 9 is doped with n-type impurities using a gas such as POCL after being formed. Figure 8 (C)
2 shows the polycrystalline silicon film 9 made thinner by etching to a thickness less than twice that of the gate insulating film and more than a monomolecular layer. FIG. 8(d) shows after forming an n source region 1 and an n+ drain region 2 by ion implantation of n-type impurities such as P or As through the gate oxide film 3 using the resist or the gate electrode 4 as a mask. , shows the resist removed.

(実施例5) 本発明によるSiのNチャネルMO3型トランジスタの
他の製造工程順断面図を説明する。第9図(a)は、P
型シリコン基板8のP型チャネル領域上にゲート酸化膜
3を形成したところを示している。第9図(b)はゲー
ト酸化膜の膜厚の2倍以下かつ単分子層以上の膜厚を持
つ不純物ドープされた多結晶シリコン膜9を形成したと
ころを示している。この場合、多結晶シリコン膜9を形
成後に不純物ドープしても、不純物トープしながら多結
晶シリコンを形成してもよい。第9図(C)はフォトリ
ソグラフィーによって形成されたゲート電極4−J:に
CVD法などによる5i02等からなる絶縁膜7を形成
し、ゲート電極4をマスクとしてゲーI・酸化膜3と絶
縁膜7を介してPやAsなどのn型の不純物のイオン注
入によってn゛ソース領域1及びn” ドレイン領域2
を形成したところを示している。
(Example 5) Another sequential cross-sectional view of the manufacturing process of a Si N-channel MO3 type transistor according to the present invention will be explained. FIG. 9(a) shows P
A gate oxide film 3 is shown formed on a P-type channel region of a type silicon substrate 8. FIG. 9(b) shows the formation of an impurity-doped polycrystalline silicon film 9 having a thickness less than twice the thickness of the gate oxide film and more than a monomolecular layer. In this case, the polycrystalline silicon film 9 may be doped with impurities after it is formed, or the polycrystalline silicon may be formed while being doped with impurities. FIG. 9(C) shows that an insulating film 7 made of 5i02 or the like is formed by CVD or the like on the gate electrode 4-J: formed by photolithography, and then the gate electrode 4-J: is formed using the gate electrode 4 as a mask. By ion-implanting n-type impurities such as P and As through 7, an n' source region 1 and an n' drain region 2 are formed.
The figure shows the formation of the .

(実施例6) 本発明によるフローティングゲート型メモリトランジス
タの製造工程例を説明する。第10図(a)は、P型シ
リコン基板8のP型チャネル領域上に熱酸化法によりゲ
ート酸化膜3を形成したところを示している。第10図
(b)はゲート酸化膜の膜厚の2倍以下かつ単分子層以
上の膜厚を持つ不純物ドープされたフローティングゲー
ト電極となる多結晶シリコン膜9を形成したところを示
している。ゲート酸化膜の膜厚の2倍以下かつ単分子層
以上のの不純物ドープされた薄い膜厚のゲート電極を形
成する方法にはCVD法や減圧CVD法によりゲート電
極を形成した後、poct、などにより不純物ドープす
る方法などがあるが、膜厚制御の点ではM L E (
Molecular Layer l!pitaxy 
)法による薄い膜厚のゲート電極形成後に不純物ドープ
する方法が優れている。また不純物ドープしながら薄い
膜厚のゲート電極を形成する方法には、PH,などのガ
スを混入して行うCVD法や減圧CVD法等があるが、
膜厚制御の点ではM L D (Molecular 
Layer Doping)法が特に優れている。第1
0図(C)は絶縁膜7を形成し、その上にコントロール
ゲート トロールゲート電極6及びフローティングゲート電極5
をマスクとしてゲート酸化膜3を介してイオン注入によ
ってn゛ソース領域及びn゛ ドレイン領域2を形成し
たところを示している。
(Embodiment 6) An example of the manufacturing process of a floating gate type memory transistor according to the present invention will be described. FIG. 10(a) shows a gate oxide film 3 formed on a P-type channel region of a P-type silicon substrate 8 by thermal oxidation. FIG. 10(b) shows the formation of an impurity-doped polycrystalline silicon film 9 that will become a floating gate electrode and has a thickness less than twice that of the gate oxide film and more than a monomolecular layer. A method for forming a thin gate electrode doped with impurities of twice the thickness of the gate oxide film and more than a monomolecular layer includes forming the gate electrode by CVD or low pressure CVD, and then using poct, etc. There is a method of doping impurities with M L E (
Molecular Layer! pitaxy
) is an excellent method to dope impurities after forming a thin gate electrode. In addition, methods for forming a thin gate electrode while doping impurities include the CVD method in which a gas such as PH is mixed, the low pressure CVD method, etc.
In terms of film thickness control, MLD (Molecular
The Layer Doping method is particularly excellent. 1st
0 (C), an insulating film 7 is formed, and a control gate troll gate electrode 6 and a floating gate electrode 5 are formed on it.
This figure shows that an n' source region and an n' drain region 2 are formed by ion implantation through a gate oxide film 3 using as a mask.

(実施例7) 本発明によるフローティングゲート型メモリトランジス
タの他の製造工程例を説明する。第11図(a)は、P
型シリコン基板8のP型チャネル領域上にゲート酸化膜
3を形成したところを示している。第1I図(b)はゲ
ート酸化膜上にPOCl2等のガスを用い不純物ドープ
された多結晶シリコン膜9を形成したところを示してい
る。第11図(C)はエツチングにより多結晶シリコン
膜9をゲート絶縁膜の2倍以下かつ単分子層以上の膜厚
としたところを示している。第11図(d)は絶縁膜7
を形成し、その上にコントロールゲート電極6を形成後
、コントロールゲート電極6及びフローティングゲート
電極5をマスクとしてゲート酸化膜3を介してPやAS
などのn型不純物のイオン注入によってn1ソース領域
1及びnl ドレイン領域2を形成したところを示して
いる。
(Embodiment 7) Another example of the manufacturing process of a floating gate type memory transistor according to the present invention will be described. FIG. 11(a) shows P
A gate oxide film 3 is shown formed on a P-type channel region of a type silicon substrate 8. FIG. 1I(b) shows that a polycrystalline silicon film 9 doped with impurities using a gas such as POCl2 is formed on the gate oxide film. FIG. 11C shows the polycrystalline silicon film 9 made to have a thickness less than twice that of the gate insulating film and more than a monomolecular layer by etching. FIG. 11(d) shows the insulating film 7.
After forming a control gate electrode 6 thereon, P and AS are formed through the gate oxide film 3 using the control gate electrode 6 and floating gate electrode 5 as masks.
This figure shows that an n1 source region 1 and an nl drain region 2 are formed by ion implantation of n-type impurities such as.

(発明の効果) 以上のように本発明によれば、ゲート絶縁膜中の電子ト
ラップの発生および絶縁膜への電子注入の際に起こる界
面準位の発生を抑え信頼性の高い半導体装置を作製する
ことができる。ここでは比較的ゲート絶縁膜厚の薄いも
のについて説明してきたが、ゲート絶縁膜の厚い場合に
も適用できる。
(Effects of the Invention) As described above, according to the present invention, a highly reliable semiconductor device can be manufactured by suppressing the generation of electron traps in the gate insulating film and the generation of interface states that occur when electrons are injected into the insulating film. can do. Although the case where the gate insulating film is relatively thin has been described here, the present invention can also be applied to a case where the gate insulating film is thick.

また、実施例においてNチャネルの半導体装置について
のみ説明したがPチャネルの半導体装置であっても構わ
ない。
Furthermore, although only an N-channel semiconductor device has been described in the embodiment, a P-channel semiconductor device may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSiのNチャネルMOS型トランジスタの構造
断面図、第2図は従来のMOS型トランジスタの断面図
、第3図は従来のフローティングゲート型メモリI・ラ
ンジスタの断面図、第4図は本発明のフローティングゲ
ート型メモリトランジスタの構造断面図、第5図はゲー
ト絶縁膜が100 の場合のゲート電極膜厚とt,−V
曲線の電圧シフトとの関係図を示したもの、第6図はゲ
ート絶縁膜200人の場合のゲート電極膜厚とC−V曲
線の電圧シフトとの関係図を示したもの、第7図(a)
〜(C)は本発明のSiのNチャネルMOS型トランジ
スタの製造工程順断面図、第8図(a)〜(d)は本発
明のSiのNチャネルMOS型トランジスタの他の製造
工程順断面図、第9図(a)〜(C)は本発明のSiの
NチャネルMOS型トランジスタの他の製造工程順断面
図、第10図(a)〜(C)は本発明のフローティング
ゲート型メモリI・ランジスタの製造工程順断面図、第
11図(a)〜(d)は本発明のフローティングゲート
型メモリトランジスタの他の製造工程順断面図を示して
いる。 1・・・ソース領域 2・・・ドレイン領域 3・・・ゲート絶縁膜 4・・・ゲート電極 5・・・フローティングゲート電極 6・・・コントロールゲー)?ttfi7・・・絶縁膜 8、、、P型シリコン基板 980.多結晶シリコン膜 以 出願人 セイコー電子工業株式会社 代理人 弁理士 林  敬 之 助 第 図 第 図 第 図 第 図 ゲニト酸イし8果 p9シリコン基才反 舊か孝訊シシリコンn更
Figure 1 is a cross-sectional view of the structure of a Si N-channel MOS transistor, Figure 2 is a cross-sectional view of a conventional MOS transistor, Figure 3 is a cross-sectional view of a conventional floating gate memory transistor, and Figure 4 is a cross-sectional view of a conventional floating gate memory transistor. FIG. 5 is a structural cross-sectional view of the floating gate type memory transistor of the present invention, and the gate electrode film thickness and t, -V when the gate insulating film is 100 Ω
Figure 6 shows the relationship between the voltage shift of the curve and the voltage shift of the C-V curve. a)
8(C) are cross-sectional views in the order of manufacturing steps of the Si N-channel MOS transistor of the present invention, and FIGS. 8(a) to 8(d) are cross-sectional views in the order of manufacturing steps of the Si N-channel MOS transistor of the present invention. 9(a) to 9(C) are sectional views in order of other manufacturing steps of the Si N-channel MOS transistor of the present invention, and FIGS. 10(a) to 10(C) are floating gate type memories of the present invention. 11(a) to 11(d) show cross-sectional views in the order of manufacturing steps of the I transistor, and FIGS. 11(a) to 11(d) show sectional views in the order of the manufacturing steps of another floating gate type memory transistor of the present invention. 1... Source region 2... Drain region 3... Gate insulating film 4... Gate electrode 5... Floating gate electrode 6... Control gate)? ttfi7...Insulating film 8,... P-type silicon substrate 980. Polycrystalline silicon film Applicant Seiko Electronics Co., Ltd. Agent Patent attorney Keisuke Hayashi

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型チャネル領域と該領域を挟んで互いに
離間する第2導電型ソースおよびドレイン領域と前記チ
ャネル領域上に設けられたゲート絶縁膜と該絶縁膜上に
設けられたゲート電極より成る半導体装置において、ゲ
ート電極膜厚がゲート絶縁膜の膜厚の2倍以下かつ単分
子層以上であることを特徴とした半導体装置。
(1) A first conductivity type channel region, a second conductivity type source and drain region spaced apart from each other with the region in between, a gate insulating film provided on the channel region, and a gate electrode provided on the insulating film. 1. A semiconductor device comprising: a gate electrode having a thickness not more than twice the thickness of a gate insulating film and a monomolecular layer or more;
(2)第1導電型の半導体領域の表面にゲート絶縁膜を
形成する工程と、前記ゲート絶縁膜上に前記ゲート絶縁
膜の膜厚の2倍以下かつ単分子層以上の膜厚のゲート電
極を形成する工程と、前記ゲート電極の両側の半導体表
面に第2導電型のソース領域およびドレイン領域を形成
する工程を有することを特徴とする半導体装置の製造方
法。
(2) forming a gate insulating film on the surface of a semiconductor region of a first conductivity type; and forming a gate electrode on the gate insulating film with a thickness of at most twice the thickness of the gate insulating film and at least a monomolecular layer; 1. A method for manufacturing a semiconductor device, comprising the steps of: forming a source region and a drain region of a second conductivity type on the semiconductor surface on both sides of the gate electrode.
(3)前記ゲート絶縁膜がCl(クロロ)を含んだこと
を特徴とする第1項記載の半導体装置。
(3) The semiconductor device according to item 1, wherein the gate insulating film contains Cl (chloro).
(4)前記ゲート絶縁膜がCl(クロロ)を含んだこと
を特徴とする第2項記載の半導体装置の製造方法。
(4) The method for manufacturing a semiconductor device according to item 2, wherein the gate insulating film contains Cl (chloro).
JP2133095A 1990-05-23 1990-05-23 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2719642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133095A JP2719642B2 (en) 1990-05-23 1990-05-23 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133095A JP2719642B2 (en) 1990-05-23 1990-05-23 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0428265A true JPH0428265A (en) 1992-01-30
JP2719642B2 JP2719642B2 (en) 1998-02-25

Family

ID=15096723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133095A Expired - Lifetime JP2719642B2 (en) 1990-05-23 1990-05-23 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2719642B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10505083B2 (en) 2007-07-11 2019-12-10 Cree, Inc. Coating method utilizing phosphor containment structure and devices fabricated using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279883A (en) * 1975-12-26 1977-07-05 Nec Corp Non-volatile semiconductor memory element
JPS5310983A (en) * 1977-03-28 1978-01-31 Toshiba Corp Insulated gate type field effect transistor
JPH0242725A (en) * 1988-08-03 1990-02-13 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279883A (en) * 1975-12-26 1977-07-05 Nec Corp Non-volatile semiconductor memory element
JPS5310983A (en) * 1977-03-28 1978-01-31 Toshiba Corp Insulated gate type field effect transistor
JPH0242725A (en) * 1988-08-03 1990-02-13 Hitachi Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10505083B2 (en) 2007-07-11 2019-12-10 Cree, Inc. Coating method utilizing phosphor containment structure and devices fabricated using same

Also Published As

Publication number Publication date
JP2719642B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
US5661056A (en) Non-volatile semiconductor memory device and method of manufacturing the same
JPH08222645A (en) Method for forming lightly doped drain region
JP2875380B2 (en) Semiconductor device and manufacturing method thereof
JPH0645562A (en) Manufacture of stacked semiconductor structure
JP2002064151A (en) Method for forming dual gate electrode of semiconductor element
JP2669333B2 (en) Method for manufacturing semiconductor device
US4942448A (en) Structure for isolating semiconductor components on an integrated circuit and a method of manufacturing therefor
JP3068270B2 (en) MOS type field effect transistor and method of manufacturing the same
JPH0712058B2 (en) Semiconductor device and manufacturing method thereof
JPH0428265A (en) Semiconductor device and manufacture thereof
JP2796049B2 (en) Thin film transistor and method of manufacturing the same
JPS6251216A (en) Manufacture of semiconductor device
US5652160A (en) Method of fabricating a buried contact structure with WSix sidewall spacers
JPH1093077A (en) Semiconductor device and manufacturing method thereof
US7439596B2 (en) Transistors for semiconductor device and methods of fabricating the same
JPH02265279A (en) Semiconductor device and manufacture thereof
JPH0376272A (en) Insulated gate type field effect transistor
JPH04340766A (en) Semiconductor device and its manufacture
JPH08107153A (en) Manufacture of semiconductor device
JPH0346272A (en) Manufacture of semiconductor device
JPH0221648A (en) Semiconductor device and manufacture thereof
JPH01260857A (en) Semiconductor device and manufacture thereof
JPH08213476A (en) Manufacture of transistor, and semiconductor device
JPH07161826A (en) Manufacture of semiconductor device
JP3191416B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13