JPH0428257A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0428257A
JPH0428257A JP2133020A JP13302090A JPH0428257A JP H0428257 A JPH0428257 A JP H0428257A JP 2133020 A JP2133020 A JP 2133020A JP 13302090 A JP13302090 A JP 13302090A JP H0428257 A JPH0428257 A JP H0428257A
Authority
JP
Japan
Prior art keywords
semiconductor element
substrate
coolant
groove
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2133020A
Other languages
Japanese (ja)
Inventor
Tetsuo Fukada
深田 哲生
Katsuhiro Ono
克弘 大野
Masanobu Obara
小原 雅信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2133020A priority Critical patent/JPH0428257A/en
Publication of JPH0428257A publication Critical patent/JPH0428257A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a semiconductor element to be directly cooled down by coolant and improved in cooling effect by a method wherein grooves through which coolant is made to flow are provided to the rear of the semiconductor element. CONSTITUTION:A groove 9 of fine pattern is provided to the rear of a semiconductor element 7 through anisotropic etching by the use of KOH water solution. A groove-like communicating path 17 is provided to the side of a first board 12 opposite to its side where an element is mounted, a through-hole 16 is bored in the side of the board 12 where the element is mounted, and a coolant inlet 20 and a coolant outlet 21 are provided to a second board 13. When coolant is made to flow through the inlet 20, it flows as shown by the arrows and cools down the element 7 directly passing through the groove 9 provided to the rear of the element 7. As the groove 9 is so formed as to be in contact with coolant large in contact area, an element can be efficiently cooled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ECL、ゲートアレイ、LSIメモリ等の
半導体素子が基板に実装された半導体装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device in which a semiconductor element such as an ECL, a gate array, or an LSI memory is mounted on a substrate.

〔従来の技術〕[Conventional technology]

第4図は従来の半導体装置を示す側面図であり、図にお
いて、(1)はシリコン(Sil製の半導体素子で、そ
の主面(2)には図示しない回路が形成されている。
FIG. 4 is a side view showing a conventional semiconductor device. In the figure, (1) is a semiconductor element made of silicon (Sil), and a circuit (not shown) is formed on its main surface (2).

(3)は熱伝導率の大きい材料で作られた基板で、アル
ミナ(A1203)や炭化ケイ素(SiC) 、窒化ア
ルミニウム(AIN)が用いられている。半導体素子(
1)の裏面(4)が基板(3)に対向するようにして、
半導体素子(1)が基板(3)に実装されている。この
実装は、基板(3)の表面に金(Au)等をメタライズ
して金(Au) −シリコン<Si)合金接合法により
行なうか、あるいは、厚膜ペースト等で接着して行なっ
ている。(51は熱伝導率が大きく、加工性の良い金属
で作られた冷却フィンで、アユミニラム(A1)や銅(
Cu)などが用いられ、断面がくし形の形状に加工され
て表面積が大きくなっている。
(3) is a substrate made of a material with high thermal conductivity, such as alumina (A1203), silicon carbide (SiC), or aluminum nitride (AIN). Semiconductor element (
1) so that the back side (4) faces the substrate (3),
A semiconductor element (1) is mounted on a substrate (3). This mounting is carried out by metallizing gold (Au) or the like on the surface of the substrate (3) and using a gold (Au)-silicon<Si) alloy bonding method, or by bonding with a thick film paste or the like. (51 is a cooling fin made of a metal with high thermal conductivity and good workability, such as Ayuminilam (A1) or copper (
Cu) is used, and the cross section is processed into a comb shape to increase the surface area.

次に動作について説明する。半導体素子(1)を動作さ
せると発熱し、その熱は基板(3)を通して冷却用フィ
ン(5)に伝わる。冷却用フィン(5]には図示しない
ファンにより風が送られ、ここから外部へ放熱が行なわ
れる。
Next, the operation will be explained. When the semiconductor element (1) is operated, it generates heat, and the heat is transmitted to the cooling fins (5) through the substrate (3). Air is sent to the cooling fins (5) by a fan (not shown), from which heat is radiated to the outside.

上記のように、半導体素子(1)で発生した熱はそこか
ら直接放散されるのではなく、基板(3)を経由して冷
却用フィン(5)から放散されるので、冷却効率が悪く
、急速な発熱や多大な発熱があった場合は十分冷却でき
ない。また、基板(3)の材料選定は熱伝導率の大きい
ことを優先的に考慮しなければならないので、使用材料
が限定されて、半導体素子(1)との間で熱膨張係数の
ミスマツチが生じる。
As mentioned above, the heat generated in the semiconductor element (1) is not directly dissipated from there, but is dissipated from the cooling fins (5) via the substrate (3), resulting in poor cooling efficiency. If there is rapid heat generation or large amount of heat generation, sufficient cooling cannot be achieved. In addition, when selecting a material for the substrate (3), priority must be given to high thermal conductivity, which limits the materials that can be used and causes a mismatch in thermal expansion coefficient with the semiconductor element (1). .

そのため、半導体素子(1)のはがれや破損などの不具
合が発生する恐れがあり、特に大形L S Iのマルチ
チップ搭載には問題があった。
Therefore, there is a risk that problems such as peeling and damage of the semiconductor element (1) may occur, which is particularly problematic when mounting multi-chips on large LSIs.

この熱膨張係数のミスマツチを防止するために、基板と
して、半導体素子と同種材料のシリコンを用い、基板内
に冷媒通路を形成し、ここに流す冷媒により半導体素子
を冷却する方法がある。しかし、この方法でも、半導体
素子の冷却は基板を通して間接的に行なうので、やはり
冷却効率が悪い。
In order to prevent this mismatch in thermal expansion coefficients, there is a method in which silicon, which is the same material as the semiconductor element, is used as the substrate, a coolant passage is formed in the substrate, and the semiconductor element is cooled by the coolant flowing therethrough. However, even with this method, the semiconductor element is cooled indirectly through the substrate, so the cooling efficiency is still poor.

〔発明が解決しようとする課題〕 従来の半導体装置は以上のように構成されているので、
半導体素子が間接的に冷却され、従って、冷却効率が悪
く、半導体素子の温度上昇のために素子動作速度の低下
、誤動作、長時間動作不可などの問題点があった。更に
、Al2O3などの基板の場合は半導体素子との間の熱
膨張係数のミスマツチが生じ、そのため大形LSI素子
などの実装が困難であった。
[Problem to be solved by the invention] Since the conventional semiconductor device is configured as described above,
The semiconductor device is indirectly cooled, and therefore the cooling efficiency is poor, and the temperature of the semiconductor device increases, resulting in problems such as a decrease in device operating speed, malfunction, and inability to operate for a long time. Furthermore, in the case of a substrate made of Al2O3 or the like, a mismatch in thermal expansion coefficient occurs between the substrate and the semiconductor element, making it difficult to mount large-sized LSI elements and the like.

この発明は上記のような問題点を解消するためになされ
たもので、冷却効率が良く、がっ、半導体素子と基板間
の熱膨張係数のミスマツチによる不具合を防止できる半
導体装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a semiconductor device that has good cooling efficiency and can prevent problems caused by mismatching of the coefficient of thermal expansion between the semiconductor element and the substrate. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体装置は、半導体素子の裏面に溝を
形成してそこに冷媒が流通できるようにしたものである
In the semiconductor device according to the present invention, a groove is formed on the back surface of a semiconductor element so that a coolant can flow therein.

〔作用〕[Effect]

この発明における半導体装置は、半導体素子の裏面に形
成された溝に冷媒を流通させることにより半導体素子を
直接的に冷却する。また、基板としては熱伝導率を考慮
する必要がないので、その面から材料選定が限定されず
、半導体素子と同じないしは近似した熱膨張係数を有す
る材料を選定することができる。
The semiconductor device according to the present invention directly cools the semiconductor element by flowing a coolant through a groove formed on the back surface of the semiconductor element. Furthermore, since there is no need to consider thermal conductivity for the substrate, material selection is not limited from this point of view, and a material having a coefficient of thermal expansion that is the same as or similar to that of the semiconductor element can be selected.

〔実施例〕〔Example〕

(づ) 以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による半導体装置の断面図であ
り、図において、(′71はシリコン製の半導体素子で
、その主面(8)には図示しない回路が形成されている
。第2図は半導体素子(刀の平面図であり、第1図にお
いて下方から見た図を示し、(9)は裏面00)にジグ
ザグ状に形成された渦である。
(d) Hereinafter, one embodiment of the present invention will be described with reference to the drawings. 1st
The figure is a cross-sectional view of a semiconductor device according to an embodiment of the present invention. The figure is a plan view of a semiconductor element (sword), showing the view from below in FIG. 1, and (9) is a vortex formed in a zigzag shape on the back surface 00.

(11)は半導体装置(1)が実装された複合基板、(
I2)、(13)はそれぞれ単結晶シリコンで作られた
第1および第2の基板、(14)、(15)はソーダラ
イム系の第1および第2の薄膜ガラス層て、第1および
第2の基板(12)、(13)は第1の薄膜ガラス層(
14)を介して互いに一体的に接合され、これらにより
複合基板(11)を構成している。半導体素子(7)は
その裏面00)を第1の基板(12)に対向させて、第
2の薄膜ガラス層(15)を介して第1の基板(12)
に接合されることにより、複合基板(11)に実装され
、シリコン基板−Fへの素子実装(chips on 
5ilicon) 構造になっている。(16)、(1
7)は第1の基板(12)に形成された貫通孔と連絡路
で、半導体素子(7)の溝(9)の両端部(19)と対
向する部分に貫通孔(I6)が設けられると共に、貫通
孔(16)と連通するように連絡路(17)が設けられ
ている。(20)、(21)は第2の基板(13)に形
成された冷媒導入口と冷媒排出口で、それぞれ連絡路(
17)と連通ずるように設けられ、以上により、冷媒導
入口(20)から半導体素子f7]の溝(9)を通って
冷媒排出口(21)に至る一連の冷媒用通路が形成され
ている。
(11) is a composite substrate on which the semiconductor device (1) is mounted, (
I2) and (13) are first and second substrates made of single crystal silicon, respectively; (14) and (15) are soda lime-based first and second thin glass layers; The second substrates (12) and (13) have a first thin glass layer (
14), and these constitute a composite substrate (11). The semiconductor element (7) is placed on the first substrate (12) via the second thin glass layer (15) with its back surface (00) facing the first substrate (12).
chips on the silicon substrate (F), and is mounted on the composite substrate (11).
5ilicon) structure. (16), (1
7) is a communication path with a through hole formed in the first substrate (12), and the through hole (I6) is provided in a portion facing both ends (19) of the groove (9) of the semiconductor element (7). At the same time, a communication path (17) is provided to communicate with the through hole (16). (20) and (21) are a refrigerant inlet and a refrigerant outlet formed in the second substrate (13), respectively, and communication paths (
17), and as a result, a series of refrigerant passages are formed from the refrigerant inlet (20) to the refrigerant outlet (21) through the groove (9) of the semiconductor element f7]. .

次に製造方法について説明する。半導体素子(力の裏面
00)に、リソグラフィ技術により製作された窒化シリ
コン(Si 3Na )や二酸化シリコン(Si(h)
のマスクく図示せず)を用い、フッ酸(HF)、水酸化
カリウム(KOH)等のエツチング液でウェットエツヂ
フグ法により、溝(9)を形成する。冷却を良くするに
は溝(9)の表面積が大きいのが好ましいので、高アス
ペクト比の微細なパターンの溝(9)を形成するために
、C]、 OO)方位を有する半導体素子(7)をKO
)(水溶液により異方性エツチングを行うのがよい。
Next, the manufacturing method will be explained. Silicon nitride (Si3Na) and silicon dioxide (Si(h)) manufactured by lithography technology are used for semiconductor devices (back side 00).
The grooves (9) are formed using a wet etching method using an etching solution such as hydrofluoric acid (HF) or potassium hydroxide (KOH) using a mask (not shown). In order to improve cooling, it is preferable that the surface area of the groove (9) is large, so in order to form the groove (9) in a fine pattern with a high aspect ratio, the semiconductor element (7) having the C], OO) orientation is used. KO
) (Anisotropic etching is preferably performed using an aqueous solution.

第1の基板(12)には、半導体素子(7)が実装され
る側とは反対側の面に、上記と同様のエツチングを行な
って連絡路(17)形成のなめに溝状に加工し、また、
半導体素子(71実装側の面から同様のエツチングによ
り貫通孔(16)を形成する。第2の基板(13)には
同様のエツチングにより、冷媒導入口および排出口(2
0)、(21)を形成する。
On the side of the first substrate (12) opposite to the side on which the semiconductor element (7) is mounted, etching is performed in the same manner as described above to form a diagonal groove to form a communication path (17). ,Also,
A through hole (16) is formed by similar etching from the surface on which the semiconductor element (71 is mounted).A refrigerant inlet and an outlet (2) are formed in the second substrate (13) by similar etching.
0), (21) are formed.

次に、第1および第2の基板(12)、(13)を陽極
接合法により互いに接合する。陽極接合法は、デイ−(
D)  ピー(P)、ボメランッにより発明され、特公
昭53−287472号公報に示されている。第3図は
陽極接合法の説明図であり、(23)、(24)は互い
に接合される第1および第2の材料で、第1の材料(2
3)は導体、あるいはシリコン等の半導体であるが、接
合時の温度では導体としてふるまう。第2の材料(24
)はガラス等の絶縁物、(25)は直流電源である。上
記のような両材料(23)、(24)を、第2の材料(
24)がイオンマイグレーションする温度に加熱し、第
1の材料(23)側を正、第2の材料(24)側を負に
して直流電圧を印加することにより、両者の接合を行な
うものである。
Next, the first and second substrates (12) and (13) are bonded to each other by an anodic bonding method. The anodic bonding method is
D) Invented by P. Bomeran and disclosed in Japanese Patent Publication No. 53-287472. FIG. 3 is an explanatory diagram of the anodic bonding method, in which (23) and (24) are the first and second materials to be bonded to each other, and the first material (2
3) is a conductor or a semiconductor such as silicon, but it behaves as a conductor at the temperature during bonding. Second material (24
) is an insulator such as glass, and (25) is a DC power source. Both materials (23) and (24) as described above are combined with the second material (
24) is heated to a temperature at which ion migration occurs, and the first material (23) side is positive and the second material (24) side is negative, and a DC voltage is applied to bond the two. .

実際の接合プロセスは以下に示す通りである。The actual bonding process is as shown below.

第1または第2の基板(12)、(13)の表面上に、
RFマグネトロンスパッタ法等で厚さ1〜10ミクロン
の第1の薄膜ガラス層(14)を形成する。次に、両基
板(23)、(24)を約200℃に加熱し、第1の薄
膜ガラス層(14)を内側にして両者を重ね合せ、第1
の薄膜ガラス層(14)が形成された側の基板を負、他
方を正にして両者間に直流電圧を印加し、接合を行なう
。第1の基板(12)の溝状にエツチングされた部分と
第2の基板(13)とにより、冷媒が通る連絡路(17
)が形成される。上記接合は第1の薄膜ガラス層(14
)の厚さが5ミクロン、加熱温度200℃、印加直流電
圧20Vの条件で行った場合に接合状態が最も良好とな
った。
On the surface of the first or second substrate (12), (13),
A first thin glass layer (14) having a thickness of 1 to 10 microns is formed by RF magnetron sputtering or the like. Next, both substrates (23) and (24) are heated to about 200°C, and they are stacked on top of each other with the first thin glass layer (14) inside.
The substrate on which the thin film glass layer (14) is formed is made negative, and the other substrate is made positive, and a DC voltage is applied between them to perform bonding. The groove-shaped etched portion of the first substrate (12) and the second substrate (13) form a communication path (17) through which the refrigerant passes.
) is formed. The above bonding is performed using the first thin glass layer (14
) The bonding condition was the best when the thickness was 5 microns, the heating temperature was 200° C., and the applied DC voltage was 20 V.

このようにして第1および第2の基板(12)、(13
)を接合して複合基板(11)を形成し、その上に半導
体素子(力を実装する。まず、第1の基板(12)側表
面または半導体素子(7)の裏面に第2の薄膜ガラス層
(15)を、第1の薄膜ガラス層(14)の場合と同様
にして形成する。その後、上記と同様の陽極接合法によ
り両者の接合を行なう。
In this way, the first and second substrates (12), (13
) are bonded to form a composite substrate (11), and a semiconductor element (forced) is mounted on it. The layer (15) is formed in the same manner as the first thin glass layer (14).Then, both are bonded by the same anodic bonding method as described above.

次に動作について説明する。半導体装置の運転時には冷
媒(図示せず)を流して冷却する。冷媒としては、半導
体素子(71や複合基板(11)の材料であるシリコン
とガラスを腐食しないフレオン類、あるいは、素子を低
温で動作させる場合は液体窒素を用いる。冷媒導入口お
よび排出口(20)、(21)には図示しないパイプが
接続されていて、例えばポンプなどにより、冷媒導入口
(20)から冷媒を流し込む。冷媒は第1図の矢印で示
すように流れ、半導体素子(′71の裏面αO)の溝(
9)を通って直接、半導体素子(力を冷却する。溝(9
)は大面積にわたって冷媒と接触する形状になっている
ので効率よく冷却が行なわれる。半導体素子(71から
熱を奪った冷媒は、冷媒排出口(21)からパイプを通
って排出される。
Next, the operation will be explained. During operation of the semiconductor device, a refrigerant (not shown) is flowed to cool the semiconductor device. As the coolant, use Freon, which does not corrode the silicon and glass that are the materials of the semiconductor element (71) and the composite substrate (11), or liquid nitrogen when the element is operated at low temperatures. ) and (21) are connected to pipes (not shown), and a refrigerant is poured into the refrigerant inlet (20) using a pump, for example.The refrigerant flows as shown by the arrow in FIG. The groove on the back side αO) (
cooling the semiconductor element (power) directly through the groove (9).
) has a shape that makes contact with the refrigerant over a large area, so cooling is performed efficiently. The refrigerant that has taken heat from the semiconductor element (71) is discharged from the refrigerant outlet (21) through the pipe.

なお、上記実施例では陽極接合法による接合において、
互いに接合されるものの一方のみに薄膜ガラス層を形成
したが、多方に成膜して接合を行ってもよく、その場合
は印加直流電圧の極性はいずれでもよい。薄膜ガラス層
の厚さが2ミクロン、加熱温度200℃、印加電圧20
Vの条件で行った場合が、接合状態が最も良好である。
In addition, in the above embodiment, in the bonding by the anodic bonding method,
Although the thin glass layer was formed only on one side of the parts to be bonded to each other, the thin glass layer may be formed on multiple sides and bonded, and in that case, the polarity of the applied DC voltage may be either. The thickness of the thin glass layer is 2 microns, the heating temperature is 200°C, and the applied voltage is 20°C.
The bonding condition is the best when the bonding is performed under the condition of V.

また、薄膜ガラス層の材質としてソーダライム系のもの
を用いたが、ホウケイ酸ガラス系でもよく、更に、溝(
9)のパターン形状をジグザグ状で全体として四角形に
したが、円形やらせん形のパターンにしてもよい。
In addition, although soda lime-based material was used as the material for the thin glass layer, borosilicate glass-based material may also be used.
Although the pattern shape in 9) is zigzag and has a rectangular shape as a whole, it may also be a circular or spiral pattern.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、半導体素子の裏面に
溝を形成して冷媒が流通できるように構成したので、冷
媒により半導体素子が直接的に冷却され、従って、冷却
効果が良く、また、基板の材料選定において熱伝導率の
面から限定されず、例えば半導体素子と同種の材料を用
いることができ、半導体素子と基板の間の熱膨張係数の
ミスマツチによる不具合を防止できる。
As described above, according to the present invention, grooves are formed on the back surface of the semiconductor element so that the coolant can flow therethrough, so the semiconductor element is directly cooled by the coolant, and therefore the cooling effect is good. The selection of the material for the substrate is not limited in terms of thermal conductivity; for example, the same type of material as the semiconductor element can be used, and problems due to mismatch in thermal expansion coefficients between the semiconductor element and the substrate can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による半導体装置の断面図
、第2図は第1図に示された半導体装置の半導体素子の
平面図、第3図は陽極接合法の説明図、第4図は従来の
半導体装置の側面図である。 図において、(7)は半導体素子、(8)は主面、(9
)は溝、00)は裏面、(11)は複合基板である。 なお、各図中同一符号は同一または相当部分を示す。 代理人  弁理士  大 岩 増 雄 手続補正書(自発) 1事件の表示 2発明の名称 平成2年特許願第1.33020号 半導体装置 3補正をする者 事件との関係 住   所 名   称(601) 4代理人 住 所
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention, FIG. 2 is a plan view of a semiconductor element of the semiconductor device shown in FIG. 1, FIG. 3 is an explanatory diagram of an anodic bonding method, and FIG. The figure is a side view of a conventional semiconductor device. In the figure, (7) is the semiconductor element, (8) is the main surface, and (9) is the semiconductor element.
) is the groove, 00) is the back surface, and (11) is the composite substrate. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Patent Attorney Masuo Oiwa Procedural amendment (voluntary) 1. Indication of the case 2. Name of the invention 1990 Patent Application No. 1.33020 Semiconductor device 3. Person making the amendment Address related to the case Name (601) 4 Agent address

Claims (1)

【特許請求の範囲】[Claims]  主面に回路が形成された半導体素子と基板とから成り
、上記半導体素子の裏面を上記基板に対向させて、上記
半導体素子を上記基板に実装したものにおいて、半導体
素子の裏面に溝を形成して冷媒が流通できるようにした
ことを特徴とする半導体装置。
The semiconductor element is composed of a substrate and a semiconductor element having a circuit formed on its main surface, and the semiconductor element is mounted on the substrate with the back surface of the semiconductor element facing the substrate, wherein a groove is formed on the back surface of the semiconductor element. A semiconductor device characterized in that a refrigerant is allowed to flow through the semiconductor device.
JP2133020A 1990-05-23 1990-05-23 Semiconductor device Pending JPH0428257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133020A JPH0428257A (en) 1990-05-23 1990-05-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133020A JPH0428257A (en) 1990-05-23 1990-05-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0428257A true JPH0428257A (en) 1992-01-30

Family

ID=15094919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133020A Pending JPH0428257A (en) 1990-05-23 1990-05-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0428257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5692558A (en) * 1996-07-22 1997-12-02 Northrop Grumman Corporation Microchannel cooling using aviation fuels for airborne electronics
US5777384A (en) * 1996-10-11 1998-07-07 Motorola, Inc. Tunable semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5692558A (en) * 1996-07-22 1997-12-02 Northrop Grumman Corporation Microchannel cooling using aviation fuels for airborne electronics
US5777384A (en) * 1996-10-11 1998-07-07 Motorola, Inc. Tunable semiconductor device

Similar Documents

Publication Publication Date Title
US5051865A (en) Multi-layer semiconductor device
JP5801996B2 (en) Double-sided cooling power module with power coating
US8929071B2 (en) Low cost manufacturing of micro-channel heatsink
CA2002213C (en) High performance integrated circuit chip package and method of making same
US4712609A (en) Heat sink structure
US5125451A (en) Heat exchanger for solid-state electronic devices
US5232047A (en) Heat exchanger for solid-state electronic devices
KR100193331B1 (en) Evaporator having etched fiber nucleation sites and method of fabricating the same
JPH10125838A (en) Liq. cooling apparatus for high power semiconductor module
JP2950472B2 (en) Method for forming a metallization structure of an electronic integrated circuit package
JP2001053206A (en) Cooling device for multichip module
US7842553B2 (en) Cooling micro-channels
JPH0428257A (en) Semiconductor device
US5262673A (en) Semiconductor element
JPH06252300A (en) Integrated circuit chip provided with cooling device and manufacture thereof
JPH0677347A (en) Substrate
JPH03273669A (en) Semiconductor device with cooling mechanism
JPH05152476A (en) Semiconductor integrated circuit device, its production and electronic computer
JPH06310626A (en) Semiconductor chip and semiconductor integrated circuit device
JPH05114665A (en) Heat radiative substrate
CN117766490A (en) Heat dissipation packaging structure of integrated copper manifold micro-channel and preparation method
JPH04303950A (en) Base plate for mounting semiconductor
KR100460180B1 (en) The Heat Pipe using Porous Silicon Layer for Cooling Electronic Devices
JPS61104645A (en) Cooler and manufacture thereof
JPS61183949A (en) Manufacture of semiconductor device