JPH05114665A - Heat radiative substrate - Google Patents

Heat radiative substrate

Info

Publication number
JPH05114665A
JPH05114665A JP30426091A JP30426091A JPH05114665A JP H05114665 A JPH05114665 A JP H05114665A JP 30426091 A JP30426091 A JP 30426091A JP 30426091 A JP30426091 A JP 30426091A JP H05114665 A JPH05114665 A JP H05114665A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
heat
substrate
chip
resistor
spreader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30426091A
Other languages
Japanese (ja)
Inventor
Sadakatsu Okura
Kiyoto Shibata
Shigeru Takahashi
Yasuhiro Uchiyama
Takahiro Yamakawa
康広 内山
定勝 大倉
孝宏 山川
清人 柴田
繁 高橋
Original Assignee
Nippon Cement Co Ltd
日本セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE: To provide a substrate excellent in heat radiation.
CONSTITUTION: A ceramic multilayer substrate 2 is so designed that a chip resistor (heating element) 3 is housed in a through hole therein. An aluminum nitride plate (heat spreader) 1 is connected to the upper face of the chip resistor 3 with a heat-transfer dowel in-between. Another aluminum nitride plate (heat spreader) 1 is connected directly to the bottom face of the chip resistor 3. This provides a substrate of a simple radiating structure which is excellent in heat radiation and is easily fabricated. Further, this substrate permits high-density mounting of ICs and a high-speed integrated circuit board.
COPYRIGHT: (C)1993,JPO&Japio

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、放熱性に優れた放熱性基板に関し、特に、IC等を高密度に実装することができる放熱性基板に関する。 The present invention relates to relates to a heat dissipation substrate having excellent heat dissipation properties, in particular, it relates to heat dissipation board capable of mounting an IC or the like at a high density.

【0002】 [0002]

【従来の技術】近年、導体配線やコンデンサ等を内層化した低温焼成のセラミックス多層基板が実用化されつつある。 In recent years, multilayer ceramic substrate of a low temperature sintered that inner layer conductor wiring and a capacitor and the like are being put to practical use. このような基板は、従来のガラス−エポキシ基板に比べて微細配線が可能であり、しかも、多層化が容易であるため、基板全体を小型化できるというメリットを有している。 Such substrates, conventional glass - are possible fine wiring as compared with epoxy substrate, moreover, since multi-layer is easy, it has the advantage that the entire substrate can be miniaturized.

【0003】一方、IC等を高密度に実装したり、また、高速でICに信号処理させたりすると、ICチップ自身が発熱し、その性能が劣化することが知られている。 [0003] On the other hand, if a high density mounting an IC and the like, also, the or to the signal processing IC at high speed, IC chip itself generates heat, it is known that their performance is deteriorated. 従って、基板をセラミックス製とすることによって微細配線ができるとしても、この場合、IC等の発する熱を逃さなければ、高密度実装ができない。 Therefore, even if the substrate can fine wiring by the ceramics, in this case, if miss the heat generated by the IC and the like, can not be high-density mounting. しかしながら、基板として使用するセラミックスは、熱伝導性が低いため、IC等の発生する熱を効率よく放熱させることができず、高密度実装の大きな障害となっていた。 However, ceramics used as the substrate has a low thermal conductivity, it is impossible to dissipate the heat generated from such IC, has been a major obstacle to high-density mounting.

【0004】上記問題点を解決するため、従来、種々の放熱手段や放熱構造のものが多数提案されている。 [0004] To solve the above problems, conventionally, there have been proposed many of various heat dissipating means or heat dissipation structure. そのうち、特開平2−23176号公報に記載されている放熱構造のものは、最も放熱性が向上していると考えられる。 Among them, those of the heat dissipation structure described in JP-A-2-23176 is considered the most heat dissipation is improved. 同公報に記載の発明は、放熱構造に係るものでなく、製造方法に関するものであるが、この方法により得られる放熱性基板について簡単に説明すると、セラミックス基板に穿孔した半導体チップ搭載用穴(キャビティ)に半導体チップを収納し、その半導体チップ及びセラミックス基板を放熱用の窒化アルミニウム基板に接合されてなる回路基板である。 The invention described in the publication is not intended according to the heat dissipation structure, a manufacturing process, will be briefly described heat radiation substrate obtained by this method, a semiconductor chip mounting holes (cavities drilled in the ceramic substrate ) to accommodating a semiconductor chip, a circuit board formed by bonding the semiconductor chip and the ceramic substrate to the aluminum nitride substrate for heat dissipation. このような構造の回路基板では、発熱部品である半導体チップが放熱性の高い窒化アルミニウム基板に直接接合されているので、高い放熱性を期待することができる。 In the circuit board of this structure, since a heat generating component semiconductor chip are bonded directly to the high aluminum nitride substrate having heat dissipation properties, can be expected high heat dissipation.

【0005】 [0005]

【発明が解決しようとする課題】ところで、最近、半導体素子の容量が増大し、それに伴って発熱量も増大しており、また、配線技術の向上により更に微細配線が達成され、その結果、半導体素子間の間隔が挟まり、回路基板の単位面積当りの発熱量も増加している。 [SUMMARY OF THE INVENTION] Recently, the capacity of the semiconductor device increases, calorific value with it also increased, also, further minute wiring can be achieved by improving the interconnection techniques, a result, the semiconductor caught spacing between elements, the amount of heat generated per unit area of ​​the circuit board is also increasing. そのため、 for that reason,
前記したような構造を持つ回路基板であっても、放熱が追いつかず、その結果、半導体素子の温度が上昇する問題点が生じ、誤動作する等の事故が多発するようになってきた。 Be a circuit board having a structure as described above, heat dissipation is not catch up, as a result, problems that the temperature of the semiconductor element is increased occurs, an accident, such as malfunction has come to occur frequently.

【0006】本発明者等は、上記問題点を解決するため実験を繰り返し、本発明を完成したものであって、本発明の目的は、より放熱性に優れ、IC等のより一層の高密度実装や高速信号処理をすることができる放熱性基板を提供するにある。 [0006] The present inventors have repeated experiments for solving the above problems, there is that the present invention has been completed, an object of the present invention is excellent in heat radiation property, high density even more, such as IC to provide a heat dissipation substrate which is capable of mounting and high-speed signal processing.

【0007】 [0007]

【課題を解決するための手段】そして、本発明は、発熱素子の片面でなく、その上下両面に放熱用板体を接続する点及び発熱素子面と放熱用板体とを接続する際、必要に応じ伝熱用コマを介在させる点を特徴とし、これによって、上記目的とする放熱性に優れた基板を提供するものである。 Means for Solving the Problems] The present invention is not one-sided heating elements, when connecting the point and the heat generating element surface connecting the heat radiating plate member to the upper and lower surfaces and for heat dissipation plate member, need and is characterized in that interposing a corresponding heat transfer coma, the result, there is provided a substrate having excellent heat dissipation properties to the object. 即ち、本発明は、基板に設けた貫通孔に発熱素子を収納し、該発熱素子の上下両面に直接及び/又は伝熱用コマを介して放熱用板体を接続してなることを特徴とする放熱性基板を要旨とするものである。 That is, the present invention includes the feature that the heating element is housed in a through hole provided in the substrate, formed by connecting the radiating plate body through a direct and / or heat transfer piece on the upper and lower surfaces of the heat generating element the heat dissipation substrate which is for the subject matter.

【0008】以下本発明を詳細に説明すると、本発明は、発熱素子の上下両面に放熱用板体を接続した構造の放熱性基板であり、具体的には、発熱素子の上下両面に放熱用板体を直接接合することもできるが、好ましくは、その片面又は両面に伝熱用コマを介して放熱用板体を接続するのが好ましい。 [0008] The present invention will be described in detail below, the present invention is a heat dissipation substrate having a structure of connecting the heat radiating plate member on both upper and lower surfaces of the heating element, specifically, a radiator on the upper and lower surfaces of the heating element It can also be bonded to the plate member directly, preferably, preferably connected to one or both sides to the heat radiating plate body via the heat transfer coma. 発熱素子の放熱経路として、 As a heat dissipation path of heat generating elements,
従来では片面からのみであったのに対し、本発明では、 While the conventional was only from one side, in the present invention,
その放熱経路を両面とするものであり、これによって、 Is intended to the heat dissipation path and both sides, thereby,
放熱経路の断面積が約2倍となり、熱抵抗が下がり、放熱性が増大する作用が生ずる。 Sectional area of ​​the heat dissipation path becomes about 2-fold, lower the thermal resistance, is caused effect heat dissipation is increased.

【0009】本発明における基板としては、ガラス−エポキシ複合基板の他、アルミナやシリカ、コーディエライト等の結晶性セラミックスからなる基板を使用することができ、また、ガラスやガラス−結晶質複合セラミックスにより絶縁層を形成し、その層間にAg、Ag−P [0009] As the substrate in the present invention, glass - Other epoxy composite substrate, may be used a substrate made of alumina or silica, crystalline ceramics such as cordierite and glass and glass - crystalline composite ceramic by forming the insulating layer, Ag in the interlayer, Ag-P
d、Mo、Pt、Au、Cu、Ni等の導体回路を形成してなるセラミックス多層基板等、特にその種類や質に限定されずに用いることができる。 d, it is possible to use Mo, Pt, Au, Cu, ceramic multilayer substrate or the like obtained by forming a conductor circuit such as Ni, without being particularly limited to the type and quality. 即ち、本発明では、 In other words, in the present invention,
上記基板への熱の拡散(放散)を意図するものでないので(僅かに配線を通して伝熱する程度であるので)、特に限定されるものでなく、種々の基板を任意に使用することができる。 Since not intended diffusion of heat into the substrate (dissipation) (because of the order of transfer heat through slightly wiring), not limited in particular, it may optionally be used a variety of substrates.

【0010】本発明における伝熱用コマとしては、熱伝導性の高い材料、例えば金属又は高熱伝導性セラミックスからなるものを使用する必要があり、具体的に例示すれば、アルミニウム、銅、窒化アルミニウム、炭化珪素、ベリリア等を挙げることができる。 [0010] As frames for heat transfer in the present invention, high thermal conductivity material, it is necessary to use those made of, for example, a metal or a high thermal conductivity ceramics, if specific examples, aluminum, copper, aluminum nitride , mention may be made of silicon carbide, beryllia and the like. また、放熱用板体も熱伝導性の高い材料、例えば金属又は高熱伝導性セラミックスからなるものを使用することができ、上記伝熱用コマにおける使用材料と同一である。 Further, the radiating plate member also having high heat conductivity material, for example, can be used and made of metal or high thermal conductivity ceramics, it is identical to the materials used in the heat transfer coma.

【0011】また、各素子間の絶縁性が特に要求される場合、伝熱用コマ又は放熱用板体のどちらか一方を高熱伝導性であって、しかも、絶縁性が高いセラミックス(窒化アルミニウム、炭化珪素、ベリリア等)を用いることが好ましい。 Further, if the insulation between the elements is particularly required, either the heat transfer piece or radiating plate body a high thermal conductivity, moreover, an insulating high ceramic (aluminum nitride, silicon carbide, it is preferable to use a beryllia, etc.). 更に、素子端子とセラミックス基板上の回路とをワイヤーボンディングにより接続するような時には、少なくとも伝熱用コマを上記セラミックス製のものとしたほうが、絶縁不良などを防止することができるため、特に好ましい。 Furthermore, a circuit on the element terminals and the ceramic substrate when such is connected by wire bonding, better at least heat transfer piece was made of the ceramic, it is possible to prevent an insulation failure, particularly preferred.

【0012】本発明において、発熱素子と伝熱用コマ(又は放熱用板体)との接続手段及び伝熱用コマと放熱用板体との接続手段としては、特に限定するものでないが、できる限り熱抵抗の少ない方法を採用することが好ましい。 [0012] In the present invention, the connecting means between the connection means and the heat transfer piece of the heating element and the heat transfer piece (or heat radiation plate member) and the heat radiating plate body, but not particularly limited, can be it is preferable to employ a small way with limited thermal resistance. 具体的には、市販されているハンダや金属ロウ材を用いたロウ付けや同じく市販の高熱伝導性の有機接着剤を用いることができる。 Specifically, it is possible to use brazing and also commercially available high heat conductivity of the organic adhesive using a solder or brazing filler metal, which is commercially available.

【0013】本発明の放熱性基板において、特に注意を要する点は、発熱素子が複数個内在する場合であるが、 [0013] In the heat dissipation substrate of the present invention, the point requiring particular attention, but the heat generating element is a case of multiple underlying
この場合においても、発熱量が多く、単板では放熱し切れないような素子については、該発熱素子の上下両面から熱が流れるようにしなければならず、このため、該発熱素子の上下両面に放熱用板体を配設することが特に必要である。 In this case, many heating value, the elements that do not fully dissipates heat in veneer has to the upper and lower surfaces of the heat generating element to flow heat, Therefore, the upper and lower surfaces of the heat generating element it is particularly necessary to provide a heat radiation plate member. 上記した複数個の発熱素子が内在する場合、 When a plurality of heating elements described above is inherent,
各素子毎に放熱用板体を配設することができ、また、各素子の上下にそれぞれ1枚の放熱用板体を配置し、この放熱用板体に各素子を接続することもできる。 Each element can be arranged for heat radiation plate member, also vertically disposed one for heat radiation plate bodies each of the elements, it is also possible to connect each element to the heat radiating plate body. なお、本明細書で記載する発熱素子とは、一般に集積回路素子を指すが、抵抗体やコイル等も使用条件によっては発熱する場合があり、このような抵抗体やコイル等を内在する基板に対しても有効であり、これも本発明に包含されるものである。 Note that the heating element as described herein, generally refers to an integrated circuit device, depending also use conditions resistor or a coil or the like may be exothermic, the substrate inherent such resistor or coil or the like also effective for, which is also intended to be encompassed by the present invention.

【0014】 [0014]

【実施例】次に、本発明の実施例を比較例と共に挙げ、 EXAMPLES Next, given together with comparative examples embodiments of the present invention,
本発明をより詳細に説明する。 The present invention will be described in more detail. (実施例1)図1は、本発明の一実施例を示す放熱性基板の断面図であって、セラミックス多層基板2の貫通孔にチップ抵抗(発熱素子)3を収納し、このチップ抵抗3の上面に伝熱用コマ4を介して窒化アルミニウム板(放熱用板体)1を接続し、一方、その下面に窒化アルミニウム板(放熱用板体)1を直接接続した構造の放熱性基板である。 (Example 1) FIG. 1 is a cross-sectional view of the heat dissipation substrate of an embodiment of the present invention, housing the chip resistor (heating element) 3 into the through hole of the ceramic multilayer substrate 2, the chip resistor 3 top through the heat transfer coma 4 connects the aluminum nitride plate (heat radiation plate member) 1 on the one hand, the lower surface of the aluminum nitride plate (heat radiation plate member) Part 1 in the heat dissipation substrate of a direct connection to the structure is there.

【0015】この放熱性基板を詳細に説明すると、基板として、日本セメント社製の2インチ角、厚さ約2.8mm [0015] To explain this heat dissipation board detail, as the substrate 2-inch square by Nippon Cement Co., a thickness of about 2.8mm
の低温焼成多層セラミックス基板2を用い、その中央部に5mm角の貫通孔(キャビティ)を設けた。 Using low-temperature fired multilayer ceramic substrate 2, provided with a through hole of 5mm square (cavity) at its center. また、放熱用板体として、徳山曹達社製の2インチ角、厚さ約0.6 Further, as for heat dissipation plate body 2 inch square manufactured by Tokuyama Soda Co., a thickness of about 0.6
25mmの窒化アルミニウム板1を使用し、まず、この窒化アルミニウム板1と上記セラミックス多層基板2の下部とをエポキシ樹脂接着剤にて接着した。 Using the aluminum nitride plate 1 of 25 mm, it was first bonded to the bottom of the aluminum nitride plate 1 and the ceramic multilayer substrate 2 with an epoxy resin adhesive.

【0016】次に、セラミックス多層基板2のキャビティから露出した窒化アルミニウム板1上に3216タイプ・ Next, cavity 3216 type on the aluminum nitride plate 1 exposed from the ceramic multilayer substrate 2
51Ωのチップ抵抗(発熱素子)3を接着し、その電極にリード線を接続してセラミックス多層基板2の外へ電極を延長した(図示せず)。 Bonding the chip resistor (heating element) 3 51Omu, it prolonged the electrode connecting leads out of the ceramic multilayer substrate 2 to the electrode (not shown). 更に、チップ抵抗3の側面に極細の熱電対を接着し、これもセラミックス多層基板2 Further, bonding the thermocouple ultrafine on the side surface of the chip resistor 3, which is also ceramic multilayer substrate 2
の外へ延長した(図示せず)。 It was extended to the outside of the (not shown).

【0017】その後、チップ抵抗3の上面に3mm角、 [0017] After that, 3mm angle to the top surface of the chip resistor 3,
高さ3mmの窒化アルミニウム製伝熱用コマ4を接着し、更に、その上に30mm角、厚さ1.0mmの窒化アルミニウム板1を接着した。 Bonding the height of 3mm aluminum nitride heat transfer coma 4, further, 30 mm square thereon, bonding the aluminum nitride plate 1 having a thickness of 1.0 mm. この状態でチップ抵抗3に1 1 to the chip resistor 3 in this state
ワットの電力を供給し、発熱させ、その際のチップ抵抗3の温度変化を測定したところ、電流を流す前に比べて Supplying watts of power, to generate heat was measured change in temperature of the chip resistor 3 at this time, as compared with that before passing a current
11.3℃温度が上昇したところで平衡状態となった。 11.3 ℃ temperature has reached an equilibrium state where the rose.

【0018】(実施例2)図2は、本発明の他の実施例を示す放熱性基板の断面図であって、セラミックス多層基板2の貫通孔にチップ抵抗(発熱素子)3を収納し、 [0018] (Embodiment 2) FIG. 2 is a cross-sectional view of the heat dissipation substrate according to still another embodiment of the present invention, housing the chip resistor (heating element) 3 into the through hole of the ceramic multilayer substrate 2,
このチップ抵抗3の上下両面に伝熱用コマ4を介して窒化アルミニウム板(放熱用板体)1を接続した構造の放熱性基板である。 The chip resistor 3 of the upper and lower surfaces in the heat transfer coma 4 via the aluminum nitride plate (heat radiation plate member) 1 is a heat dissipation substrate having a structure connected to. この実施例2では、チップ抵抗3の上面だけでなく、その下面においても伝熱用コマ4を介して窒化アルミニウム板(放熱用板体)1と接続した点で、実施例1と異なり、この点を除いて実施例1と同じ構造の放熱性基板である。 In Example 2, not only the upper surface of the chip resistor 3, in that connected through the heat transfer piece 4 aluminum nitride plate (heat radiation plate member) 1 and also in its lower surface, unlike the first embodiment, this a heat dissipation substrate having the same structure as in example 1 except for the point.

【0019】(比較例)比較のため、チップ抵抗上面の伝熱用コマ及びアルミニウム板のない状態で、実施例1 [0019] Comparative Example For comparison, in the absence of heat transfer piece and an aluminum plate chip resistor top, Example 1
と同一試験を行なったところ、21.2℃上昇して平衡となった。 It was carried out the same test and became the equilibrium rose 21.2 ℃. この比較例の温度上昇と前記実施例1のそれとを比較すると、本発明による放熱性基板では、放熱性が大幅に改善されていることが理解できる。 Comparing with that temperature rise of the comparative example of Example 1, with the heat dissipation substrate according to the present invention, it can be understood that the heat radiation is greatly improved.

【0020】 [0020]

【発明の効果】本発明は、以上詳記したとおり、発熱素子の片面でなく、その上下両面に放熱用板体を接続する点及び発熱素子面と放熱用板体とを接続する際、必要に応じ伝熱用コマを介在させる点を特徴とする放熱性基板であり、その放熱性構造が極めて簡単であって、容易に作製することができ、しかも、放熱性に優れた基板を得ることができる効果を有する。 The present invention exhibits, above Shoki and as was, rather than one side of the heating element, when connecting the point and the heat generating element surface connecting the heat radiating plate member to the upper and lower surfaces and for heat dissipation plate member, need to be the corresponding heat transfer coma a heat dissipation substrate which is characterized in that the intervention, a the heat dissipation structure is very simple, it can be easily manufactured, moreover, possible to obtain an excellent substrate heat dissipation It has the effect of it is. そして、本発明により、 And, according to the present invention,
より高度な、例えばIC等の高密度実装や高速信号処理をすることができる集積回路用基板を提供することができる。 More advanced, it is possible to provide an integrated circuit substrate which can be, for example, high-density mounting and high-speed signal processing, such as IC.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の一実施例を示す放熱性基板の断面図である。 1 is a cross-sectional view of the heat dissipation substrate of an embodiment of the present invention.

【図2】本発明の他の実施例を示す放熱性基板の断面図である。 2 is a cross-sectional view of the heat dissipation substrate according to still another embodiment of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 窒化アルミニウム板(放熱用板体) 2 セラミックス多層基板 3 チップ抵抗(発熱素子) 4 伝熱用コマ 1 aluminum nitride plate (heat radiation plate member) 2 ceramic multilayer substrate 3 chip resistor (heating element) 4 heat transfer coma

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 基板に設けた貫通孔に発熱素子を収納し、該発熱素子の上下両面に直接又は伝熱用コマを介して放熱用板体を接続してなることを特徴とする放熱性基板。 1. A housing a heating element in a through hole provided on the substrate, heat radiation, characterized in that formed by connecting the heat radiating plate member upper and lower surfaces directly or via a heat transfer piece of the heat generating element substrate.
  2. 【請求項2】 基板に設けた貫通孔に発熱素子を収納し、該発熱素子の片面に伝熱用コマを介して放熱用板体を接続し、他面に直接放熱用板体を接続してなることを特徴とする放熱性基板。 2. A housing a heating element in a through hole provided in the substrate, on one surface of the heat generating element via the heat transfer for the frame to connect the heat radiating plate member, directly connected to the radiating plate member on the other surface heat dissipation substrate characterized by comprising Te.
  3. 【請求項3】 基板に設けた貫通孔に発熱素子を収納し、該発熱素子の上下両面に伝熱用コマを介して放熱用板体を接続してなることを特徴とする放熱性基板。 3. A heat dissipation substrate housing the heating element in a through hole provided on the substrate, characterized by comprising connecting the heat radiating plate body via the heat transfer coma on the upper and lower surfaces of the heat generating element.
JP30426091A 1991-10-23 1991-10-23 Heat radiative substrate Pending JPH05114665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30426091A JPH05114665A (en) 1991-10-23 1991-10-23 Heat radiative substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30426091A JPH05114665A (en) 1991-10-23 1991-10-23 Heat radiative substrate

Publications (1)

Publication Number Publication Date
JPH05114665A true true JPH05114665A (en) 1993-05-07

Family

ID=17930916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30426091A Pending JPH05114665A (en) 1991-10-23 1991-10-23 Heat radiative substrate

Country Status (1)

Country Link
JP (1) JPH05114665A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119446B2 (en) * 2001-12-31 2012-02-21 Megica Corporation Integrated chip package structure using metal substrate and method of manufacturing the same
US8330049B2 (en) 2009-04-01 2012-12-11 Samsung Electro-Mechanics Co., Ltd. Circuit board module and method of manufacturing the same
KR101331724B1 (en) * 2012-04-13 2013-11-20 삼성전기주식회사 Double side cooling power semiconductor moduleand multi-stacked power semiconductor module package using the same
US9136246B2 (en) 2001-12-31 2015-09-15 Qualcomm Incorporated Integrated chip package structure using silicon substrate and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119446B2 (en) * 2001-12-31 2012-02-21 Megica Corporation Integrated chip package structure using metal substrate and method of manufacturing the same
US9136246B2 (en) 2001-12-31 2015-09-15 Qualcomm Incorporated Integrated chip package structure using silicon substrate and method of manufacturing the same
US8330049B2 (en) 2009-04-01 2012-12-11 Samsung Electro-Mechanics Co., Ltd. Circuit board module and method of manufacturing the same
KR101331724B1 (en) * 2012-04-13 2013-11-20 삼성전기주식회사 Double side cooling power semiconductor moduleand multi-stacked power semiconductor module package using the same

Similar Documents

Publication Publication Date Title
US6400014B1 (en) Semiconductor package with a heat sink
US4849857A (en) Heat dissipating interconnect tape for use in tape automated bonding
US6614660B1 (en) Thermally enhanced IC chip package
US6528882B2 (en) Thermal enhanced ball grid array package
US5172301A (en) Heatsink for board-mounted semiconductor devices and semiconductor device assembly employing same
US4994903A (en) Circuit substrate and circuit using the substrate
US5761044A (en) Semiconductor module for microprocessor
US5598031A (en) Electrically and thermally enhanced package using a separate silicon substrate
US6713856B2 (en) Stacked chip package with enhanced thermal conductivity
US5179366A (en) End terminated high power chip resistor assembly
US6317326B1 (en) Integrated circuit device package and heat dissipation device
US5032897A (en) Integrated thermoelectric cooling
US4698662A (en) Multichip thin film module
US6075287A (en) Integrated, multi-chip, thermally conductive packaging device and methodology
US4620216A (en) Unitary slotted heat sink for semiconductor packages
US6566748B1 (en) Flip-chip semiconductor device having an improved reliability
US5567986A (en) Heat sink
US7361985B2 (en) Thermally enhanced molded package for semiconductors
US5291064A (en) Package structure for semiconductor device having a flexible wiring circuit member spaced from the package casing
US5158912A (en) Integral heatsink semiconductor package
US6930885B2 (en) Densely packed electronic assemblage with heat removing element
US4556899A (en) Insulated type semiconductor devices
US5155661A (en) Aluminum nitride multi-chip module
US20070108595A1 (en) Semiconductor device with integrated heat spreader
US6108205A (en) Means and method for mounting electronics