JPH04279058A - Method of deciding layout of master slice type semiconductor circuit - Google Patents

Method of deciding layout of master slice type semiconductor circuit

Info

Publication number
JPH04279058A
JPH04279058A JP6784891A JP6784891A JPH04279058A JP H04279058 A JPH04279058 A JP H04279058A JP 6784891 A JP6784891 A JP 6784891A JP 6784891 A JP6784891 A JP 6784891A JP H04279058 A JPH04279058 A JP H04279058A
Authority
JP
Japan
Prior art keywords
cell
bicmos
cells
type semiconductor
slice type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6784891A
Other languages
Japanese (ja)
Inventor
Satoshi Yoshikawa
聡 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6784891A priority Critical patent/JPH04279058A/en
Publication of JPH04279058A publication Critical patent/JPH04279058A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11896Masterslice integrated circuits using combined field effect/bipolar technology

Abstract

PURPOSE:To further improve the speed of a master slice type semiconductor circuit mounted with a BiCMOS gate. CONSTITUTION:In a master slice type semiconductor circuit in which a BiCMOS cell and CMOS cell are incorporated in a mixed state, cells G2 and G3 driven by means of a BiCMOS cell G1 are preferentially arranged near the BiCMOS cell G1. Therefore, the wiring length between the BiCMOS cell G1 and the cells G2 and G3 driven by the cell G1 can be reduced and the high speed property of the cell G1 can sufficiently be utilized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、BiCMOSセルとC
MOSセルが混在するマスタスライス型半導体回路のレ
イアウト方法に関する。近年の微細化技術の発達により
、LSIは高速化、大規模化の一途を辿っている。その
中でも、CMOSの小面積、低消費電力と、バイポーラ
トランジスタの大駆動能力の両者を兼ね備えたBiCM
OSマスタスライス型半導体回路が注目されている。
[Industrial Application Field] The present invention relates to BiCMOS cells and CMOS cells.
The present invention relates to a layout method for a master slice type semiconductor circuit in which MOS cells are mixed. With the recent development of miniaturization technology, LSIs are becoming faster and larger. Among them, BiCM has both the small area and low power consumption of CMOS and the large drive capacity of bipolar transistors.
OS master slice type semiconductor circuits are attracting attention.

【0002】0002

【従来の技術】BiCMOSマスタスライス型半導体回
路を使用すると、高速動作が必要なところはバイポーラ
トランジスタで駆動し、それ程高速動作を必要としない
部分にはCMOSトランジスタを使用するというような
、効率のよい設計を行なうことができる。
[Prior Art] When using a BiCMOS master slice type semiconductor circuit, parts that require high-speed operation are driven by bipolar transistors, and parts that do not require such high-speed operation are driven by CMOS transistors. Design can be done.

【0003】ところでチップに搭載する半導体回路が大
規模化するに従って、セルとセルを結ぶ配線に長いもの
が出てくる。長い配線を伝わるセルの出力波形は、次段
のゲートに到達するまでに、該配線の分布抵抗と分布容
量によって鈍る。次段のゲートの信号伝播遅延時間は、
その入力波形の鈍り方に応じて増加するので、なるべく
配線は短くする必要がある。
[0003] As semiconductor circuits mounted on chips become larger in scale, the wiring connecting cells becomes longer. The output waveform of a cell transmitted through a long wiring becomes dull due to the distributed resistance and distributed capacitance of the wiring before reaching the gate of the next stage. The signal propagation delay time of the next stage gate is
Since it increases depending on how the input waveform becomes blunt, the wiring needs to be as short as possible.

【0004】0004

【発明が解決しようとする課題】BiCMOSゲートは
高速動作し、駆動能力が大きいと考えられている。この
考えに従うとBiCMOSゲートには長い配線により遠
く離れたゲートを駆動させてもよいことになる。しかし
分析の結果はそうではない。本発明はかゝる点に着目し
てなされたもので、BiCMOSゲート搭載マスタスラ
イス型半導体回路の一層の高速化を図ることを目的とす
るものである。
[Problems to be Solved by the Invention] BiCMOS gates operate at high speed and are considered to have large driving capabilities. According to this idea, BiCMOS gates may be driven far away by long wiring. However, the results of the analysis indicate otherwise. The present invention has been made with attention to this point, and an object of the present invention is to further increase the speed of a master slice type semiconductor circuit equipped with a BiCMOS gate.

【0005】[0005]

【課題を解決するための手段】図1に示すように本発明
では、チップのレイアウトをする際、BiCMOSセル
で駆動されるセルG2 ,G3に着目し、これらのセル
を、該セルを駆動するBiCMOSセルG1 の近くに
配置する。即ち、G1 の出力端とG2 の入力端,G
1 の出力端とG3 の入力端、を結ぶ信号線長が可及
的に短くなるように、G1 〜G3 を構成するゲート
アレイを選定する。ゲートアレイでは、各種セルの共通
要素(主として拡散層)だけが予め作成されており、各
種セルへの仕上げは該共通要素に配線を施すことにより
行なうから、上記G2 ,G3 をG1 の近くに配置
することは、上記共通要素の選択で簡単にできる。然る
後、残りのセルG4 ,G5 ……を適当に配置する。 本例ではゲートG2 ,G3 はCMOSセル、G4 
,G5 は任意のセルである。セルG4 ,G5 がB
iCMOSの場合は、次のセルは同様にセルG4 ,G
5 の近くに配置する。
[Means for Solving the Problems] As shown in FIG. 1, in the present invention, when laying out a chip, attention is paid to cells G2 and G3 driven by BiCMOS cells, and these cells are Place it near BiCMOS cell G1. That is, the output terminal of G1 and the input terminal of G2, G
The gate arrays constituting G1 to G3 are selected so that the length of the signal line connecting the output end of G1 and the input end of G3 is as short as possible. In a gate array, only the common elements (mainly the diffusion layer) of various cells are created in advance, and finishing for each cell is done by wiring the common elements, so G2 and G3 are placed near G1. This can be easily done by selecting the above common elements. After that, the remaining cells G4, G5, etc. are appropriately arranged. In this example, gates G2 and G3 are CMOS cells, and G4
, G5 are arbitrary cells. Cells G4 and G5 are B
In the case of iCMOS, the next cells are cells G4 and G
Place it near 5.

【0006】[0006]

【作用】このようにBiCMOSセルで駆動されるセル
を、該BiCMOSセルの近くに配置する(配線を行な
っても波形のなまりがあまり出ない位置に配置する)と
、該BiCMOSセルの高速性を充分に発揮させること
ができる。
[Operation] Placing a cell driven by a BiCMOS cell in this way near the BiCMOS cell (placing it in a position where the waveform will not be too rounded even after wiring) will improve the high-speed performance of the BiCMOS cell. It can be fully demonstrated.

【0007】[0007]

【実施例】図2にセル出力側の立上り特性を示す。これ
は図2(a)に示すようにセルGに種々の長さLの配線
を接続し、該セルとしてBiCMOSセル及びCMOS
セルを用い、その出力端Aと配線端Bの立上り特性を求
めたものである。これらの図(b)〜(e)の横軸は時
間t(nS)で、縦軸は電圧である。電源電圧VCCは
5Vであるので、立上り後の最終電圧はこの5Vである
が、そうならない場合もある。即ち図2(b)はセルG
がCMOSでその出力端Aの立上り特性、同(c)は配
線端Bの立上り特性であり、同(d)はセルGがBiC
MOSでその出力端Aの立上り特性、同(e)は配線端
Bの立上り特性である。各曲線1,5,10,……40
は配線長Lが1mm、5mm、10mm、……40mm
の場合の立上り特性を示す。 これらの曲線から明らかなように、CMOSゲートの場
合はVCC=5Vまで立上るが、BiCMOSではLが
大になるにつれてVCC=5Vまで上昇しなくなる。
Embodiment FIG. 2 shows the rise characteristics on the cell output side. As shown in FIG. 2(a), wires of various lengths L are connected to a cell G, and the cell is a BiCMOS cell or a CMOS cell.
The rising characteristics of the output end A and the wiring end B of the cell were determined using the cell. The horizontal axis of these figures (b) to (e) is time t (nS), and the vertical axis is voltage. Since the power supply voltage VCC is 5V, the final voltage after rising is this 5V, but this may not always be the case. In other words, in FIG. 2(b), cell G
is the rise characteristic of the output end A of CMOS, (c) is the rise characteristic of the wiring end B, and (d) is the rise characteristic of the output end A of the cell G.
The rising characteristic of the output end A of the MOS is the rising characteristic of the wiring end B, and (e) is the rising characteristic of the wiring end B. Each curve 1, 5, 10,...40
The wiring length L is 1mm, 5mm, 10mm,...40mm.
The rise characteristics are shown in the case of . As is clear from these curves, in the case of a CMOS gate, VCC rises to 5V, but in BiCMOS, as L becomes larger, VCC does not rise to 5V.

【0008】またこれらの曲線から、BiCMOSゲー
トでは配線長Lの大小に拘わらず、出力端Aの近傍では
立上りが速いが、配線端BではLが大になるにつれて立
上りが遅くなる。従って高速を期待してBiCMOSゲ
ートを用いても、長い配線を通して次段ゲートを駆動す
るならこの期待は裏切られることになる。本発明のよう
に、次段セルはBiCMOSセルの近くに配置するよう
にすれば、期待通りの高速性を得ることができる。
Furthermore, from these curves, it can be seen that in the BiCMOS gate, the rise is fast near the output end A, regardless of the magnitude of the wire length L, but the rise becomes slower at the wire end B as L becomes larger. Therefore, even if a BiCMOS gate is used with the expectation of high speed, this expectation will be disappointed if the next stage gate is driven through a long wiring. By arranging the next stage cell near the BiCMOS cell as in the present invention, the expected high speed can be obtained.

【0009】またこれらの曲線から明らかなように、C
MOSセルでは配線長(負荷)が大になると出力端でも
立上りが遅れるが、BiCMOSセルではそのようなこ
とはなく、しかし立上り後の電圧値が低くなる。4Vに
立上った状態で比較すると、BiCMOSセルの出力端
では配線長の影響は殆んどなく、しかし配線端ではL=
1,10,20,30,40で約0.6,1.0,2.
2,4.0,6.2各nSとなる。CMOSセルでは出
力端自体が配線長の影響を受け、L=1,10,20,
30,40で約0.8,1.5,2.2,3.1,3.
8各nS、配線端ではL=1,10,20,30,40
で約0.8,1.6,2.9,4.4,6.4各nSに
なる。このように長い配線端では、CMOSもBiCM
OSも余り変らないことになる。これは出力端電圧に関
係し、BiCMOSではLの増大につれて出力端電圧が
低下するので配線電位の立上りが遅くなる。
[0009] Also, as is clear from these curves, C
In a MOS cell, when the wiring length (load) becomes large, the rise is delayed at the output end, but in a BiCMOS cell, this does not occur, but the voltage value after the rise becomes low. When compared with the voltage rising to 4V, there is almost no effect of the wiring length at the output end of the BiCMOS cell, but at the wiring end, L=
1, 10, 20, 30, 40, approximately 0.6, 1.0, 2.
2, 4.0, 6.2 nS each. In a CMOS cell, the output end itself is affected by the wiring length, L=1, 10, 20,
30, 40 approximately 0.8, 1.5, 2.2, 3.1, 3.
8 nS each, L = 1, 10, 20, 30, 40 at the wiring end
This results in approximately 0.8, 1.6, 2.9, 4.4, and 6.4 nS each. At such long wiring ends, CMOS and BiCM
The OS will not change much either. This is related to the output terminal voltage, and in BiCMOS, the output terminal voltage decreases as L increases, so the rise of the wiring potential becomes slower.

【0010】図3に本発明のレイアウト方法の実施例を
流れ図で示す。図示のように、各セルをチップ全体に仮
配置する■。このとき、BiCMOSセルはジッタープ
ロパティーを持つ端子を持つもの同志が近くに配置され
る。 尚、ジッタープロパティーを持つとは、BiCMOSセ
ル端子が信号の波形なまりが余りでない位置に配置すべ
き要素を持つものである。次に、今置いたセルはBiC
MOSセルか否かチェックする■。BiCMOSセルな
らこのセルで駆動されるセルはあるか否かチェックし■
、あればそのBiCMOSセルで駆動されるセルの配置
替えをする■。そしてこのセルが指定された範囲内に置
かれたか否かチェックし■、置かれていれば、ジッター
プロパティーを持つ端子(BiCMOSセル)を検索し
、セルの配置は完了したか否かチェックし■、YESな
らジッタープロパティーを持つ端子から優先的に配線す
る■。
FIG. 3 shows a flow chart of an embodiment of the layout method of the present invention. Temporarily place each cell on the entire chip as shown. At this time, BiCMOS cells having terminals having jitter properties are placed close to each other. Note that having a jitter property means that the BiCMOS cell terminal has an element that should be placed at a position where the waveform of the signal is not excessively rounded. Next, the cell you just placed is BiC
■ Check whether it is a MOS cell. If it is a BiCMOS cell, check whether there are any cells driven by this cell.■
, if any, rearrange the cells driven by that BiCMOS cell. Then, it checks whether this cell is placed within the specified range. If it is, it searches for a terminal (BiCMOS cell) with jitter property and checks whether the cell placement is complete.■ , If YES, give priority to wiring from the terminal with the jitter property■.

【0011】図2から明らかなように、BiCMOSゲ
ートは、出力にある一定の負荷容量がついた場合、動作
周波数によってスピードが変ってしまう。特に、通信、
伝送系では、この効果(ジッター)が気にされる。図4
(a)は図2(e)を特徴的に示す図であるが、この図
に示されるようにBiCMOSの出力波形はあるレベル
まで急峻に立上るが、その後は大きな時定数でゆっくり
立上る。この傾向は、出力負荷容量が大きい程、顕著で
ある。
As is clear from FIG. 2, when a certain load capacitance is attached to the output of the BiCMOS gate, the speed changes depending on the operating frequency. In particular, communication
In transmission systems, this effect (jitter) is a concern. Figure 4
(a) is a diagram characteristically showing FIG. 2(e). As shown in this diagram, the output waveform of the BiCMOS rises steeply to a certain level, but then slowly rises with a large time constant. This tendency is more pronounced as the output load capacity becomes larger.

【0012】ここで、図4(b)に示すBiCMOSフ
リップフロップを考える。この図4(b)でDはデータ
端子、CKはクロック端子、Qは出力端子である。この
データ端子D、クロック端子CKに図4(c)に示すク
ロックCK、データDが入力したとすると、負荷が重い
場合、出力は図4(c)のQの如くなる。この出力波形
を見ても分るように、データが次々と変化する場合には
、出力変化が追いつかなくなる。この効果はBiCMO
Sで著しい。 このため図4(b)に示すように、フルスウイングした
場合のH→L(あるいはL→H)変化と、途中レベルか
らH→L(あるいはL→H)変化した場合では、遅延時
間が異なってしまう。
Now, consider the BiCMOS flip-flop shown in FIG. 4(b). In FIG. 4(b), D is a data terminal, CK is a clock terminal, and Q is an output terminal. Assuming that the clock CK and data D shown in FIG. 4(c) are input to the data terminal D and clock terminal CK, if the load is heavy, the output will be as shown in Q in FIG. 4(c). As can be seen from this output waveform, when data changes one after another, the output changes cannot keep up. This effect is BiCMO
Significant in S. Therefore, as shown in Fig. 4(b), the delay time is different between a change from H→L (or L→H) during a full swing and a change from H→L (or L→H) from an intermediate level. I end up.

【0013】このような効果が気になる回路に関しては
、BiCMOSセルの出力負荷を、そのチップを最大動
作周波数で動作させた場合に、BiCMOSの出力がフ
ルスウイングするように設定しなければならない。ここ
で、配線の長さをコントロールすることは非常に重要と
なる。レイアウトの方法としては、BiCMOSセルの
出力にはジッタープロパティーを付けておき、チップあ
るいはBiCMOSセルに与えられた周波数で動作した
場合にフルスウイングするような配線長になるようにレ
イアウトを行なうようにする。出力の立上り時間(立下
り時間)TrfをTrf=K・CL ,       
   CL =CG +CW こゝでKは定数、CG 
はゲート容量、CW は配線容量、とした場合、 Trf/T<90% こゝでTは周期、1/Tは動作周波数、の関係が成立つ
ように配置、配線を行なうようにする。この式の意味は
、動作周期の90%の時間までには立上り、立下りの動
作を終えるようなレイアウトを行なうという意味である
。このようなレイアウト処理を行なうことによりL→H
,H→Lの遅延時間を、最大動作周波数の範囲内であれ
ば、保証することができる。こゝでは、フリップフロッ
プを例にとって説明したが、この手法はBiCMOSの
ゲートのすべてに適用できる。
For circuits in which such effects are of concern, the output load of the BiCMOS cell must be set so that the output of the BiCMOS takes full swing when the chip is operated at its maximum operating frequency. Here, controlling the length of the wiring is very important. The layout method is to add a jitter property to the output of the BiCMOS cell, and perform the layout so that the wiring length will be full swing when operating at the frequency given to the chip or BiCMOS cell. . The output rise time (fall time) Trf is Trf=K・CL,
CL = CG + CW where K is a constant, CG
When is the gate capacitance and CW is the wiring capacitance, the arrangement and wiring are made so that the relationship Trf/T<90% holds true, where T is the period and 1/T is the operating frequency. This formula means that the layout is such that the rising and falling operations are completed by 90% of the operation cycle. By performing such layout processing, L→H
, H→L delay time can be guaranteed as long as it is within the range of the maximum operating frequency. Although the explanation has been given using a flip-flop as an example, this method can be applied to all BiCMOS gates.

【0014】[0014]

【発明の効果】以上説明したように本発明ではBiCM
OSセルで駆動されるセルを該BiCMOSセルの近傍
に配置するようにするので、BiCMOSセルの高速性
を充分生かすことができる。
[Effects of the Invention] As explained above, in the present invention, BiCM
Since the cell driven by the OS cell is placed near the BiCMOS cell, the high speed performance of the BiCMOS cell can be fully utilized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のレイアウト方法の説明図である。FIG. 1 is an explanatory diagram of a layout method of the present invention.

【図2】セル出力の立上り特性を示す特性図である。FIG. 2 is a characteristic diagram showing the rise characteristics of a cell output.

【図3】本発明のレイアウト方法の実施例を示す流れ図
である。
FIG. 3 is a flow chart showing an embodiment of the layout method of the present invention.

【図4】BiCMOSの特性説明図である。FIG. 4 is a characteristic diagram of BiCMOS.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  BiCMOSセルとCMOSセルが混
在するマスタスライス型半導体回路のレイアウト方法に
おいて、BiCMOSセル(G1 )で駆動されるセル
(G2 ,G3 )を優先して該BiCMOSセルの近
くに配置し、該セルとBiCMOSセルとの間の配線長
を短くすることを特徴としたマスタスライス型半導体回
路のレイアウト方法。
1. In a layout method for a master slice type semiconductor circuit in which BiCMOS cells and CMOS cells coexist, cells (G2, G3) driven by a BiCMOS cell (G1) are prioritized and placed near the BiCMOS cell. , A layout method for a master slice type semiconductor circuit characterized by shortening the wiring length between the cell and the BiCMOS cell.
JP6784891A 1991-03-07 1991-03-07 Method of deciding layout of master slice type semiconductor circuit Withdrawn JPH04279058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6784891A JPH04279058A (en) 1991-03-07 1991-03-07 Method of deciding layout of master slice type semiconductor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6784891A JPH04279058A (en) 1991-03-07 1991-03-07 Method of deciding layout of master slice type semiconductor circuit

Publications (1)

Publication Number Publication Date
JPH04279058A true JPH04279058A (en) 1992-10-05

Family

ID=13356791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6784891A Withdrawn JPH04279058A (en) 1991-03-07 1991-03-07 Method of deciding layout of master slice type semiconductor circuit

Country Status (1)

Country Link
JP (1) JPH04279058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747324B2 (en) 1996-01-17 2004-06-08 Hitachi, Ltd. Method of manufacturing a semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747324B2 (en) 1996-01-17 2004-06-08 Hitachi, Ltd. Method of manufacturing a semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US6064226A (en) Multiple input/output level interface input receiver
US6765429B2 (en) Semiconductor integrated circuit with leak current cut-off circuit
US6792372B2 (en) Method and apparatus for independent output driver calibration
US7525379B2 (en) Low voltage CMOS differential amplifier
JPS63299513A (en) Output circuit
JPH04321319A (en) Method and apparatus for driving output pad
JP3169987B2 (en) Integrated circuit including input buffer circuit
US6262617B1 (en) Integrated circuit output driver
CN111640460B (en) Terminal resistor circuit and control method thereof
JPH04279058A (en) Method of deciding layout of master slice type semiconductor circuit
CN102034523B (en) Semiconductor storage device and method for reducing area of chip of semiconductor storage device
KR890004998B1 (en) Gate circuits for micro computer system
KR19980026493A (en) Signal line driver circuit of semiconductor device
US8717064B2 (en) Semiconductor integrated circuit
EP1261127A2 (en) Semiconductor integrated circuit device
US6118311A (en) Output circuit capable of suppressing bounce effect
US7307295B2 (en) Method and an apparatus for a hard-coded bit value changeable in any layer of metal
US5502404A (en) Gate array cell with predefined connection patterns
JPH07312384A (en) Signal line switching circuit
JPS59163835A (en) Semiconductor device
JPS62145834A (en) Semiconductor device
JPS6068718A (en) Semiconductor integrated circuit
JPH0567961A (en) Output buffer circuit
JPH04212438A (en) Semiconductor integrated circuit and its manufacture
JP2016178198A (en) Standard cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514