JPH04278453A - Method for monitoring oxidation degree of oxide superconductor membrane - Google Patents

Method for monitoring oxidation degree of oxide superconductor membrane

Info

Publication number
JPH04278453A
JPH04278453A JP3040254A JP4025491A JPH04278453A JP H04278453 A JPH04278453 A JP H04278453A JP 3040254 A JP3040254 A JP 3040254A JP 4025491 A JP4025491 A JP 4025491A JP H04278453 A JPH04278453 A JP H04278453A
Authority
JP
Japan
Prior art keywords
oxide superconductor
thin film
superconductor thin
monitoring
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3040254A
Other languages
Japanese (ja)
Other versions
JP2834590B2 (en
Inventor
Masakazu Matsui
正和 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3040254A priority Critical patent/JP2834590B2/en
Publication of JPH04278453A publication Critical patent/JPH04278453A/en
Application granted granted Critical
Publication of JP2834590B2 publication Critical patent/JP2834590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To monitor the oxidation degree of an oxide superconductor membrane during formation in a non-contact state within a real time. CONSTITUTION:When an oxide superconductor membrane is formed within a vacuum container 1, the oxide superconductor membrane during formation is irradiated with the primary ion seed of energy of 2kV or less from an ion gun 11 and the secondary ion seed from the membrane at this time is subjected to mass analysis by a mass analyzer 12. Since the oxide superconductor membrane having good superconductive characteristics is formed when the secondary ion seed is detected but not formed when no secondary ion seed is detected, by monitoring the presence of the secondary ion seed, the quality of a film forming condition can be judged. The oxidation degree of the oxide superconductor membrane can be monitored in a non-contact state within a real time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は酸化物超電導体薄膜の酸
化度監視方法に関し、更に詳しくは、成膜装置の中で複
数枚の酸化物超電導体薄膜を製造する際に、成膜しつつ
あるその薄膜の酸化度を非接触かつリアルタイムで監視
し、薄膜の特性を適正化するために、得られた監視デー
タを装置稼動条件にフィードバックして利用する酸化物
超電導体薄膜の酸化度監視方法に関する。
[Field of Industrial Application] The present invention relates to a method for monitoring the degree of oxidation of oxide superconductor thin films, and more specifically, the present invention relates to a method for monitoring the degree of oxidation of oxide superconductor thin films. A method for monitoring the degree of oxidation of an oxide superconductor thin film, in which the degree of oxidation of a certain thin film is monitored non-contactly and in real time, and the obtained monitoring data is used as feedback to the device operating conditions in order to optimize the properties of the thin film. Regarding.

【0002】0002

【従来の技術】成膜装置の中で基板上に成膜しつつある
酸化物超電導体薄膜の特性を評価する方法としては、従
来から、高速電子線回折法(RHEED)によって、薄
膜の結晶の配向性で評価する方法が知られている。しか
しながら、この方法では、薄膜の酸化度を評価すること
はできない。
[Prior Art] Conventionally, as a method for evaluating the characteristics of an oxide superconductor thin film being formed on a substrate in a film forming apparatus, high-speed electron diffraction (RHEED) has been used to analyze the crystal structure of the thin film. A method of evaluating based on orientation is known. However, this method cannot evaluate the degree of oxidation of the thin film.

【0003】また、酸化物超電導体薄膜の酸化度、臨界
温度、臨界電流密度、組成は、その薄膜の電気抵抗と相
関を有しているので、薄膜の電気抵抗を測定して、間接
的に、その薄膜の特性評価がなされている。この場合、
大別して次の2通りの方法で特性評価がなされている。 第1の方法は、成膜装置の中で所定厚みの薄膜を成膜し
たのち、更に熱処理を要する薄膜の場合は所定の熱処理
を行ない、得られた薄膜に電気抵抗用の電極を形成して
所望の電気特性を測定するという方法である。
[0003] Furthermore, the degree of oxidation, critical temperature, critical current density, and composition of an oxide superconductor thin film have a correlation with the electrical resistance of the thin film. , the characteristics of the thin film have been evaluated. in this case,
Characteristics are evaluated using the following two methods. The first method is to form a thin film of a predetermined thickness in a film forming apparatus, then perform a predetermined heat treatment if the film requires further heat treatment, and then form an electrode for electrical resistance on the obtained thin film. This method measures desired electrical characteristics.

【0004】第2の方法は、成膜装置の中に電気抵抗測
定用の電流・電圧端子を別体としてセットし、更に酸化
物超電導体薄膜を成膜すべき基板のうちの1枚をモニタ
用基板とし、その基板に電極を配設し、かつ、この電極
と前記電流・電圧端子をリード線で結線して、モニタ用
基板上に成膜しつつある酸化物超電導体薄膜の特性を評
価することにより、他の基板の酸化物超電導体薄膜の特
性をリルアタイムで評価する方法である。
[0004] The second method is to separately set current and voltage terminals for measuring electrical resistance in the film forming apparatus, and to monitor one of the substrates on which the oxide superconductor thin film is to be formed. Evaluate the characteristics of the oxide superconductor thin film that is being formed on the monitor substrate by arranging an electrode on the substrate and connecting the electrode to the current/voltage terminal with a lead wire. This is a method for evaluating the characteristics of oxide superconductor thin films on other substrates in real time.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、第1の
方法の場合は、基板上に既に成膜し終わった酸化物超電
導体薄膜に、またはその熱処理品に対してのみ適用し得
る方法であって、その評価結果をリアルタイムで成膜装
置の稼動条件にフィードバックすることができず、効率
がよくないという問題がある。
[Problems to be Solved by the Invention] However, the first method is a method that can only be applied to oxide superconductor thin films that have already been formed on a substrate or to heat-treated products thereof. However, there is a problem in that the evaluation results cannot be fed back to the operating conditions of the film forming apparatus in real time, resulting in poor efficiency.

【0006】また、第2の方法の場合は、成膜装置内に
前記した電流・電圧端子を別にセットしなければならな
いため、これら端子が成膜操作の円滑な進行を阻害する
ばかりか、モニタ用基板には予め電極を形成しなければ
ならないという問題がある。しかも、成膜時に基板を回
転したり、または基板温度を高めたりする場合、モニタ
用基板の回転によって電極−端子間を結ぶリード線が破
損したり、高温によって電極や端子などが変質したり、
または、モニタ用基板の表面温度がリード線に熱伝導し
てこのモニタ用基板と他の基板との間に異質な要素が介
在するようになって、比較対象できなくなる。
In addition, in the case of the second method, the above-mentioned current/voltage terminals must be set separately in the film-forming apparatus, so these terminals not only hinder the smooth progress of the film-forming operation, but also interfere with the monitoring. There is a problem in that electrodes must be formed on the substrate in advance. Moreover, if the substrate is rotated or the substrate temperature is increased during film formation, the lead wires connecting the electrodes and terminals may be damaged due to the rotation of the monitoring substrate, and the electrodes and terminals may be deteriorated due to the high temperature.
Alternatively, the surface temperature of the monitor board is thermally conducted to the lead wires, and a different element is interposed between the monitor board and other boards, making it impossible to compare them.

【0007】本発明は、酸化物超電導体薄膜の特性評価
における上記問題を解決し、薄膜特性項目のうち、成膜
されつつある酸化物超電導体薄膜の酸化度を非接触でか
つリアルタイムで評価することができ、もってその評価
結果を成膜装置の稼動条件にフィードバックして、適正
特性の酸化物超電導体薄膜を製造するために有用な酸化
物超電導体薄膜の酸化度監視方法の提供を目的とする。
The present invention solves the above-mentioned problems in characterizing oxide superconductor thin films, and evaluates the degree of oxidation of oxide superconductor thin films being formed in a non-contact manner and in real time, among the thin film characteristic items. The purpose of the present invention is to provide a method for monitoring the degree of oxidation of oxide superconductor thin films, which is useful for producing oxide superconductor thin films with appropriate characteristics by feeding back the evaluation results to the operating conditions of the film-forming equipment. do.

【0008】[0008]

【課題を解決するための手段・作用】ところで、イット
リウム系酸化物超電導体のうち、YBa2 Cu3 O
7−X (xは7以下の数)で示される化合物は、その
結晶構造に、図1で示したようなCuO4 型と図2で
示したようなCuO5 型の2種類があり、いずれも、
酸化度が大きくなる(xが小さくなる)と、臨界温度は
高くなり、臨界電流密度は大きくなる。
[Means and effects for solving the problem] By the way, among the yttrium-based oxide superconductors, YBa2 Cu3 O
The compound represented by 7-X (x is a number of 7 or less) has two types of crystal structures: CuO4 type as shown in Figure 1 and CuO5 type as shown in Figure 2.
As the degree of oxidation increases (x decreases), the critical temperature increases and the critical current density increases.

【0009】本発明者は、YBa2 Cu3 O7−X
 薄膜の成膜時において、所定エネルギーのイオン種を
この薄膜に照射すると、臨界温度が高い薄膜、すなわち
超電導特性が良好な薄膜からは、CuO4 − ,Cu
O5 − のような分子イオンが質量分析装置によって
検出され、超電導特性が良好でない薄膜からは上記分子
イオンは検出されないとの事実を見出した。
[0009] The present inventor has discovered that YBa2 Cu3 O7-X
When forming a thin film, when ion species with a predetermined energy are irradiated onto the thin film, CuO4 − , Cu
It has been discovered that molecular ions such as O5 - are detected by a mass spectrometer, and that these molecular ions are not detected from thin films that do not have good superconducting properties.

【0010】本発明者は、上記知見に基づき、成膜過程
にある酸化物超電導体薄膜へイオン種を照射して、その
ときに2次イオン種としてCuO4 − ,CuO5 
− が検出されるか否かを測定することにより、非接触
で、しかもリアルタイムで成膜しつつある酸化物超電導
体薄膜の特性評価が可能になるとの着想を得、本発明の
酸化物超電導体薄膜の酸化度監視方法を開発するに到っ
た。
Based on the above knowledge, the present inventors irradiated ion species to an oxide superconductor thin film in the process of film formation, and at that time, CuO4 - and CuO5 were irradiated as secondary ion species.
The idea was that by measuring whether or not - is detected, it would be possible to evaluate the characteristics of the oxide superconductor thin film that is being formed non-contact and in real time, and the oxide superconductor of the present invention We have developed a method for monitoring the oxidation degree of thin films.

【0011】すなわち、本発明の酸化物超電導体薄膜の
酸化度監視方法は、酸化物超電導薄膜の成膜装置の中に
配置された複数枚の基板の少なくとも1枚を酸化物超電
導体薄膜酸化度監視用試料とし、成膜操作の過程で、前
記試料の表面に2KV以下のエネルギーを有する1次イ
オン種を照射し、前記試料表面から生成する2次イオン
種の有無を質量分析装置で検出することを特徴とする。
That is, the method for monitoring the oxidation degree of an oxide superconductor thin film of the present invention is to monitor the oxidation degree of the oxide superconductor thin film by monitoring at least one of a plurality of substrates arranged in an oxide superconductor thin film deposition apparatus. As a monitoring sample, during the process of film formation, the surface of the sample is irradiated with primary ion species having an energy of 2 KV or less, and the presence or absence of secondary ion species generated from the sample surface is detected with a mass spectrometer. It is characterized by

【0012】本発明方法は、図3の概略図で示したよう
な成膜装置を用いて行なわれる。まず、真空排気機構2
を備えた真空容器1の内底には、複数個(図では4個)
の例えば電子ビーム加熱源3が配置され、その中に、形
成すべき酸化物超電導体薄膜の原料である蒸発材料4が
収容されている。真空容器1の上部には、基板回転機構
5が配設され、その下面5aに基板ホルダ6がセットさ
れている。この基板ホルダ6の下面には、複数枚の基板
7が取付けられ、これら基板7は図示しない温度制御機
構と接続するヒータ8によって所定温度に加熱されるよ
うになっている。基板7としては、その材料は格別限定
されず、例えばMgO板などが用いられる。
The method of the present invention is carried out using a film forming apparatus as shown in the schematic diagram of FIG. First, vacuum exhaust mechanism 2
In the inner bottom of the vacuum container 1 equipped with
For example, an electron beam heating source 3 is disposed, and an evaporation material 4, which is a raw material for the oxide superconductor thin film to be formed, is housed therein. A substrate rotation mechanism 5 is disposed at the upper part of the vacuum container 1, and a substrate holder 6 is set on the lower surface 5a thereof. A plurality of substrates 7 are attached to the lower surface of the substrate holder 6, and these substrates 7 are heated to a predetermined temperature by a heater 8 connected to a temperature control mechanism (not shown). The material for the substrate 7 is not particularly limited, and for example, an MgO plate or the like may be used.

【0013】加熱源3と基板7の間には、まず、例えば
水晶振動式膜厚モニタのような蒸着材料4の蒸着速度を
監視・制御するモニタ9が介装され、また、基板7に近
接した位置にはシャッタ10が配置されて、基板7への
蒸着制御ができるようになっている。真空容器1の側部
には、複数枚の基板7のうちの1枚にその照射口11a
を向けてイオンガン11が配設され、ここから、所定エ
ネルギの1次イオン種が基板(成膜過程では酸化物超電
導体薄膜)7に照射できるようになっている。
A monitor 9 for monitoring and controlling the deposition rate of the deposition material 4, such as a quartz crystal film thickness monitor, is interposed between the heat source 3 and the substrate 7, and a A shutter 10 is disposed at this position so that vapor deposition onto the substrate 7 can be controlled. On the side of the vacuum container 1, one of the plurality of substrates 7 has an irradiation port 11a.
An ion gun 11 is disposed so as to irradiate the substrate (the oxide superconductor thin film in the film forming process) with primary ion species of a predetermined energy from the ion gun 11 .

【0014】照射する1次イオン種としては、例えば、
Ar+ ,O2 + ,Cs+ ,N2 + ,He+
 ,Ne+ ,Kr+ ,Xe+ などをあげることが
できる。このとき、これら1次イオン種のエネルギが高
すぎると、成膜されている酸化物超電導体薄膜が超電導
特性に優れたものであっても、イオン衝撃によって生成
する2次イオン種はCuO4 − ,CuO5 − に
ならないで、Cu− ,O− のような原子イオンまた
はCuO− やCuO2 − のような低配位イオンに
なってしまうので、1次イオン種のエネルギは2KV以
下となるように、イオンガン11を作動させる。
[0014] As the primary ion species to be irradiated, for example,
Ar+ , O2 + , Cs+ , N2 + , He+
, Ne+, Kr+, Xe+, etc. At this time, if the energy of these primary ion species is too high, even if the oxide superconductor thin film being formed has excellent superconducting properties, the secondary ion species generated by ion bombardment will be CuO4 -, Instead of becoming CuO5 -, it becomes atomic ions such as Cu- and O- or low coordination ions such as CuO- and CuO2 -, so the ion gun is set so that the energy of the primary ion species is 2KV or less 11 is activated.

【0015】また、真空容器1の他の側部には、質量分
析装置12がその受入口12aを1次イオン種が照射さ
れる基板に向けて配設され、イオンガン11の1次イオ
ン種のイオン衝撃によって基板7上の酸化物超電導体薄
膜から生成した2次イオン種を受入口12aで受けいれ
、その質量分析を行なう。このような質量分析装置12
としては、例えば4重極質量分析装置を用いることがで
きる。
A mass spectrometer 12 is disposed on the other side of the vacuum chamber 1, with its reception port 12a facing the substrate to which the primary ion species are irradiated. Secondary ion species generated from the oxide superconductor thin film on the substrate 7 by ion bombardment are received at the receiving port 12a, and subjected to mass spectrometry. Such a mass spectrometer 12
For example, a quadrupole mass spectrometer can be used.

【0016】本発明方法は次のようにして行なわれる。 まず、真空排気機構2を作動して真空容器1内を所定の
酸素分圧にし、基板7のヒータ6による加熱、電子ビー
ム加熱源3の作動による蒸着材料4の蒸発、モニタ9に
よるその蒸着速度の制御を行なって、基板7の上に所定
組成の酸化物超電導体薄膜を成膜する。
The method of the present invention is carried out as follows. First, the vacuum evacuation mechanism 2 is operated to bring the inside of the vacuum container 1 to a predetermined oxygen partial pressure, the substrate 7 is heated by the heater 6, the evaporation material 4 is evaporated by the operation of the electron beam heating source 3, and the evaporation rate is monitored by the monitor 9. An oxide superconductor thin film having a predetermined composition is formed on the substrate 7 by controlling the following steps.

【0017】この過程で、イオンガン11から所定エネ
ルギの1次イオン種を酸化物超電導体薄膜に照射する。 前記薄膜からは2次イオン種が生成し、これを質量分析
装置12で質量分析してCuO4 − ,CuO5 −
 の有無を測定する。上記分子イオンが検出されたとき
は、成膜しつつある酸化物超電導体薄膜の超電導特性は
良好である。分子イオンが検出されないときは、酸化物
超電導体薄膜の超電導特性は良好といえないので、装置
の稼動条件を検討する。
In this process, the oxide superconductor thin film is irradiated with primary ion species having a predetermined energy from the ion gun 11. Secondary ion species are generated from the thin film, which are subjected to mass spectrometry using the mass spectrometer 12 to identify CuO4 − , CuO5 −
Measure the presence or absence of When the above molecular ions are detected, the superconducting properties of the oxide superconductor thin film being formed are good. If molecular ions are not detected, the superconducting properties of the oxide superconductor thin film cannot be said to be good, so the operating conditions of the device should be examined.

【0018】[0018]

【実施例】図3の装置において、基板7としてMgO(
100)単結晶板、モニタ9として水晶振動式膜厚モニ
タ、イオンガン11としてO2 + イオンガン、質量
分析装置12として4重極質量分析装置(QMASS)
を用い、蒸着材料としてY,Ba,Cuを用いて操作し
た。基板ホルダ6にセットした基板の数は5枚とした。
[Example] In the apparatus shown in FIG. 3, the substrate 7 is MgO (
100) Single crystal plate, quartz crystal film thickness monitor as monitor 9, O2 + ion gun as ion gun 11, quadrupole mass spectrometer (QMASS) as mass spectrometer 12
The operation was carried out using Y, Ba, and Cu as vapor deposition materials. The number of substrates set in the substrate holder 6 was five.

【0019】容器内の酸素分圧を3.0×10−4To
rr、基板温度を700℃とし、電子ビーム加熱源3か
ら蒸着材料4を蒸発させ、Y:Ba:Cuのモル比が1
:2:3となるように、モニタ9によって基板7への成
膜速度を制御した。この状態で、イオンガン11を作動
して、エネルギ0.5KV、イオン電流30nAのO2
 + を成膜しつつある1枚の酸化物超電導体薄膜の1
.7mm2 の面積に照射し、生成した2次イオン種を
QMASSによって質量分析した。
[0019] The oxygen partial pressure inside the container is set to 3.0×10-4To.
rr, the substrate temperature was set to 700°C, the evaporation material 4 was evaporated from the electron beam heating source 3, and the molar ratio of Y:Ba:Cu was 1.
The rate of film formation on the substrate 7 was controlled by the monitor 9 so that the ratio was 2:3. In this state, the ion gun 11 is operated to provide O2 with an energy of 0.5 KV and an ion current of 30 nA.
+ 1 of an oxide superconductor thin film that is being formed
.. An area of 7 mm2 was irradiated, and the generated secondary ion species were subjected to mass spectrometry using QMASS.

【0020】このときにモニタした質量は、127,1
29,143,145atmであったが、これらはそれ
ぞれ63CuO4 − ,65CuO4 − ,63C
uO5 − ,65CuO5 − の分子イオンに相当
している。得られた残り4枚の酸化物超電導体薄膜につ
き、通常の4端子法で臨界温度(Tc)と液体窒素温度
における臨界電流密度(Jc)を測定した。平均値で、
Tc:89K,Jc:1×106 /cm2 であった
[0020] The mass monitored at this time was 127,1
29, 143, and 145 atm, but these are 63CuO4 −, 65CuO4 −, and 63C, respectively.
This corresponds to the molecular ions of uO5 − and 65CuO5 − . For the remaining four oxide superconductor thin films obtained, the critical temperature (Tc) and critical current density (Jc) at the liquid nitrogen temperature were measured using the usual four-terminal method. On average,
Tc: 89K, Jc: 1×106/cm2.

【0021】ついで、上記と同様のCuO4 − とC
uO5 − の分子イオンが検出される稼動条件で成膜
操作を行なったところ、Tc:88〜90K,Jc:0
.5〜2.0×10−6A/cm2 の特性範囲にある
酸化物超電導体薄膜が再現性よく成膜できた。比較のた
めに、酸素分圧を3.0×10−5Torrにした外は
実施例と同じ条件で成膜操作を行なった。このときには
、QMASSでCuO4 − ,CuO5 − を検出
することができなかった。
[0021] Next, CuO4 − and C
When film formation was performed under operating conditions where uO5 - molecular ions were detected, Tc: 88-90K, Jc: 0
.. An oxide superconductor thin film having a characteristic range of 5 to 2.0 x 10-6 A/cm2 could be formed with good reproducibility. For comparison, a film forming operation was carried out under the same conditions as in the example except that the oxygen partial pressure was set to 3.0 x 10-5 Torr. At this time, CuO4 − and CuO5 − could not be detected by QMASS.

【0022】得られた酸化物超電導体薄膜のTcは35
Kであり、液体窒素の温度でも超電導特性を示さなかっ
た。
The Tc of the obtained oxide superconductor thin film is 35
K, and did not exhibit superconducting properties even at the temperature of liquid nitrogen.

【0023】[0023]

【発明の効果】以上の説明で明らかなように、本発明方
法によれば、成膜された酸化物超電導体薄膜の酸化度を
、質量分析装置によって2次イオン種発生の有無を測定
することにより、非接触でかつリアルタイムで監視する
ことができる。すなわち、所望する電気特性を有する酸
化物超電導体薄膜を、上記監視データを利用することに
より、再現性よく成膜することができる。
[Effects of the Invention] As is clear from the above explanation, according to the method of the present invention, the degree of oxidation of the formed oxide superconductor thin film can be measured using a mass spectrometer to determine whether or not secondary ion species are generated. This enables contactless and real-time monitoring. That is, by using the above monitoring data, an oxide superconductor thin film having desired electrical properties can be formed with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】CuO4 型結晶構造を示す概略図である。FIG. 1 is a schematic diagram showing a CuO4 type crystal structure.

【図2】CuO5 型結晶構造を示す概略図である。FIG. 2 is a schematic diagram showing a CuO5 type crystal structure.

【図3】本発明方法で用いる酸化物超電導体薄膜の成膜
装置の1例を示す概略図である。
FIG. 3 is a schematic diagram showing an example of a film forming apparatus for forming an oxide superconductor thin film used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1      真空容器 2      真空排気機構 3      電子ビーム加熱源 4      蒸着材料 5      基板回転機構 5a    基板回転機構の下面 6      基板ホルダ 7      基板 8      ヒータ 9      蒸着速度モニタ 10    シャッタ 11    1次イオン種のイオンガン12    質
量分析装置 12a  2次イオン種の受入口
1 Vacuum container 2 Evacuation mechanism 3 Electron beam heating source 4 Vapor deposition material 5 Substrate rotation mechanism 5a Lower surface of substrate rotation mechanism 6 Substrate holder 7 Substrate 8 Heater 9 Vapor deposition rate monitor 10 Shutter 11 Ion gun 12 for primary ion species Mass spectrometer 12a Inlet for secondary ion species

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  酸化物超電導体薄膜の成膜装置の中に
配置された複数枚の基板の少なくとも1枚を酸化物超電
導体薄膜酸化度監視用試料とし、成膜操作の過程で、前
記試料の表面に2KV以下のエネルギーを有する1次イ
オン種を照射し、前記試料表面から生成する2次イオン
種の有無を質量分析装置で検出することを特徴とする酸
化物超電導体薄膜の酸化度監視方法。
1. At least one of a plurality of substrates placed in an oxide superconductor thin film deposition apparatus is used as a sample for monitoring the oxidation degree of the oxide superconductor thin film, and in the process of the film deposition operation, the sample is Oxidation degree monitoring of an oxide superconductor thin film, characterized in that the surface of the sample is irradiated with primary ion species having an energy of 2 KV or less, and the presence or absence of secondary ion species generated from the sample surface is detected by a mass spectrometer. Method.
JP3040254A 1991-03-06 1991-03-06 Oxidation degree monitoring method for oxide superconductor thin film Expired - Lifetime JP2834590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3040254A JP2834590B2 (en) 1991-03-06 1991-03-06 Oxidation degree monitoring method for oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3040254A JP2834590B2 (en) 1991-03-06 1991-03-06 Oxidation degree monitoring method for oxide superconductor thin film

Publications (2)

Publication Number Publication Date
JPH04278453A true JPH04278453A (en) 1992-10-05
JP2834590B2 JP2834590B2 (en) 1998-12-09

Family

ID=12575552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3040254A Expired - Lifetime JP2834590B2 (en) 1991-03-06 1991-03-06 Oxidation degree monitoring method for oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JP2834590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231454A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Vacuum vapor-deposition apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231454A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Vacuum vapor-deposition apparatus

Also Published As

Publication number Publication date
JP2834590B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
Humphreys et al. Physical vapour deposition techniques for the growth of YBa2Cu3O7 thin films
US4912087A (en) Rapid thermal annealing of superconducting oxide precursor films on Si and SiO2 substrates
US20040077504A1 (en) High temperature superconducting josephson junctin, superconducting electronic device provided with the former and method of manufacturing high temperature superconducting josephson junction
JP2671916B2 (en) Method for manufacturing superconductor and method for manufacturing superconducting circuit
WO2006036215A2 (en) Superconductor fabrication processes
JPH0597588A (en) Production of oxide superconductor film
JPH04278453A (en) Method for monitoring oxidation degree of oxide superconductor membrane
Hussain et al. Fabrication, characterization, and theoretical analysis of high‐T c Y‐Ba‐Cu‐O superconducting films prepared by a chemical sol gel method
Falke et al. Transition temperature depression in quench condensed Zn-Mn dilute alloy films
Kimura et al. Bi-Sr-Ca-Cu-O film on sapphire grown by plasma-enhanced halide CVD
US5747427A (en) Process for forming a semiconductive thin film containing a junction
JPH04285012A (en) Formation of oxide superconductor thin film
JPH04219301A (en) Production of oxide superconductor thin film
Michel et al. The preparation of YBCO thin films by a four ion beam co-deposition system
EP0543585B1 (en) Process for forming an oxide film
JP2637615B2 (en) Manufacturing method of oxide superconductor
US5126320A (en) Method for manufacturing an oxide superconducting thin-film
JPH0353061A (en) Method and device for vapor deposition to produce thin film of oxide superconductor
Eom et al. Synthesis and characterization of superconducting thin films
JP2736062B2 (en) Method for producing oxide superconductor thin film
Wills et al. The Influence of the Crystalline Structure on the Electrical Properties of BaTiO3/SrRuO, Heterostructures
Raven et al. Thermodynamic aspects to the growth of thin films of superconducting YBa2Cu3Ox
JPH06140675A (en) Ultrathin film of bi oxide high-temperature superconductor and manufacture thereof
JPH01219162A (en) Production of thin oxide film and apparatus therefor
JPH05148084A (en) Superconductor