JPH04277683A - Current lead for superconducting apparatus - Google Patents

Current lead for superconducting apparatus

Info

Publication number
JPH04277683A
JPH04277683A JP3039851A JP3985191A JPH04277683A JP H04277683 A JPH04277683 A JP H04277683A JP 3039851 A JP3039851 A JP 3039851A JP 3985191 A JP3985191 A JP 3985191A JP H04277683 A JPH04277683 A JP H04277683A
Authority
JP
Japan
Prior art keywords
current
superconducting
lead
high temperature
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3039851A
Other languages
Japanese (ja)
Inventor
Shinichi Kimura
信一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3039851A priority Critical patent/JPH04277683A/en
Publication of JPH04277683A publication Critical patent/JPH04277683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a current lead which provides a small self-forming magnetic field and a large critical current by providing an arrangement of a plurality of high temperature superconducting material as the element to form a current lead in which the positive and negative sides are alternately laid in both vertical and horizontal directions. CONSTITUTION:A plurality of ceramic group high temperature conducting material 5 which show superconducting condition at a temperature higher than liquid nitrogen temperature are arranged so that the positive and negative sides are laid alternately in both vertical and lateral directions. Moreover, a terminal 6 in the side of superconductive coil is formed by a flexible flat mesh lead of copper and the superconducting coil 1 is connected with a high temperature superconducting material 5 by the soldering. Moreover, an intermediate connecting terminal 9 is formed by a flat mesh lead of copper and the high temperature superconducting material 5 and a lead 10 are connected by the soldering. Thereby, the current and magnetic field generated in the high temperature superconducting material are reversed in direction and a critical current does not become small, because a large magnetic field is not generated.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は液体ヘリウム容器内に収
容した液体ヘリウム中に浸漬された超電導コイルへ、常
温環境下におかれた励磁用電源から電流を供給するため
の電流リードの改良に関するものである。
[Field of Industrial Application] The present invention relates to an improvement in a current lead for supplying current from an excitation power supply placed at room temperature to a superconducting coil immersed in liquid helium contained in a liquid helium container. It is something.

【0002】0002

【従来の技術】液体ヘリウム容器内に収容した液体ヘリ
ウム中に浸漬冷却された超電導コイルへ、常温環境下に
おかれた励磁用電源から電流を供給するための手段とし
て電流リードが使用されている。超電導装置においては
、外部からの熱伝導、ふく射、および電流リードからの
侵入熱によって非常に高価な液体ヘリウム蒸発する。 このうち、通常の超電導装置においては、電流リードか
らの侵入熱が全体の大半を占める。そこで、液体窒素温
度以上で超電導状態を示す高温超電導材を用いて電流リ
ードを構成し、侵入熱を低減することが考えられている
[Prior Art] A current lead is used as a means for supplying current from an excitation power supply placed at room temperature to a superconducting coil that is immersed and cooled in liquid helium contained in a liquid helium container. . In superconducting devices, very expensive liquid helium evaporates due to external heat conduction, radiation, and heat intrusion from current leads. Of this, in a normal superconducting device, the heat that enters from the current leads accounts for most of the total heat. Therefore, it has been considered to construct the current lead using a high-temperature superconducting material that exhibits a superconducting state at a temperature higher than the temperature of liquid nitrogen to reduce the intrusion heat.

【0003】図3に高温超電導材を用いた電流リードを
適用した超電導装置の断面構成図を示す。この図におい
て、1は超電導線を巻回してなる超電導コイルであり、
この超電導コイル1はステンレス等からなる液体ヘリウ
ム容器2内に収容した液体ヘリウム3中に浸漬されてい
る。またこの液体ヘリウム容器2はステンレス等から成
る断熱真空容器4内に収容されている。5は液体窒素温
度以上で超電導状態を示すセラミック系の高温超電導材
で、その低温端を超電導コイル側端子6に接続されてい
る。また高温端は液体窒素7を収容した液体窒素容器8
内で中間接続端子9を介して銅よりなるリード10と接
続されている。常温端子11は常温環境下におかれた図
示しない励磁用電源に接続され超電導コイル1に励磁用
の電流を供給できるようになっている。
FIG. 3 shows a cross-sectional configuration diagram of a superconducting device to which a current lead using a high-temperature superconducting material is applied. In this figure, 1 is a superconducting coil made by winding a superconducting wire,
This superconducting coil 1 is immersed in liquid helium 3 contained in a liquid helium container 2 made of stainless steel or the like. The liquid helium container 2 is housed in an insulating vacuum container 4 made of stainless steel or the like. Reference numeral 5 denotes a ceramic-based high-temperature superconducting material that exhibits a superconducting state above the liquid nitrogen temperature, and its low-temperature end is connected to the superconducting coil side terminal 6. In addition, the high temperature end is a liquid nitrogen container 8 containing liquid nitrogen 7.
Inside, it is connected to a lead 10 made of copper via an intermediate connection terminal 9. The room-temperature terminal 11 is connected to an excitation power source (not shown) placed in a room-temperature environment so that an excitation current can be supplied to the superconducting coil 1 .

【0004】高温超電導材5は図4に示すようにプラス
、マイナスとも各々複数本からなっている。これは1本
がクエンチし超電導状態から常電導状態に転移しても他
の高温超電導材に転流し通電が可能なようにするためで
ある。
As shown in FIG. 4, the high temperature superconducting material 5 consists of a plurality of positive and negative wires. This is so that even if one conductor quenches and transitions from a superconducting state to a normal conductive state, it can be commutated to other high-temperature superconducting materials and energized.

【0005】以上のように構成した電流リードにおいて
は、高温超電導材5でのジュール発熱は無く、また高温
超電導材5はセラミック系であるため熱伝導率が銅等に
比べ非常に小さいことから、液体ヘリウム容器2への侵
入熱は極めて少なくなる。
In the current lead configured as described above, there is no Joule heat generation in the high temperature superconducting material 5, and since the high temperature superconducting material 5 is a ceramic material, its thermal conductivity is extremely low compared to copper or the like. The amount of heat entering the liquid helium container 2 is extremely small.

【0006】[0006]

【発明が解決しようとする課題】高温超電導材の臨界電
流は磁界の大きさに左右され、磁界が大きくなるとクエ
ンチし常電導状態に転移してしまう。そのため図4に示
すように高温超電導材の配置をプラス、マイナスを分け
て各々まとめる従来の方法では、電流が流れることによ
り発生する磁界が合成され大きくなり、臨界電流が小さ
くなってしまい電流リードとしての性能が低下する。本
発明の目的は高温超電導材に電流が流れることにより発
生する磁界が合成され大きくなることはない超電導装置
用電流リードを提供することである。[発明の構成]
[Problems to be Solved by the Invention] The critical current of a high-temperature superconducting material depends on the magnitude of the magnetic field, and when the magnetic field becomes large, it quenches and transitions to a normal conducting state. Therefore, as shown in Figure 4, in the conventional method of arranging high-temperature superconducting materials separately for positive and negative parts, the magnetic field generated by the flow of current is combined and becomes larger, and the critical current becomes smaller, resulting in a current lead that cannot be used as a current lead. performance deteriorates. An object of the present invention is to provide a current lead for a superconducting device in which the magnetic field generated by current flowing through a high-temperature superconducting material is not combined and becomes large. [Structure of the invention]


0007】
[
0007

【課題を解決するための手段】上記目的を達成するため
に本発明によれば、複数本の高温超電導材をプラス、マ
イナスとまとめず各々が交互に並ぶように配置する。
[Means for Solving the Problems] In order to achieve the above object, according to the present invention, a plurality of high-temperature superconducting materials are arranged so that they are arranged alternately instead of grouping them into positive and negative groups.

【0008】[0008]

【作用】このような超電導装置用電流リードでは、電流
が流れることにより発生する磁界の向きが各々逆になる
ため合成され大きくなるということはない。そのため磁
界により臨界電流が小さくなり電流リードとしての性能
が低下することはない。
[Operation] In such a current lead for a superconducting device, the directions of the magnetic fields generated by the flow of current are opposite to each other, so that they are not combined and become larger. Therefore, the critical current will not become small due to the magnetic field and the performance as a current lead will not deteriorate.

【0009】[0009]

【実施例】(実施例の構成)以下本発明の一実施例を図
1および図2をもとに説明する。5は複数本よりなる液
体窒素温度以上で超電導状態を示すセラミック系の高温
超電導材で、縦、横ともプラス、マイナスが交互に並ぶ
ように配置している。6は超電導コイル側端子でプラス
、マイナスが交互になった高温超電導材5と接続を容易
にするためフレキシブルな銅製の平編線より構成され、
超電導コイル1と高温超電導材5をハンダ付により接続
している。同じく9はフレキシブルな銅製の平編線より
構成された中間接続端子で高温超電導材5と銅よりなる
リード10をハンダ付により接続している。
Embodiment (Structure of Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Reference numeral 5 indicates a plurality of ceramic-based high-temperature superconducting materials that exhibit a superconducting state above the temperature of liquid nitrogen, and are arranged so that positive and negative wires are alternately lined up both vertically and horizontally. 6 is a terminal on the superconducting coil side, which is composed of a flexible copper plain braided wire to facilitate connection with the high-temperature superconducting material 5 with alternating positive and negative terminals.
A superconducting coil 1 and a high-temperature superconducting material 5 are connected by soldering. Similarly, reference numeral 9 denotes an intermediate connection terminal made of a flexible plain braided copper wire, which connects the high temperature superconducting material 5 and the lead 10 made of copper by soldering.

【0010】(実施例の作用)複数本よりなる高温超電
導材5の配置は、プラス、マイナスが縦、横とも交互に
並んでいるので相互に電流の流れる方向が逆となる。そ
のため電流が流れることにより発生する磁界の向きも相
互に逆となり合成されて大きな磁界となることはない。
(Function of the Embodiment) The high temperature superconducting material 5 consisting of a plurality of pieces is arranged such that positive and negative electrodes are arranged alternately both vertically and horizontally, so that the directions of current flow are opposite to each other. Therefore, the directions of the magnetic fields generated by the flow of current are also opposite to each other and are not combined to form a large magnetic field.

【0011】(実施例の効果)従って高温超電導材5は
大きな磁界を受けることはなく臨界電流が小さくならな
い。そのため電流リードとしての性能が低下するという
ことはなくなる。
(Effects of the Example) Therefore, the high temperature superconducting material 5 is not subjected to a large magnetic field and the critical current does not become small. Therefore, the performance as a current lead will not deteriorate.

【0012】0012

【発明の効果】以上説明したように本発明によれば、電
流リードの構成要素である複数本の高温超電導材の配置
をプラス、マイナスが縦、横とも交互に並ぶようにした
ため、相互の電流の向きが逆向きとなり、電流が流れる
ことにより発生する磁界の向きも逆となる。そのため磁
界が合成され大きくなるということはなく、高温超電導
材の臨界電流は小さくならない。よって電流リードとし
ての性能が低下するという問題は解決される。
Effects of the Invention As explained above, according to the present invention, the plurality of high-temperature superconducting materials constituting the current leads are arranged so that the plus and minus sides are arranged alternately both vertically and horizontally. The direction of the current is reversed, and the direction of the magnetic field generated by the current flow is also reversed. Therefore, the magnetic fields are not combined and become larger, and the critical current of the high-temperature superconducting material does not become smaller. Therefore, the problem of deterioration in performance as a current lead is solved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による電流リードを適用した超電導装置
の一実施例を示す断面構成図
[Fig. 1] A cross-sectional configuration diagram showing an embodiment of a superconducting device to which a current lead according to the present invention is applied.

【図2】図1のII−II線に沿う矢視断面図[Fig. 2] Cross-sectional view taken along the line II-II in Fig. 1

【図3】
従来の電流リードを適用した超電導装置を示す断面構成
[Figure 3]
Cross-sectional configuration diagram showing a superconducting device using conventional current leads

【図4】図3のIV−IV線に沿う矢視断面図[Fig. 4] Cross-sectional view taken along line IV-IV in Fig. 3

【符号の説明】[Explanation of symbols]

1…超電導コイル                 
   2…液体ヘリウム容器 3…液体ヘリウム                 
   4…断熱真空容器 5…高温超電導材                 
   6…超電導コイル端子 7…液体窒素                   
     8…液体窒素容器 9…中間接続端子                 
 10…リード11…常温端子
1...Superconducting coil
2...Liquid helium container 3...Liquid helium
4...Insulated vacuum container 5...High temperature superconducting material
6...Superconducting coil terminal 7...Liquid nitrogen
8...Liquid nitrogen container 9...Intermediate connection terminal
10...Lead 11...Normal temperature terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  液体ヘリウム容器内に収容した液体ヘ
リウム中に浸漬された超電導コイルへ常温環境下におか
れた励磁用電源から電流を供給する電流リードにおいて
、この電流リードを複数本の液体窒素温度以上で超電導
状態を示す高温超電導材から構成し、その配置をプラス
、マイナスが交互に並ぶようにしたことを特徴とする超
電導装置用電流リード。
Claim 1: In a current lead that supplies current from an excitation power supply placed in a room temperature environment to a superconducting coil immersed in liquid helium contained in a liquid helium container, this current lead is connected to a plurality of liquid nitrogen A current lead for a superconducting device, characterized in that it is made of a high-temperature superconducting material that exhibits a superconducting state above a temperature, and is arranged so that positive and negative leads are arranged alternately.
【請求項2】  高温超電導材はセラミック系のもので
あることを特徴とする請求項1記載の超電導装置用電流
リード。
2. The current lead for a superconducting device according to claim 1, wherein the high-temperature superconducting material is ceramic-based.
JP3039851A 1991-03-06 1991-03-06 Current lead for superconducting apparatus Pending JPH04277683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3039851A JPH04277683A (en) 1991-03-06 1991-03-06 Current lead for superconducting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3039851A JPH04277683A (en) 1991-03-06 1991-03-06 Current lead for superconducting apparatus

Publications (1)

Publication Number Publication Date
JPH04277683A true JPH04277683A (en) 1992-10-02

Family

ID=12564471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3039851A Pending JPH04277683A (en) 1991-03-06 1991-03-06 Current lead for superconducting apparatus

Country Status (1)

Country Link
JP (1) JPH04277683A (en)

Similar Documents

Publication Publication Date Title
US3619479A (en) Electrical conductor of electrically normal conducting metal and superconducting material
JPH11144938A (en) Current lead device and refrigerator-cooled superconducting magnet
US3593110A (en) Direct-current generator for superconducting circuits
JP2756551B2 (en) Conduction-cooled superconducting magnet device
JP4477859B2 (en) Permanent current switch, superconducting magnet, and magnetic resonance imaging apparatus
JP4599807B2 (en) Current leads for superconducting equipment
JPH04277683A (en) Current lead for superconducting apparatus
JP6818578B2 (en) Superconducting cable connection
JP4703545B2 (en) Superconducting devices and current leads
JPS63268204A (en) Superconducting magnet
JP3450318B2 (en) Thermoelectric cooling type power lead
JP3178119B2 (en) Gas-cooled current leads for superconducting coils
JPS621276B2 (en)
JPH0869719A (en) Current lead for superconducting device
JP3284656B2 (en) Current lead using oxide superconductor
JP3860070B2 (en) Thermoelectric cooling power lead
JPS63283003A (en) Superconducting coil device
JPS5916208A (en) Connected superconductive wire
JPH11297524A (en) Current lead for superconducting device
JP2883697B2 (en) Current lead for superconducting coil
JPH04369875A (en) Superconductive device current lead
JP4019014B2 (en) Thermoelectric cooling power lead
JP3218649B2 (en) Current leads for superconducting devices
JPH0468507A (en) Current lead for superconductive device
JPH05198434A (en) Superconductive current lead