JPH04369875A - Superconductive device current lead - Google Patents

Superconductive device current lead

Info

Publication number
JPH04369875A
JPH04369875A JP3146439A JP14643991A JPH04369875A JP H04369875 A JPH04369875 A JP H04369875A JP 3146439 A JP3146439 A JP 3146439A JP 14643991 A JP14643991 A JP 14643991A JP H04369875 A JPH04369875 A JP H04369875A
Authority
JP
Japan
Prior art keywords
lead
temperature side
temperature
side lead
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3146439A
Other languages
Japanese (ja)
Inventor
Shinichi Kimura
信一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3146439A priority Critical patent/JPH04369875A/en
Publication of JPH04369875A publication Critical patent/JPH04369875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To protect a current lead formed of high temperature superconductor against damage caused by thermal shrinkage difference between the component parts of a superconductive device and the current lead. CONSTITUTION:A current lead of this design is composed of a low temperature side lead 5 which is formed of high temperature superconductor that stays in a superconductive state at a temperature of liquid nitrogen and connected to a superconductive equipment 1 in a cryostat, an intermediate lead 7 formed of flexible, good conductor connected to the low temperature side lead 5, and a normal temperature side lead 8 connected to the intermediate lead 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は液体ヘリウム容器内に収
容した液体ヘリウム中に浸漬された超電導コイル等へ、
常温環境下におかれた電源から電流を供給するための電
流リードの改良に関するものである。
[Industrial Application Field] The present invention applies to superconducting coils etc. immersed in liquid helium contained in a liquid helium container.
This invention relates to an improvement in a current lead for supplying current from a power source placed in a normal temperature environment.

【0002】0002

【従来の技術】液体ヘリウム容器内に収容した液体ヘリ
ウム中に浸漬冷却された超電導コイルへ、常温環境下に
おかれた励磁用電源から電流を供給するための手段とし
て電流リードが使用されている。超電導装置においては
、外部からの熱伝導、ふく射、および電流リードからの
侵入熱によって非常に高価な液体ヘリウムが蒸発する。 このうち、通常の超電導装置においては、電流リードか
らの侵入熱が全体の大半を占める。
[Prior Art] A current lead is used as a means for supplying current from an excitation power supply placed at room temperature to a superconducting coil that is immersed and cooled in liquid helium contained in a liquid helium container. . In superconducting devices, very expensive liquid helium evaporates due to external heat conduction, radiation, and heat intrusion from current leads. Of this, in a normal superconducting device, the heat that enters from the current leads accounts for most of the total heat.

【0003】そこで液体窒素温度以上で超電導状態を示
す高温超電導体を用いて電流リードを構成し、侵入熱を
低減することが考えられている(特開昭63−2926
10号公報)。高温超電導体の高温端を液体窒素容器に
収容した液体窒素で80K付近に冷却し超電導状態とす
る。高温超電導体の高温端から常温までの銅等からなる
リードを用いる。高温超電導体は熱伝導率が小さいため
液体ヘリウム容器への侵入熱は小さく、電気抵抗が零で
あるため通電によるジュール発熱はない。従って高温超
電導体を使った電流リードは、液体ヘリウムの蒸発量低
減に大きな効果が期待できる。
[0003] Therefore, it has been considered to construct a current lead using a high-temperature superconductor that exhibits a superconducting state above the liquid nitrogen temperature to reduce the intrusion heat (Japanese Patent Laid-Open No. 63-2926).
Publication No. 10). The high-temperature end of the high-temperature superconductor is cooled to around 80 K using liquid nitrogen contained in a liquid nitrogen container to bring it into a superconducting state. A lead made of copper or the like is used from the high temperature end of the high temperature superconductor to room temperature. High-temperature superconductors have low thermal conductivity, so the amount of heat that enters the liquid helium container is small, and since the electrical resistance is zero, there is no Joule heat generation when energized. Therefore, current leads using high-temperature superconductors can be expected to be highly effective in reducing the amount of evaporation of liquid helium.

【0004】0004

【発明が解決しようとする課題】高温超電導体はセラミ
ック系のため超電導装置を構成するステンレス等からな
る液体ヘリウム容器、液体窒素容器、ガス配管および銅
等からなるリードと熱収縮差を生じる。セラミック系の
高温超電導体は機械的に脆いため、熱収縮差により破損
し通電できなくなる可能性がある。本発明の目的は熱収
縮差により高温超電導体が破損することのない超電導装
置用電流リードを提供することである。
[Problems to be Solved by the Invention] Since high-temperature superconductors are ceramic-based, they experience a difference in thermal contraction from liquid helium containers made of stainless steel, liquid nitrogen containers, gas piping, and leads made of copper, etc., which constitute the superconducting device. Ceramic high-temperature superconductors are mechanically fragile and may break due to differential thermal contraction, making it impossible to conduct electricity. An object of the present invention is to provide a current lead for a superconducting device in which a high temperature superconductor is not damaged due to differential thermal contraction.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の電流リードは液体窒素温度以上で超電導状態
を示す高温超電導体からなり極低温容器内の超電導機器
に接続された低温側リードと、この低温側リードに接続
された可撓性良導体からなる中間リードと、この中間リ
ードに接続された常温側リードとを備えた構成とする。
[Means for Solving the Problems] In order to achieve the above object, the current lead of the present invention is a low-temperature side lead that is made of a high-temperature superconductor that exhibits a superconducting state above the liquid nitrogen temperature and is connected to a superconducting device in a cryogenic container. , an intermediate lead made of a flexible good conductor connected to this low temperature side lead, and a normal temperature side lead connected to this intermediate lead.

【0006】[0006]

【作用】このような超電導装置用電流リードでは、中間
リードの可撓性によって冷却により生じる熱収縮差を吸
収できる。しかも、一般に良導性を有するものは熱伝導
率が高いため高温超電導体は効率良く冷却される。
[Operation] In such a current lead for a superconducting device, the flexibility of the intermediate lead can absorb the difference in thermal contraction caused by cooling. Moreover, since materials with good conductivity generally have high thermal conductivity, high-temperature superconductors are efficiently cooled.

【0007】[0007]

【実施例】【Example】

(実施例の構成) (Configuration of Example)

【0008】以下本発明の一実施例を図1をもとに説明
する。図1において1は超電導線を巻回してなる超電導
コイルであり、この超電導コイル1はステンレス等から
なる液体ヘリウム容器2内に収容した液体ヘリウム3中
に浸漬されている。またこの液体ヘリウム容器2は、ス
テンレス等からなる断熱真空容器4内に収容されている
。5は液体窒素温度以上で超電導状態を示すセラミック
系の高温超電導体からなる低温側リードで、その低温端
は超電導コイル端子6に接続され、高温端は銅等の平編
線からなる中間リード7に接続される。8は銅棒からな
る常温側リードで、その低温端は液体窒素9を収容した
液体窒素容器10を貫通し中間リード7に接続され、高
温端に常温端子11を設けている。この常温端子11は
図示しない常温環境下におかれた励磁用電源に接続され
る。12は高温超電導体5の外周に設けられたステンレ
ス等からなるガス流路管で、液体ヘリウム容器2内で蒸
発したヘリウムガス13の流路となる。図2は低温側リ
ード5と中間リード7と常温側リード8の接続部の詳細
を表わした図である。それぞれはハンダ付により接続さ
れる。 (実施例の作用)
An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, 1 is a superconducting coil formed by winding a superconducting wire, and this superconducting coil 1 is immersed in liquid helium 3 contained in a liquid helium container 2 made of stainless steel or the like. The liquid helium container 2 is housed in a heat insulating vacuum container 4 made of stainless steel or the like. 5 is a low-temperature side lead made of a ceramic-based high-temperature superconductor that exhibits a superconducting state above the liquid nitrogen temperature; its low-temperature end is connected to a superconducting coil terminal 6, and the high-temperature end is an intermediate lead 7 made of a plain braided wire of copper or the like. connected to. Reference numeral 8 denotes a normal temperature side lead made of a copper rod, the low temperature end of which passes through a liquid nitrogen container 10 containing liquid nitrogen 9 and is connected to the intermediate lead 7, and the high temperature end is provided with a normal temperature terminal 11. This room temperature terminal 11 is connected to an excitation power source (not shown) placed in a room temperature environment. Reference numeral 12 denotes a gas flow pipe made of stainless steel or the like provided around the outer periphery of the high temperature superconductor 5, and serves as a flow path for the helium gas 13 evaporated within the liquid helium container 2. FIG. 2 is a diagram showing details of the connecting portions of the low temperature side lead 5, the intermediate lead 7, and the normal temperature side lead 8. Each is connected by soldering. (Effect of Example)

【0009】ステンレス等からなる液体ヘリウム容器2
、液体窒素容器10、ガス流路管12および常温側リー
ド8と低温側リード5に生じる冷却による熱収縮差は、
中間リード7が可撓性を有しているため吸収される。ま
た、常温側リード8の低温端は液体窒素9を収容した液
体窒素容器10を貫通しているため液体窒素温度となる
。このため、この常温側リード8の低温端と中間リード
7を介して接続される低温側リード5の高温端は、中間
リード7が銅等からなる良導体のため一般に熱伝導率が
高いという特性から効率良く液体窒素温度に冷却され、
低温側リード5全体が超電導状態になる。 (実施例の効果)従って熱収縮差により機械的に脆い高
温超電導体からなる低温側リードが破損し通電できなく
なるということはない。 (他の実施例)中間リードとしては薄い銅板を重ね合せ
た導体を用いてもよい。また、可撓性良導体は低温側リ
ードの両端に接続してもよい。
Liquid helium container 2 made of stainless steel or the like
, the difference in thermal contraction caused by cooling between the liquid nitrogen container 10, the gas flow pipe 12, the room temperature side lead 8, and the low temperature side lead 5 is as follows.
This is absorbed because the intermediate lead 7 has flexibility. Furthermore, since the low temperature end of the normal temperature side lead 8 passes through the liquid nitrogen container 10 containing liquid nitrogen 9, it reaches the temperature of liquid nitrogen. Therefore, the low temperature end of the room temperature side lead 8 and the high temperature end of the low temperature side lead 5 which are connected via the intermediate lead 7 are connected because the intermediate lead 7 is made of copper or the like and is a good conductor, which generally has a high thermal conductivity. Efficiently cooled to liquid nitrogen temperature,
The entire low temperature side lead 5 becomes superconducting. (Effects of the Embodiment) Therefore, there is no possibility that the low-temperature side lead made of a mechanically fragile high-temperature superconductor is damaged due to the difference in thermal shrinkage and becomes unable to conduct electricity. (Other Embodiments) A conductor made of stacked thin copper plates may be used as the intermediate lead. Further, the flexible good conductor may be connected to both ends of the low temperature side lead.

【0010】0010

【発明の効果】以上説明したように本発明によれば、高
温超電導体からなる低温側リードに可撓性を有し、かつ
良導性の中間リードを接続したので冷却により生じる熱
収縮差を吸収でき、低温側リードが破損することがなく
なる。しかも効率良く低温側リードを冷却することがで
きる。
As explained above, according to the present invention, a flexible and highly conductive intermediate lead is connected to the low-temperature lead made of a high-temperature superconductor, so that the difference in thermal contraction caused by cooling can be reduced. It can be absorbed and the low temperature side lead will not be damaged. Moreover, the low temperature side lead can be efficiently cooled.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の超電導装置用電流リードの
縦断面図。
FIG. 1 is a longitudinal sectional view of a current lead for a superconducting device according to an embodiment of the present invention.

【図2】図1の要部を示す詳細図。FIG. 2 is a detailed diagram showing the main parts of FIG. 1;

【符号の説明】[Explanation of symbols]

1…超電導コイル                 
   2…液体ヘリウム容器 3…液体ヘリウム                 
   4…断熱真空容器 5…低温側リード                 
   6…超電導コイル端子 7…中間リード                  
    8…常温側リード 9…液体窒素                   
     10…液体窒素容器 11…常温端子                  
    12…ガス流路管 13…ヘリウムガス
1...Superconducting coil
2...Liquid helium container 3...Liquid helium
4...Insulated vacuum container 5...Low temperature side lead
6...Superconducting coil terminal 7...Intermediate lead
8...Normal temperature side lead 9...Liquid nitrogen
10...Liquid nitrogen container 11...Normal temperature terminal
12...Gas flow pipe 13...Helium gas

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  極低温容器内に収納した超電導機器へ
常温環境下におかれた電源から電流を供給する電流リー
ドにおいて、液体窒素温度以上で超電導状態を示す高温
超電導体からなり前記超電導機器に接続された低温側リ
ードと、この低温側リードに接続された可撓性良導体か
らなる中間リードと、この中間リードに接続された常温
側リードとを備えたことを特徴とする超電導装置用電流
リード。
Claim 1: A current lead for supplying current from a power source placed in a normal temperature environment to a superconducting device housed in a cryogenic container, which is made of a high-temperature superconductor that exhibits a superconducting state at a temperature higher than liquid nitrogen temperature. A current lead for a superconducting device, comprising a low temperature side lead connected to the low temperature side lead, an intermediate lead made of a flexible good conductor connected to the low temperature side lead, and a normal temperature side lead connected to the intermediate lead. .
JP3146439A 1991-06-19 1991-06-19 Superconductive device current lead Pending JPH04369875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3146439A JPH04369875A (en) 1991-06-19 1991-06-19 Superconductive device current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3146439A JPH04369875A (en) 1991-06-19 1991-06-19 Superconductive device current lead

Publications (1)

Publication Number Publication Date
JPH04369875A true JPH04369875A (en) 1992-12-22

Family

ID=15407691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3146439A Pending JPH04369875A (en) 1991-06-19 1991-06-19 Superconductive device current lead

Country Status (1)

Country Link
JP (1) JPH04369875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342672B1 (en) 1994-02-14 2002-01-29 Canon Kabushiki Kaisha Superconducting lead with recoverable and nonrecoverable insulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342672B1 (en) 1994-02-14 2002-01-29 Canon Kabushiki Kaisha Superconducting lead with recoverable and nonrecoverable insulation

Similar Documents

Publication Publication Date Title
US5774032A (en) Cooling arrangement for a superconducting coil
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
US5093645A (en) Superconductive switch for conduction cooled superconductive magnet
US4486800A (en) Thermal method for making a fast transition of a superconducting winding from the superconducting into the normal-conducting state, and apparatus for carrying out the method
JP5266852B2 (en) Superconducting current lead
JP4599807B2 (en) Current leads for superconducting equipment
JP3569997B2 (en) Current leads for superconducting devices
JP2015500563A (en) Technology to protect superconducting members
JPH04369875A (en) Superconductive device current lead
JP4703545B2 (en) Superconducting devices and current leads
JP3450318B2 (en) Thermoelectric cooling type power lead
JP2004111581A (en) Superconducting magnet unit
JPH0869719A (en) Current lead for superconducting device
KR100572363B1 (en) DC reactor with thermal link
JPH10247532A (en) Current lead for superconductive device
JPS63292610A (en) Current supply lead for superconducting device
JPH0955545A (en) Current lead for superconductive apparatus
JPH11297524A (en) Current lead for superconducting device
JP2006269184A (en) Lead for superconducting current
JP3766448B2 (en) Superconducting current lead
JP3127705B2 (en) Current lead using oxide superconductor
JPH02256206A (en) Superconducting power lead
JPH04357803A (en) Current lead superconducting device
JP2001119078A (en) Superconducting current lead
JPH03283678A (en) Current lead of superconducting magnet apparatus