JPH04369875A - Superconductive device current lead - Google Patents
Superconductive device current leadInfo
- Publication number
- JPH04369875A JPH04369875A JP3146439A JP14643991A JPH04369875A JP H04369875 A JPH04369875 A JP H04369875A JP 3146439 A JP3146439 A JP 3146439A JP 14643991 A JP14643991 A JP 14643991A JP H04369875 A JPH04369875 A JP H04369875A
- Authority
- JP
- Japan
- Prior art keywords
- lead
- temperature side
- temperature
- side lead
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000007788 liquid Substances 0.000 claims abstract description 32
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 17
- 239000002887 superconductor Substances 0.000 claims abstract description 17
- 239000004020 conductor Substances 0.000 claims abstract description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 16
- 239000001307 helium Substances 0.000 description 15
- 229910052734 helium Inorganic materials 0.000 description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 230000008602 contraction Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- SWQJXJOGLNCZEY-BJUDXGSMSA-N helium-3 atom Chemical compound [3He] SWQJXJOGLNCZEY-BJUDXGSMSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は液体ヘリウム容器内に収
容した液体ヘリウム中に浸漬された超電導コイル等へ、
常温環境下におかれた電源から電流を供給するための電
流リードの改良に関するものである。[Industrial Application Field] The present invention applies to superconducting coils etc. immersed in liquid helium contained in a liquid helium container.
This invention relates to an improvement in a current lead for supplying current from a power source placed in a normal temperature environment.
【0002】0002
【従来の技術】液体ヘリウム容器内に収容した液体ヘリ
ウム中に浸漬冷却された超電導コイルへ、常温環境下に
おかれた励磁用電源から電流を供給するための手段とし
て電流リードが使用されている。超電導装置においては
、外部からの熱伝導、ふく射、および電流リードからの
侵入熱によって非常に高価な液体ヘリウムが蒸発する。
このうち、通常の超電導装置においては、電流リードか
らの侵入熱が全体の大半を占める。[Prior Art] A current lead is used as a means for supplying current from an excitation power supply placed at room temperature to a superconducting coil that is immersed and cooled in liquid helium contained in a liquid helium container. . In superconducting devices, very expensive liquid helium evaporates due to external heat conduction, radiation, and heat intrusion from current leads. Of this, in a normal superconducting device, the heat that enters from the current leads accounts for most of the total heat.
【0003】そこで液体窒素温度以上で超電導状態を示
す高温超電導体を用いて電流リードを構成し、侵入熱を
低減することが考えられている(特開昭63−2926
10号公報)。高温超電導体の高温端を液体窒素容器に
収容した液体窒素で80K付近に冷却し超電導状態とす
る。高温超電導体の高温端から常温までの銅等からなる
リードを用いる。高温超電導体は熱伝導率が小さいため
液体ヘリウム容器への侵入熱は小さく、電気抵抗が零で
あるため通電によるジュール発熱はない。従って高温超
電導体を使った電流リードは、液体ヘリウムの蒸発量低
減に大きな効果が期待できる。[0003] Therefore, it has been considered to construct a current lead using a high-temperature superconductor that exhibits a superconducting state above the liquid nitrogen temperature to reduce the intrusion heat (Japanese Patent Laid-Open No. 63-2926).
Publication No. 10). The high-temperature end of the high-temperature superconductor is cooled to around 80 K using liquid nitrogen contained in a liquid nitrogen container to bring it into a superconducting state. A lead made of copper or the like is used from the high temperature end of the high temperature superconductor to room temperature. High-temperature superconductors have low thermal conductivity, so the amount of heat that enters the liquid helium container is small, and since the electrical resistance is zero, there is no Joule heat generation when energized. Therefore, current leads using high-temperature superconductors can be expected to be highly effective in reducing the amount of evaporation of liquid helium.
【0004】0004
【発明が解決しようとする課題】高温超電導体はセラミ
ック系のため超電導装置を構成するステンレス等からな
る液体ヘリウム容器、液体窒素容器、ガス配管および銅
等からなるリードと熱収縮差を生じる。セラミック系の
高温超電導体は機械的に脆いため、熱収縮差により破損
し通電できなくなる可能性がある。本発明の目的は熱収
縮差により高温超電導体が破損することのない超電導装
置用電流リードを提供することである。[Problems to be Solved by the Invention] Since high-temperature superconductors are ceramic-based, they experience a difference in thermal contraction from liquid helium containers made of stainless steel, liquid nitrogen containers, gas piping, and leads made of copper, etc., which constitute the superconducting device. Ceramic high-temperature superconductors are mechanically fragile and may break due to differential thermal contraction, making it impossible to conduct electricity. An object of the present invention is to provide a current lead for a superconducting device in which a high temperature superconductor is not damaged due to differential thermal contraction.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に本発明の電流リードは液体窒素温度以上で超電導状態
を示す高温超電導体からなり極低温容器内の超電導機器
に接続された低温側リードと、この低温側リードに接続
された可撓性良導体からなる中間リードと、この中間リ
ードに接続された常温側リードとを備えた構成とする。[Means for Solving the Problems] In order to achieve the above object, the current lead of the present invention is a low-temperature side lead that is made of a high-temperature superconductor that exhibits a superconducting state above the liquid nitrogen temperature and is connected to a superconducting device in a cryogenic container. , an intermediate lead made of a flexible good conductor connected to this low temperature side lead, and a normal temperature side lead connected to this intermediate lead.
【0006】[0006]
【作用】このような超電導装置用電流リードでは、中間
リードの可撓性によって冷却により生じる熱収縮差を吸
収できる。しかも、一般に良導性を有するものは熱伝導
率が高いため高温超電導体は効率良く冷却される。[Operation] In such a current lead for a superconducting device, the flexibility of the intermediate lead can absorb the difference in thermal contraction caused by cooling. Moreover, since materials with good conductivity generally have high thermal conductivity, high-temperature superconductors are efficiently cooled.
【0007】[0007]
(実施例の構成) (Configuration of Example)
【0008】以下本発明の一実施例を図1をもとに説明
する。図1において1は超電導線を巻回してなる超電導
コイルであり、この超電導コイル1はステンレス等から
なる液体ヘリウム容器2内に収容した液体ヘリウム3中
に浸漬されている。またこの液体ヘリウム容器2は、ス
テンレス等からなる断熱真空容器4内に収容されている
。5は液体窒素温度以上で超電導状態を示すセラミック
系の高温超電導体からなる低温側リードで、その低温端
は超電導コイル端子6に接続され、高温端は銅等の平編
線からなる中間リード7に接続される。8は銅棒からな
る常温側リードで、その低温端は液体窒素9を収容した
液体窒素容器10を貫通し中間リード7に接続され、高
温端に常温端子11を設けている。この常温端子11は
図示しない常温環境下におかれた励磁用電源に接続され
る。12は高温超電導体5の外周に設けられたステンレ
ス等からなるガス流路管で、液体ヘリウム容器2内で蒸
発したヘリウムガス13の流路となる。図2は低温側リ
ード5と中間リード7と常温側リード8の接続部の詳細
を表わした図である。それぞれはハンダ付により接続さ
れる。
(実施例の作用)An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, 1 is a superconducting coil formed by winding a superconducting wire, and this superconducting coil 1 is immersed in liquid helium 3 contained in a liquid helium container 2 made of stainless steel or the like. The liquid helium container 2 is housed in a heat insulating vacuum container 4 made of stainless steel or the like. 5 is a low-temperature side lead made of a ceramic-based high-temperature superconductor that exhibits a superconducting state above the liquid nitrogen temperature; its low-temperature end is connected to a superconducting coil terminal 6, and the high-temperature end is an intermediate lead 7 made of a plain braided wire of copper or the like. connected to. Reference numeral 8 denotes a normal temperature side lead made of a copper rod, the low temperature end of which passes through a liquid nitrogen container 10 containing liquid nitrogen 9 and is connected to the intermediate lead 7, and the high temperature end is provided with a normal temperature terminal 11. This room temperature terminal 11 is connected to an excitation power source (not shown) placed in a room temperature environment. Reference numeral 12 denotes a gas flow pipe made of stainless steel or the like provided around the outer periphery of the high temperature superconductor 5, and serves as a flow path for the helium gas 13 evaporated within the liquid helium container 2. FIG. 2 is a diagram showing details of the connecting portions of the low temperature side lead 5, the intermediate lead 7, and the normal temperature side lead 8. Each is connected by soldering. (Effect of Example)
【0009】ステンレス等からなる液体ヘリウム容器2
、液体窒素容器10、ガス流路管12および常温側リー
ド8と低温側リード5に生じる冷却による熱収縮差は、
中間リード7が可撓性を有しているため吸収される。ま
た、常温側リード8の低温端は液体窒素9を収容した液
体窒素容器10を貫通しているため液体窒素温度となる
。このため、この常温側リード8の低温端と中間リード
7を介して接続される低温側リード5の高温端は、中間
リード7が銅等からなる良導体のため一般に熱伝導率が
高いという特性から効率良く液体窒素温度に冷却され、
低温側リード5全体が超電導状態になる。
(実施例の効果)従って熱収縮差により機械的に脆い高
温超電導体からなる低温側リードが破損し通電できなく
なるということはない。
(他の実施例)中間リードとしては薄い銅板を重ね合せ
た導体を用いてもよい。また、可撓性良導体は低温側リ
ードの両端に接続してもよい。Liquid helium container 2 made of stainless steel or the like
, the difference in thermal contraction caused by cooling between the liquid nitrogen container 10, the gas flow pipe 12, the room temperature side lead 8, and the low temperature side lead 5 is as follows.
This is absorbed because the intermediate lead 7 has flexibility. Furthermore, since the low temperature end of the normal temperature side lead 8 passes through the liquid nitrogen container 10 containing liquid nitrogen 9, it reaches the temperature of liquid nitrogen. Therefore, the low temperature end of the room temperature side lead 8 and the high temperature end of the low temperature side lead 5 which are connected via the intermediate lead 7 are connected because the intermediate lead 7 is made of copper or the like and is a good conductor, which generally has a high thermal conductivity. Efficiently cooled to liquid nitrogen temperature,
The entire low temperature side lead 5 becomes superconducting. (Effects of the Embodiment) Therefore, there is no possibility that the low-temperature side lead made of a mechanically fragile high-temperature superconductor is damaged due to the difference in thermal shrinkage and becomes unable to conduct electricity. (Other Embodiments) A conductor made of stacked thin copper plates may be used as the intermediate lead. Further, the flexible good conductor may be connected to both ends of the low temperature side lead.
【0010】0010
【発明の効果】以上説明したように本発明によれば、高
温超電導体からなる低温側リードに可撓性を有し、かつ
良導性の中間リードを接続したので冷却により生じる熱
収縮差を吸収でき、低温側リードが破損することがなく
なる。しかも効率良く低温側リードを冷却することがで
きる。As explained above, according to the present invention, a flexible and highly conductive intermediate lead is connected to the low-temperature lead made of a high-temperature superconductor, so that the difference in thermal contraction caused by cooling can be reduced. It can be absorbed and the low temperature side lead will not be damaged. Moreover, the low temperature side lead can be efficiently cooled.
【図1】本発明の一実施例の超電導装置用電流リードの
縦断面図。FIG. 1 is a longitudinal sectional view of a current lead for a superconducting device according to an embodiment of the present invention.
【図2】図1の要部を示す詳細図。FIG. 2 is a detailed diagram showing the main parts of FIG. 1;
1…超電導コイル
2…液体ヘリウム容器
3…液体ヘリウム
4…断熱真空容器
5…低温側リード
6…超電導コイル端子
7…中間リード
8…常温側リード
9…液体窒素
10…液体窒素容器
11…常温端子
12…ガス流路管
13…ヘリウムガス1...Superconducting coil
2...Liquid helium container 3...Liquid helium
4...Insulated vacuum container 5...Low temperature side lead
6...Superconducting coil terminal 7...Intermediate lead
8...Normal temperature side lead 9...Liquid nitrogen
10...Liquid nitrogen container 11...Normal temperature terminal
12...Gas flow pipe 13...Helium gas
Claims (1)
常温環境下におかれた電源から電流を供給する電流リー
ドにおいて、液体窒素温度以上で超電導状態を示す高温
超電導体からなり前記超電導機器に接続された低温側リ
ードと、この低温側リードに接続された可撓性良導体か
らなる中間リードと、この中間リードに接続された常温
側リードとを備えたことを特徴とする超電導装置用電流
リード。Claim 1: A current lead for supplying current from a power source placed in a normal temperature environment to a superconducting device housed in a cryogenic container, which is made of a high-temperature superconductor that exhibits a superconducting state at a temperature higher than liquid nitrogen temperature. A current lead for a superconducting device, comprising a low temperature side lead connected to the low temperature side lead, an intermediate lead made of a flexible good conductor connected to the low temperature side lead, and a normal temperature side lead connected to the intermediate lead. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3146439A JPH04369875A (en) | 1991-06-19 | 1991-06-19 | Superconductive device current lead |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3146439A JPH04369875A (en) | 1991-06-19 | 1991-06-19 | Superconductive device current lead |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04369875A true JPH04369875A (en) | 1992-12-22 |
Family
ID=15407691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3146439A Pending JPH04369875A (en) | 1991-06-19 | 1991-06-19 | Superconductive device current lead |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04369875A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6342672B1 (en) | 1994-02-14 | 2002-01-29 | Canon Kabushiki Kaisha | Superconducting lead with recoverable and nonrecoverable insulation |
-
1991
- 1991-06-19 JP JP3146439A patent/JPH04369875A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6342672B1 (en) | 1994-02-14 | 2002-01-29 | Canon Kabushiki Kaisha | Superconducting lead with recoverable and nonrecoverable insulation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5774032A (en) | Cooling arrangement for a superconducting coil | |
EP0596249B1 (en) | Compact superconducting magnet system free from liquid helium | |
US5093645A (en) | Superconductive switch for conduction cooled superconductive magnet | |
US4486800A (en) | Thermal method for making a fast transition of a superconducting winding from the superconducting into the normal-conducting state, and apparatus for carrying out the method | |
JP5266852B2 (en) | Superconducting current lead | |
JP4599807B2 (en) | Current leads for superconducting equipment | |
JP3569997B2 (en) | Current leads for superconducting devices | |
JP2015500563A (en) | Technology to protect superconducting members | |
JPH04369875A (en) | Superconductive device current lead | |
JP4703545B2 (en) | Superconducting devices and current leads | |
JP3450318B2 (en) | Thermoelectric cooling type power lead | |
JP2004111581A (en) | Superconducting magnet unit | |
JPH0869719A (en) | Current lead for superconducting device | |
KR100572363B1 (en) | DC reactor with thermal link | |
JPH10247532A (en) | Current lead for superconductive device | |
JPS63292610A (en) | Current supply lead for superconducting device | |
JPH0955545A (en) | Current lead for superconductive apparatus | |
JPH11297524A (en) | Current lead for superconducting device | |
JP2006269184A (en) | Lead for superconducting current | |
JP3766448B2 (en) | Superconducting current lead | |
JP3127705B2 (en) | Current lead using oxide superconductor | |
JPH02256206A (en) | Superconducting power lead | |
JPH04357803A (en) | Current lead superconducting device | |
JP2001119078A (en) | Superconducting current lead | |
JPH03283678A (en) | Current lead of superconducting magnet apparatus |