JPH04357803A - Current lead superconducting device - Google Patents

Current lead superconducting device

Info

Publication number
JPH04357803A
JPH04357803A JP13157091A JP13157091A JPH04357803A JP H04357803 A JPH04357803 A JP H04357803A JP 13157091 A JP13157091 A JP 13157091A JP 13157091 A JP13157091 A JP 13157091A JP H04357803 A JPH04357803 A JP H04357803A
Authority
JP
Japan
Prior art keywords
magnetic field
current lead
superconducting
superconducting coil
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13157091A
Other languages
Japanese (ja)
Inventor
Shinichi Kimura
信一 木村
Hiroyuki Takigami
瀧上 浩幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13157091A priority Critical patent/JPH04357803A/en
Publication of JPH04357803A publication Critical patent/JPH04357803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To realize a current lead for a superconducting device whose drop of critical current caused by a magnetic field generated by a superconducting coil is suppressed as low as possible. CONSTITUTION:As for a current lead by which current is applied from an energizing power source in cold environment to a superconducting coil 1 immersed in a liquid helium 3 held in a liquid helium container 2, that current lead is constituted by a high temperature superconductor 5 which shows superconducting state at the temperature higher than that of liquid nitrogen, and an axis c which is one of the crystal axes of the high temperature superconductor 5 is allocated in the direction vertical to that of the magnetic field generated by the superconducting coil.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は液体ヘリウム容器内に収
容した液体ヘリウム中に浸漬された超電導コイルへ、常
温環境下におかれた励磁用電源から電流を供給するため
の電流リードの改良に関する。
[Field of Industrial Application] The present invention relates to an improvement in a current lead for supplying current from an excitation power supply placed at room temperature to a superconducting coil immersed in liquid helium contained in a liquid helium container. .

【0003】0003

【従来の技術】液体ヘリウム容器内に収容した液体ヘリ
ウム中に浸漬冷却された超電導コイルへ常温環境下にお
かれた励磁用電源から電流を供給するための手段として
電流リードが使用されている。超電導装置においては、
外部からの熱伝導、ふく射、および電流リードからの侵
入熱によって非常に高価な液体ヘリウムが蒸発する。こ
のうち、通常の超電導装置においては、電流リードから
の侵入熱が全体の大半を占める。
2. Description of the Related Art A current lead is used as a means for supplying current from an excitation power supply placed in a room temperature environment to a superconducting coil cooled by immersion in liquid helium contained in a liquid helium container. In superconducting equipment,
External heat conduction, radiation, and heat intrusion from the current leads causes the very expensive liquid helium to evaporate. Of this, in a normal superconducting device, the heat that enters from the current leads accounts for most of the total heat.

【0004】そこで液体窒素温度以上で超電導状態を示
す高温超電導体を用いて電流リードを構成し、侵入熱を
低減することが考えられている(特開昭63−2926
10号公報参照)。例えばセラミックス高温超電導体の
高温端を液体窒素容器に収容した液体窒素で80K付近
に冷却し超電導状態とする。高温超電導体の高温端から
常温までは銅等から成るリードを用いる。高温超電導体
は熱伝導率が小さいため液体ヘリウム容器への侵入熱は
小さく、電気抵抗が零であるため通電によるジュール発
熱はない。従って高温超電導体を使った電流リードは、
液体ヘリウムの蒸発量低減に大きな効果がある。
[0004] Therefore, it has been considered to construct a current lead using a high-temperature superconductor that exhibits a superconducting state above the liquid nitrogen temperature to reduce the intrusion heat (Japanese Patent Laid-Open No. 63-2926).
(See Publication No. 10). For example, the high-temperature end of a ceramic high-temperature superconductor is cooled to around 80 K with liquid nitrogen contained in a liquid nitrogen container to bring it into a superconducting state. Leads made of copper or the like are used from the high temperature end of the high temperature superconductor to room temperature. High-temperature superconductors have low thermal conductivity, so the amount of heat that enters the liquid helium container is small, and since the electrical resistance is zero, there is no Joule heat generation when energized. Therefore, current leads using high temperature superconductors are
It has a great effect on reducing the amount of evaporation of liquid helium.

【0005】[0005]

【発明が解決しようとする課題】セラミックス系の高温
超電導体は大きな磁場依存性があり、超電導コイルが作
る磁場の方向によっては臨界電流が大きく低下する。ま
た、超電導コイルが作る磁場は空間的にその方向と強さ
が変化しているため、長い高温超電導体においては全体
に同一方向の磁場が印加されていない。このため、長い
高温超電導体の内部において、磁場の方向が臨界電流の
低下する方向に向く部分が存在するようになる。
[Problems to be Solved by the Invention] Ceramic high-temperature superconductors have a strong magnetic field dependence, and the critical current decreases significantly depending on the direction of the magnetic field created by the superconducting coil. Furthermore, since the magnetic field created by a superconducting coil spatially changes in direction and strength, a magnetic field in the same direction is not applied throughout a long high-temperature superconductor. Therefore, inside a long high-temperature superconductor, there is a portion where the direction of the magnetic field is oriented in the direction in which the critical current decreases.

【0006】本発明の目的は超電導コイルが作る磁場に
より臨界電流が低下することを極力抑えた超電導装置用
電流リードを提供することにある。
An object of the present invention is to provide a current lead for a superconducting device in which a decrease in critical current due to the magnetic field produced by a superconducting coil is suppressed as much as possible.

【0007】[発明の構成][Configuration of the invention]

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明によれば、高温超電導の結晶軸の一つであるc
軸を超電導コイルが作る磁場の向きと直角に配置する。
[Means for Solving the Problems] In order to achieve the above object, according to the present invention, c is one of the crystal axes of high temperature superconductivity.
The axis is placed perpendicular to the direction of the magnetic field created by the superconducting coil.

【0009】尚、高温超電導体の長さが長い場合は、高
温超電導を短かく分割し、銅製リードを介して直列に並
べ、それぞれの高温超電導体の結晶軸の一つであるc軸
を超電導コイルが作る磁場の向きと直角に配置し、かつ
結晶軸の他の一つであるa軸と超電導コイルが作る磁場
の向きが45°以内になるように配置するのがよい。
If the length of the high-temperature superconductor is long, divide the high-temperature superconductor into short pieces and arrange them in series via copper leads, so that the c-axis, which is one of the crystal axes of each high-temperature superconductor, is aligned with the superconductor. It is preferable to arrange the superconducting coil at right angles to the direction of the magnetic field created by the coil, and to arrange the superconducting coil so that the direction of the magnetic field created by the superconducting coil is within 45° from the a-axis, which is another one of the crystal axes.

【0010】0010

【作用】高温超電導体は結晶構造を有しておりa軸、b
軸、c軸という結晶軸がある。このc軸に平行に磁場を
印加した場合に臨界電流が大きく低下する。本構成によ
る超電導装置用電流リードでは、c軸が磁場の向きと直
角のため大きく臨界電流が低下することはない。
[Operation] High-temperature superconductors have a crystal structure with a-axis, b-axis
There are crystal axes called axis and c axis. When a magnetic field is applied parallel to this c-axis, the critical current decreases significantly. In the current lead for a superconducting device with this configuration, the c-axis is perpendicular to the direction of the magnetic field, so the critical current does not decrease significantly.

【0011】そして、上記尚書きした手段によれば高温
超電導体は、結晶軸であるa軸、b軸、c軸の各方向に
それぞれ磁場を印加した場合、臨界電流に大きな異方性
が存在する。臨界電流の磁場方向に対する低下の度合は
、a軸方向に磁場を印加した場合が最も小さく、c軸方
向の場合が最も大きい。
According to the above-mentioned means, when a magnetic field is applied in each direction of the a-axis, b-axis, and c-axis, which are the crystal axes, in a high-temperature superconductor, there is a large anisotropy in the critical current. do. The degree of decrease in the critical current with respect to the magnetic field direction is smallest when the magnetic field is applied in the a-axis direction, and largest when the magnetic field is applied in the c-axis direction.

【0012】一般的に超電導コイルが作る磁場はその方
向が空間的に均一でないため、長い高温超電体では全体
に同一方向の磁場が印加できない。本構成による超電導
装置用電流リードでは高温超電導体を短かく分割するこ
とにより、それぞれの高温超電導体にはほぼ均一方向の
磁場が印加されるようになるとともに、c軸が磁場の方
向と直角で、かつa軸が磁場の方向とほぼ平行であるた
め、大きく臨界電流が低下することはない。
Generally, the magnetic field generated by a superconducting coil is not spatially uniform in direction, so a magnetic field in the same direction cannot be applied to the entire long high-temperature superelectric body. In the current lead for a superconducting device with this configuration, by dividing the high-temperature superconductor into short pieces, a magnetic field is applied to each high-temperature superconductor in an almost uniform direction, and the c-axis is perpendicular to the direction of the magnetic field. , and since the a-axis is substantially parallel to the direction of the magnetic field, the critical current does not decrease significantly.

【0013】[0013]

【実施例】【Example】

(実施例1)以下本発明の第1の実施例について、図1
および図2を参照して説明する。(1)は超電導線を巻
回してなる超電導コイルであり、この超電導コイル(1
)はステンレス鋼等からなる液体ヘリウム容器(2)内
に収容した液体ヘリウム(3)中に浸漬されている。ま
たこの液体ヘリウム容器(2)は、ステンレス鋼等から
なる断熱真空容器(4)内に収容されている。 (5)は液体窒素温度以上で超電導状態を示すセラミッ
クス系の高温超電導体で、短かく数個に分割され、それ
ぞれ鋼等からなる短リード(13)によって直列に接続
されている。数個の高温超電導体(5)と短リード(1
3)で構成された電流リードの低温端は超電導コイル端
子(6)に接続され、高温端は液体窒素(7)を収容し
た液体窒素容器(8)を貫通し、銅等からなるリード(
9)に接続される。リード(9)の高温端には常温端子
(10)を設けている。この常温端子(10)は図示し
ない常温環境下におかれた励磁用電源に接続される。 (11)は数個の高温超電導体(5)と短リード(13
)で構成された電流リードの外周に設けられたステンレ
ス鋼等からなるガス流路管で、液体ヘリウム容器(2)
内で蒸発したヘリウムガス(12)の流路となる。図2
は超電導コイル(1)と数個の高温超電導体(5)と短
リード(13)から構成される電流リードを示した斜視
説明図である。短かく分割した高温超電導体(5)を、
それぞれ位置する場所での超電導コイル(1)が作る磁
場の向きに対して、結晶軸の一つであるc軸を直角にそ
してもう一つの結晶軸であるa軸を磁場方向と45°以
内になるように配置する。
(Example 1) Below, regarding the first example of the present invention, FIG.
This will be explained with reference to FIG. (1) is a superconducting coil made by winding superconducting wire;
) is immersed in liquid helium (3) contained in a liquid helium container (2) made of stainless steel or the like. Further, this liquid helium container (2) is housed in an insulated vacuum container (4) made of stainless steel or the like. (5) is a ceramic-based high-temperature superconductor that exhibits a superconducting state above the liquid nitrogen temperature, and is divided into several short pieces, each of which is connected in series by a short lead (13) made of steel or the like. Several high temperature superconductors (5) and short leads (1
The low-temperature end of the current lead composed of 3) is connected to the superconducting coil terminal (6), and the high-temperature end passes through a liquid nitrogen container (8) containing liquid nitrogen (7), and the current lead made of copper or the like (
9). A normal temperature terminal (10) is provided at the high temperature end of the lead (9). This room temperature terminal (10) is connected to an excitation power source (not shown) placed in a room temperature environment. (11) consists of several high temperature superconductors (5) and short leads (13
) is a gas flow pipe made of stainless steel or the like that is installed around the outer periphery of the current lead, and is connected to a liquid helium container (2).
This becomes a flow path for the helium gas (12) evaporated inside. Figure 2
is a perspective explanatory view showing a current lead composed of a superconducting coil (1), several high temperature superconductors (5), and short leads (13). High temperature superconductor (5) divided into short pieces,
The c-axis, which is one of the crystal axes, is perpendicular to the direction of the magnetic field created by the superconducting coil (1) at each location, and the a-axis, which is the other crystal axis, is within 45 degrees to the direction of the magnetic field. Arrange it so that

【0014】(実施例1の作用)高温超電導体(5)の
臨界電流は印加される磁場の方向により大きく変化する
。例えば結晶引き上げ法により製作したBi系の高温超
電導体ではa軸方向に対して磁場を印加した場合の方が
、c軸方向に印加した場合より10倍以上の臨界電流を
示す。本実施例1では高温超電導体(5)を短かく分割
することにより、それぞれの高温超電体(5)には超電
導コイル(1)が作る磁場がほぼ均一方向に印加される
ようになるために、c軸が磁場の方向と直角で、かつa
軸が磁場の方向とほぼ平行(45°以内)になるように
配置できるため臨界電流の低下の度合いが小さい。
(Operation of Example 1) The critical current of the high temperature superconductor (5) changes greatly depending on the direction of the applied magnetic field. For example, a Bi-based high-temperature superconductor manufactured by the crystal pulling method exhibits a critical current that is 10 times or more greater when a magnetic field is applied in the a-axis direction than when it is applied in the c-axis direction. In Example 1, by dividing the high-temperature superconductor (5) into short pieces, the magnetic field created by the superconducting coil (1) is applied to each high-temperature superconductor (5) in an almost uniform direction. , the c axis is perpendicular to the direction of the magnetic field, and a
Since it can be arranged so that the axis is almost parallel (within 45°) to the direction of the magnetic field, the degree of decrease in critical current is small.

【0015】(実施例1の効果)以上説明したように上
記実施例1によれば、高温超電導体を短かく分割するこ
とにより、それぞれの高温超電導体には、超電導コイル
の作る磁場がほぼ均一方向に印加されるようになるため
、c軸が磁場の方向と直角で、かつa軸が磁場の方向と
平行になるように配置できるため、臨界電流の低下を極
力抑えた超電導装置用電流リードが得られる。
(Effects of Embodiment 1) As explained above, according to Embodiment 1, by dividing the high temperature superconductor into short pieces, each high temperature superconductor receives a substantially uniform magnetic field created by the superconducting coil. This current lead for superconducting devices minimizes the drop in critical current because it can be placed so that the c-axis is perpendicular to the direction of the magnetic field and the a-axis is parallel to the direction of the magnetic field. is obtained.

【0016】(実施例2)次に第2の実施例について図
3および図4を参照して説明する。高温超電導体(5)
が短い場合には、実施例1のような分割をせず、1個の
高温超電導体(5)のみとする。他は実施例1と同様で
ある。
(Embodiment 2) Next, a second embodiment will be described with reference to FIGS. 3 and 4. High temperature superconductor (5)
When is short, division as in Example 1 is not performed, and only one high temperature superconductor (5) is formed. The rest is the same as in Example 1.

【0017】(実施例2の効果)従って実施例1に準じ
て、臨界電流の低下を極力抑えた電流リードが得られる
(Effects of Embodiment 2) Therefore, according to Embodiment 1, a current lead is obtained in which a decrease in critical current is suppressed as much as possible.

【0018】[0018]

【発明の効果】以上説明したように本発明によれば高温
超電導体の結晶軸の一つであるc軸を超電導コイルの作
る磁場の向と直角に配置したため、臨界電流の低下を極
力抑えた超電導装置用電流リードが得られる。
[Effects of the Invention] As explained above, according to the present invention, the c-axis, which is one of the crystal axes of the high-temperature superconductor, is arranged perpendicular to the direction of the magnetic field generated by the superconducting coil, thereby suppressing the drop in critical current as much as possible. A current lead for a superconducting device is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1の実施例を示す縦断面図。FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention.

【図2】図1の作用を説明するための要部斜視説明図。FIG. 2 is a perspective explanatory view of essential parts for explaining the operation of FIG. 1;

【図3】本発明の第2の実施例を示す縦断面図。FIG. 3 is a longitudinal sectional view showing a second embodiment of the invention.

【図4】図3の作用を説明するための要部斜視説明図。FIG. 4 is a perspective explanatory view of essential parts for explaining the action of FIG. 3;

【符号の説明】[Explanation of symbols]

1…超電導コイル 2…液体ヘリウム容器 3…液体ヘリウム 4…断熱真空容器 5…高温超電導体 6…超電導コイル端子 7…液体窒素 8…液体窒素容器 9…リード 10…常温端子 11…ガス流路管 12…ヘリウムガス 13…短リード 1...Superconducting coil 2...Liquid helium container 3...Liquid helium 4...Insulated vacuum container 5...High temperature superconductor 6...Superconducting coil terminal 7...Liquid nitrogen 8...Liquid nitrogen container 9...Lead 10…Normal temperature terminal 11...Gas flow pipe 12...Helium gas 13...Short lead

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  液体ヘリウム容器内に収納した液体ヘ
リウム中に浸漬された超電導コイルヘ、常温環境下にお
かれた励磁用電源から電流を供給するための電流リード
において、この電流リードを液体窒素温度以上で超電導
状態を示す高温超電導体から構成し、この高温超電導体
の結晶軸の一つであるc軸を超電導コイルが作る磁場の
向きと直角に設置したことを特徴とする超電導装置用電
流リード。
Claim 1: In a current lead for supplying current from an excitation power supply placed in a room temperature environment to a superconducting coil immersed in liquid helium housed in a liquid helium container, the current lead is connected to a liquid nitrogen temperature. A current lead for a superconducting device, which is constructed from a high-temperature superconductor exhibiting a superconducting state, and is characterized in that the c-axis, which is one of the crystal axes of the high-temperature superconductor, is installed at right angles to the direction of the magnetic field generated by the superconducting coil. .
JP13157091A 1991-06-04 1991-06-04 Current lead superconducting device Pending JPH04357803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13157091A JPH04357803A (en) 1991-06-04 1991-06-04 Current lead superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13157091A JPH04357803A (en) 1991-06-04 1991-06-04 Current lead superconducting device

Publications (1)

Publication Number Publication Date
JPH04357803A true JPH04357803A (en) 1992-12-10

Family

ID=15061153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13157091A Pending JPH04357803A (en) 1991-06-04 1991-06-04 Current lead superconducting device

Country Status (1)

Country Link
JP (1) JPH04357803A (en)

Similar Documents

Publication Publication Date Title
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
JPH07142237A (en) Superconducting magnet device
JPH0371518A (en) Superconductor
JPH0236504A (en) Superconducting magnet device
JP3541123B2 (en) Superconducting current lead
US3486146A (en) Superconductor magnet and method
US3613006A (en) Stable superconducting magnet
JPH04357803A (en) Current lead superconducting device
JP2929622B2 (en) How to use oxide superconductor
JPH0869719A (en) Current lead for superconducting device
JPS63292610A (en) Current supply lead for superconducting device
JP3450318B2 (en) Thermoelectric cooling type power lead
JP2013074082A (en) Permanent-current switch, and conductive cooling-type superconducting magnet device having the same
JP2515813B2 (en) Current lead for superconducting equipment
Mito et al. Development of high temperature superconducting current feeders for a large-scale superconducting experimental fusion system
JPH04369875A (en) Superconductive device current lead
JPH06314612A (en) Oxide superconducting current lead
JP3766448B2 (en) Superconducting current lead
JP3052662B2 (en) AC magnet using oxide superconducting wire
JPH01144602A (en) Superconducting magnet
JP4019014B2 (en) Thermoelectric cooling power lead
US3562685A (en) Foil wrapped superconducting magnet
JPH03283678A (en) Current lead of superconducting magnet apparatus
JPS61265881A (en) Thermal type superconductive switch
JP2604055B2 (en) Superconducting device