JP3218649B2 - Current leads for superconducting devices - Google Patents

Current leads for superconducting devices

Info

Publication number
JP3218649B2
JP3218649B2 JP30091391A JP30091391A JP3218649B2 JP 3218649 B2 JP3218649 B2 JP 3218649B2 JP 30091391 A JP30091391 A JP 30091391A JP 30091391 A JP30091391 A JP 30091391A JP 3218649 B2 JP3218649 B2 JP 3218649B2
Authority
JP
Japan
Prior art keywords
superconducting
low
conductor
oxide
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30091391A
Other languages
Japanese (ja)
Other versions
JPH05145126A (en
Inventor
清 滝田
保川  幸雄
眞一 能瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP30091391A priority Critical patent/JP3218649B2/en
Publication of JPH05145126A publication Critical patent/JPH05145126A/en
Application granted granted Critical
Publication of JP3218649B2 publication Critical patent/JP3218649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、磁気浮上列車,磁気
共鳴画像診断装置等の超電導装置において、真空断熱容
器に収納された超電導コイルに外部電源からの励磁電流
を通電する電流リードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead for supplying an exciting current from an external power supply to a superconducting coil housed in a vacuum insulated container in a superconducting device such as a magnetic levitation train or a magnetic resonance imaging diagnostic apparatus.

【0002】[0002]

【従来の技術】超電導装置の超電導コイルは液体ヘリウ
ム等の極低温冷媒により冷却されて超電導状態を保持す
るので、液体窒素を用いた輻射シールドや多層断熱層を
有する真空断熱容器に液体ヘリウムに浸漬した状態で収
納される。また、電流リードはその低温側への侵入熱で
液体ヘリウムが気化した低温のヘリウムガスにより自己
冷却され、常温側からの侵入熱および電流リードで発生
するジュール熱が極低温部に侵入するのを阻止するよう
構成される。従来電流リードには導体として銅等の電気
良導体を用いていたが、銅は良導電体であると同時に良
熱伝導体でもあるため極低温部への侵入熱が増し、高価
な液体ヘリウムの気化損失が大きくなる。そこで、電流
リードの低温側に高温超電導体である酸化物系超電導導
体を用い、ジュール熱を零にすると同時にその低熱伝導
性を利用して極低温部への侵入熱を大幅に低減した電流
リードが本願出願人等により既に提案されている(例え
ば、特願平2−84252号)。
2. Description of the Related Art A superconducting coil of a superconducting device is cooled by a cryogenic refrigerant such as liquid helium to maintain a superconducting state. It is stored in the state where it was done. In addition, the current lead is self-cooled by the low-temperature helium gas that vaporizes the liquid helium due to the heat entering the low-temperature side, preventing the heat from the normal temperature side and the Joule heat generated by the current lead from entering the extremely low-temperature portion. Configured to block. Conventionally, electric current conductors such as copper have been used as current conductors.However, copper is a good conductor at the same time as it is a good thermal conductor, so the heat that penetrates into cryogenic parts increases, and expensive liquid helium is vaporized. The loss increases. Therefore, a current lead that uses an oxide-based superconductor, which is a high-temperature superconductor, on the low-temperature side of the current lead, reduces Joule heat to zero, and uses the low thermal conductivity to greatly reduce the heat that enters the cryogenic part. Has already been proposed by the applicant of the present application (for example, Japanese Patent Application No. 2-84252).

【0003】図3は超電導磁石装置の従来の電流リード
を簡略化して示す断面図、図4は従来の電流リードの要
部を拡大して示す断面図である。図において、超電導コ
イル1は真空断熱容器2内に液体ヘリウムHe に浸漬し
た状態で収納され、接続線6により電流リード3の低温
端子5Aに導電接続される。電流リード3は上部に常温
端子4Aを有する良導電体からなる高温側リード4と、
低温端子5Aを有する低温側リード5の直列接続体とし
て構成され、低温のヘリウムガスGHe がリード内を通
って常温端子4A側に抜けることにより冷却される。低
温側リードは図3に示すように、例えばステンレス鋼,
マンガン鋼,ニクロム鋼などの剛性が高く低熱伝導性を
有する丸棒を芯材7として、その外側に酸化物系超電導
導体8をら旋状に巻装し、低熱伝導性金属からなる外管
9に収納し、外管との間に低温のヘリウムガスによる冷
却通路を形成し、酸化物系超電導導体8の温度を液体窒
素温度(約77K)以下に冷却することにより、酸化物
系超電導導体は超電導状態となって電流を通流した場合
のジュ−ル熱が零になる。また、熱絶縁体である酸化物
系超電導導体8により高温側リードからの侵入熱が低温
側リードにより阻止されるので、低温端子5A側への侵
入熱が少なく、したがって液体ヘリウムの消費量が少な
い超電導装置の電流リードが得られる。
FIG. 3 is a simplified cross-sectional view showing a conventional current lead of a superconducting magnet device, and FIG. 4 is an enlarged cross-sectional view showing a main part of the conventional current lead. In the figure, a superconducting coil 1 is housed in a vacuum insulated container 2 in a state of being immersed in liquid helium He, and is electrically connected to a low-temperature terminal 5A of a current lead 3 by a connecting wire 6. The current lead 3 includes a high-temperature side lead 4 made of a good conductor having a normal temperature terminal 4A on an upper part,
It is configured as a series connection of a low-temperature side lead 5 having a low-temperature terminal 5A, and is cooled by low-temperature helium gas GHe passing through the lead to the room-temperature terminal 4A. The low-temperature side lead is made of, for example, stainless steel, as shown in FIG.
A round bar having high rigidity and low thermal conductivity such as manganese steel or nichrome steel is used as a core material 7, and an oxide superconducting conductor 8 is spirally wound around the core bar 7. And a cooling passage made of a low-temperature helium gas is formed with the outer tube, and the temperature of the oxide-based superconducting conductor 8 is cooled to a liquid nitrogen temperature (about 77 K) or lower, so that the oxide-based superconducting conductor is The Joule heat when the current flows in the superconducting state becomes zero. In addition, since the heat transmitted from the high-temperature side lead is blocked by the low-temperature side lead by the oxide-based superconducting conductor 8, which is a thermal insulator, the amount of heat penetrated into the low-temperature terminal 5A is small, and therefore the consumption of liquid helium is small. A current lead for the superconducting device is obtained.

【0004】[0004]

【発明が解決しようとする課題】超電導装置の電流リー
ドには、なるべく大きな励磁電流を超電導コイル1に供
給し、超電導コイルが磁場強度の高い磁界を発生できる
よう構成することが求められる。従って、このように構
成された装置においては電流リード,ことに低温側リー
ド5に大電流を通流すると、この大電流によって低温側
リードを周回する電流磁界(自己磁界とも呼ぶ)が発生
し、酸化物系超電導導体8はこの自己磁界中に置かれる
ことになる。ところが、超電導導体は、その臨界電流密
度が磁界の影響を受けて低下する性質があるため、通流
電流を大きくする程、低温側リード5の酸化物系超電導
導体8における臨界電流密度が低下し、高価な酸化物系
超電導導体の断面積を大きくしなければならないという
問題がある。また、酸化物系超電導導体の断面積を増す
と、これに伴って酸化物系超電導導体の伝導による侵入
熱が増加するため、液体ヘリウムの気化損失が増大し、
超電導装置のランニングコストに悪影響を及ぼすという
問題が発生する。
The current leads of the superconducting device are required to be configured so as to supply as large an exciting current as possible to the superconducting coil 1 so that the superconducting coil can generate a magnetic field having a high magnetic field strength. Therefore, in the device configured as described above, when a large current flows through the current lead, especially the low-temperature side lead 5, the large current generates a current magnetic field (also referred to as a self-magnetic field) orbiting the low-temperature side lead, The oxide-based superconducting conductor 8 is placed in this self-magnetic field. However, the superconducting conductor has a property that its critical current density decreases under the influence of the magnetic field. Therefore, as the conduction current increases, the critical current density in the oxide-based superconducting conductor 8 of the low-temperature side lead 5 decreases. In addition, there is a problem that the sectional area of the expensive oxide-based superconducting conductor must be increased. In addition, when the cross-sectional area of the oxide-based superconductor is increased, the heat that penetrates due to conduction of the oxide-based superconductor increases, and the vaporization loss of liquid helium increases.
There is a problem that the running cost of the superconducting device is adversely affected.

【0005】この発明の目的は、電流リードの自己磁界
が低温側リードに及ぼす影響を排除することにより、酸
化物系超電導導体の電流密度を高め、侵入熱を低減する
ことにある。
An object of the present invention is to eliminate the influence of the self-magnetic field of the current lead on the low-temperature side lead, thereby increasing the current density of the oxide-based superconducting conductor and reducing heat penetration.

【0006】上記課題を解決するために、この発明によ
れば、真空断熱容器内に収納され液体ヘリウムに浸漬さ
れた超電導コイルに外部電源からの励磁電流を通流する
電流リードが良導電性金属からなる高温側リードと、酸
化物系超電導導体からなる低温側リードとの直列接続体
からなり、低温のヘリウムガスを前記電流リード内に通
流することにより前記低温側リードが超電導状態となる
ものにおいて、前記低温側リードが電気絶縁材の両面に
支持されて互いに対向するよう配された一対の酸化物系
超電導導体からなる往復導体を備え、この往復導体の低
温端子側が前記超電導コイルの一対の端子に導電接続さ
れるよう形成されてなるとともに、前記往復導体および
前記電気絶縁材が、その長手方向にジグザグ状に形成さ
れてなるものとする。
According to the present invention, a current lead for passing an exciting current from an external power supply to a superconducting coil housed in a vacuum insulated container and immersed in liquid helium is provided by a good conductive metal. And a low-temperature side lead made of an oxide-based superconducting conductor, and the low-temperature side lead is brought into a superconducting state by flowing a low-temperature helium gas into the current lead. Wherein the low-temperature side lead comprises a pair of reciprocating conductors composed of a pair of oxide-based superconducting conductors supported on both sides of the electrical insulating material and arranged to face each other, and the low-temperature terminal side of the reciprocating conductors is a pair of the superconducting coil. It is formed so as to be conductively connected to the terminal, and the reciprocating conductor and the electric insulating material are formed in a zigzag shape in the longitudinal direction. .

【0007】[0007]

【0008】[0008]

【作用】この発明の構成において、良導電性金属からな
る高温側リードと、酸化物系超電導導体からなる低温側
リードとの直列接続体からなり、低温のヘリウムガスを
電流リード内に通流することにより低温側リードが超電
導状態となるものにおいて、前記低温側リードが電気絶
縁材の両面に支持されて互いに対向するよう配された一
対の酸化物系超電導導体からなる往復導体を備え、この
往復導体の低温端子側が超電導コイルの一対の端子に導
電接続されるよう構成したことにより、電気絶縁材によ
り超電導コイルの端子間電圧に耐えるよう絶縁支持され
た往復導体の一対の酸化物系超電導導体には、超電導コ
イルの励磁電流が互いに逆向きに流れることになり、こ
の逆向きの電流により発生する電流磁界の周回方向も逆
向きとなって互いに打ち消し合うので、総合的な自己磁
界を殆ど零にすることが可能になり、したがって自己磁
界が酸化物系超電導導体の臨界電流密度に及ぼす悪影響
を排除し、酸化物系超電導導体の導体断面積の増大を阻
止する機能が得られる。
In the structure of the present invention, a high-temperature side lead made of a good conductive metal and a low-temperature side lead made of an oxide superconductor are connected in series, and a low-temperature helium gas flows through the current lead. The low-temperature side lead is thereby brought into a superconducting state, and the low-temperature side lead is provided with a reciprocating conductor composed of a pair of oxide-based superconducting conductors supported on both surfaces of the electric insulating material and arranged to face each other. By configuring the low-temperature terminal side of the conductor to be conductively connected to a pair of terminals of the superconducting coil, a pair of oxide-based superconducting conductors of a reciprocating conductor insulated and supported by an electric insulating material to withstand the voltage between the terminals of the superconducting coil. In this case, the exciting currents of the superconducting coils flow in opposite directions, and the circulating directions of the current magnetic fields generated by the opposite currents also become opposite. Since they cancel each other, it is possible to make the total self-magnetic field almost zero, thereby eliminating the adverse effect of the self-magnetic field on the critical current density of the oxide-based superconductor and reducing the conductor cross-sectional area of the oxide-based superconductor. The function of preventing the increase is obtained.

【0009】また、上記の構成に加えて、酸化物系超電
導導体からなる往復導体および電気絶縁材を、その長手
方向にジグザグ状に形成するよう構成したことにより、
低温側リードの長さを増すことなく往復導体の長さを延
長することができるので、往復導体の熱伝導により極低
温部に侵入する熱量の低減が可能となり、液体ヘリウム
の消費量を低減する機能が得られる。
Further, in addition to the above configuration, the reciprocating conductor and the electrical insulating material made of the oxide-based superconducting conductor are formed in a zigzag shape in the longitudinal direction.
Since the length of the reciprocating conductor can be extended without increasing the length of the low-temperature side lead, the heat conduction of the reciprocating conductor makes it possible to reduce the amount of heat entering the cryogenic part and reduce the consumption of liquid helium. The function is obtained.

【0010】[0010]

【実施例】以下、この発明を実施例および参考例に基づ
いて説明する。図1はこの発明の参考例になる超電導装
置用電流リードを模式化して示す断面図であり、従来技
術と同じ構成部分には同一参照符号を付すことにより、
重複した説明を省略する。図において、高温側リード1
4と低温側リード15との直列接続体として構成される
電流リード10は、その低温側リード15が外管19内
に電気絶縁材17の両面に密着して絶縁支持された一対
の酸化物系超電導導体18A,18Bで構成される往復
導体18を備え、酸化物系超電導導体18A,18Bそ
れぞれの下端部は絶縁材17Aで電気的に絶縁された低
温端子15Aと、16A,16B一対の接続線16とを
介して超電導コイル1の両端子に接続される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments and reference examples. FIG. 1 is a cross-sectional view schematically illustrating a current lead for a superconducting device according to a reference example of the present invention.
A duplicate description will be omitted. In the figure, high-temperature side lead 1
The current lead 10 configured as a series connection body of the low-temperature side lead 15 and the low-temperature side lead 15 includes a pair of oxide-based materials in which the low-temperature side lead 15 is tightly insulated and supported on both surfaces of the electric insulating material 17 in the outer tube 19. It has a reciprocating conductor 18 composed of superconducting conductors 18A and 18B, and the lower end of each of the oxide superconducting conductors 18A and 18B has a low-temperature terminal 15A electrically insulated by an insulating material 17A and a pair of connecting wires 16A and 16B. 16 are connected to both terminals of the superconducting coil 1.

【0011】また、高温側リード14にも良導電体から
なる図示しない導体が往復導体として外管内に収納さ
れ、その下端部が低温側リード15の往復導体に接続さ
れるとともに、その上端部は電気絶縁材17Bで絶縁さ
れた常温端子14A,14Bを介して外部電源に接続さ
れる。また、高温側リード14および低温側リード15
は外管19および高温側リード内を通る低温のヘリウム
ガスGHeにより冷却され、高温側リード側の侵入熱が
排熱されるとともに、酸化物系超電導導体18A,18
Bが超電導状態に保持される。
A conductor (not shown) made of a good conductor is also housed in the outer tube as a reciprocating conductor in the high-temperature side lead 14, and the lower end thereof is connected to the reciprocating conductor of the low-temperature side lead 15, and the upper end thereof is formed. It is connected to an external power supply via room temperature terminals 14A and 14B insulated by an electric insulating material 17B. Also, the high-temperature side lead 14 and the low-temperature side lead 15
Is cooled by the low-temperature helium gas GHe passing through the outer tube 19 and the high-temperature side lead, and the invasion heat on the high-temperature side lead is exhausted, and the oxide-based superconducting conductors 18A, 18
B is kept in a superconducting state.

【0012】上述のように構成された電流リードにおい
ては、電気絶縁材17により超電導コイル1の端子間電
圧に耐えるよう対向して絶縁支持された往復導体18の
一対の酸化物系超電導導体18A,18Bには、超電導
コイルの励磁電流が互いに逆向きに流れることになり、
この逆向きの電流により発生する電流磁界の周回方向も
互いに逆向きとなって打ち消し合うので、総合的な自己
磁界を殆ど零にすることが可能になる。したがって、自
己磁界が酸化物系超電導導体の臨界電流密度に及ぼす影
響を排除できるので、酸化物系超電導導体の断面積を増
すことなく電流リードを大電流化できるとともに、酸化
物系超電導導体の断面積を増すことによって生ずる酸化
物系超電導導体の伝導による侵入熱の増加を阻止できる
ため、液体ヘリウムの気化損失が少なく、ランニングコ
ストの低い超電導装置を得ることができる。
In the current lead constructed as described above, a pair of oxide-based superconducting conductors 18A, 18A of a reciprocating conductor 18 opposed and insulated and supported by an electric insulating material 17 to withstand the voltage between the terminals of the superconducting coil 1 are provided. In 18B, the exciting currents of the superconducting coils flow in opposite directions.
Since the circling directions of the current magnetic fields generated by the opposite currents are also opposite to each other and cancel each other, it is possible to make the total self magnetic field almost zero. Therefore, the influence of the self-magnetic field on the critical current density of the oxide-based superconductor can be eliminated, so that the current can be increased without increasing the cross-sectional area of the oxide-based superconductor and the cutoff of the oxide-based superconductor. Since it is possible to prevent an increase in invasion heat due to conduction of the oxide-based superconducting conductor caused by increasing the area, it is possible to obtain a superconducting device having a small loss of vaporization of liquid helium and a low running cost.

【0013】図2はこの発明の実施例の要部を示す拡大
断面図であり、低温側リード25の外管29に収納され
た電気絶縁材27が、その長手方向にジグザグ状に形成
され、そのジグザグ状の両表面に沿って絶縁支持された
一対の酸化物系超電導導体28A,28Bからなる往復
導体28もジグザグ状(角波状)に形成された点が前述
の参考例と異なっている。このように、往復導体をジグ
ザグ状とすることにより、低温側リード25の長さを増
すことなく往復導体28を長くできるので、往復導体の
伝導による侵入熱を一層低減することが可能になり、高
価なヘリウムガスの消費量がより少なく、ランニングコ
ストがより低い超電導装置が得られる。なお、電気絶縁
材27および往復導体18は湾曲した丸波状に形成され
てよく、また間隔片を介して外管に支持するよう構成さ
れてよい。
FIG. 2 is an enlarged sectional view showing a main part of the embodiment of the present invention. The electric insulating material 27 accommodated in the outer tube 29 of the low-temperature side lead 25 is formed in a zigzag shape in the longitudinal direction. The reciprocating conductor 28 composed of a pair of oxide-based superconducting conductors 28A and 28B insulated and supported along both zigzag surfaces is also different from the above-described reference example in that it is formed in a zigzag shape (angular wave shape). In this way, by making the reciprocating conductor zigzag, the reciprocating conductor 28 can be lengthened without increasing the length of the low-temperature side lead 25, so that it is possible to further reduce the heat intrusion due to the conduction of the reciprocating conductor, A superconducting device with lower consumption of expensive helium gas and lower running cost is obtained. In addition, the electric insulating material 27 and the reciprocating conductor 18 may be formed in a curved round wave shape, and may be configured to be supported by the outer tube via a spacing piece.

【0014】[0014]

【発明の効果】この発明は前述のように、良導電性金属
からなる高温側リードと、酸化物系超電導導体からなる
低温側リードとの直列接続体からなり、低温のヘリウム
ガスを電流リード内に通流することにより低温側リード
が超電導状態となるものにおいて、前記低温側リードが
電気絶縁材の両面に支持されて互いに対向するよう配さ
れた一対の酸化物系超電導導体からなる往復導体を備
え、この往復導体の低温端子側が超電導コイルの一対の
端子に導電接続されるよう構成した。その結果、電気絶
縁材により超電導コイルの端子間電圧に耐えるよう絶縁
支持された往復導体の一対の酸化物系超電導導体には、
超電導コイルの励磁電流が互いに逆向きに流れることに
なり、この逆向きの電流により発生する電流磁界の周回
方向も逆向きとなって互いに打ち消し合うので、総合的
な自己磁界を殆ど零にすることが可能になり、従来技術
において自己磁界により酸化物系超電導導体の臨界電流
密度が低下するという問題点が排除され、高価な酸化物
系超電導導体の断面積を増すことなく電流リードを大電
流化できるとともに、酸化物系超電導導体の断面積を増
すことによる侵入熱の増加とこれに基づく液体ヘリウム
の消費量の増大が阻止され、通流電流が大きく,ランニ
ングコストの低い超電導装置用電流リードを経済的にも
有利に提供することができる。
As described above, the present invention comprises a series connection of a high-temperature side lead made of a highly conductive metal and a low-temperature side lead made of an oxide-based superconducting conductor. In the case where the low-temperature side lead is brought into a superconducting state by flowing through, a reciprocating conductor consisting of a pair of oxide-based superconducting conductors arranged so that the low-temperature side lead is supported on both surfaces of the electric insulating material and opposed to each other. The reciprocating conductor is configured so that the low-temperature terminal side of the reciprocating conductor is conductively connected to a pair of terminals of the superconducting coil. As a result, a pair of oxide-based superconducting conductors of a reciprocating conductor that is insulated and supported to withstand the voltage between terminals of the superconducting coil by an electric insulating material includes:
The exciting currents of the superconducting coils will flow in opposite directions, and the direction of the current magnetic field generated by the opposite currents will also be opposite, canceling each other out. The problem that the critical current density of the oxide-based superconductor is reduced by the self-magnetic field in the prior art is eliminated, and the current lead is increased without increasing the cross-sectional area of the expensive oxide-based superconductor. In addition to increasing the cross-sectional area of the oxide-based superconducting conductor, it is possible to prevent the increase in heat intrusion and the increase in the consumption of liquid helium based on this, and to reduce the current lead for the superconducting device with a large current flow and low running cost. It can be provided economically advantageously.

【0015】また、上記の構成に加えて、酸化物系超電
導導体からなる往復導体および電気絶縁材を、その長手
方向にジグザグ状に蛇行するよう形成した。その結果、
低温側リードの長さを増すことなく往復導体の長さを延
長することができるので、往復導体の熱伝導により極低
温部に侵入する熱量を低減し、液体ヘリウムの消費量を
より一層低減できる利点が得られる。
Further, in addition to the above configuration, a reciprocating conductor made of an oxide-based superconducting conductor and an electric insulating material are formed so as to meander zigzag in the longitudinal direction. as a result,
Since the length of the reciprocating conductor can be extended without increasing the length of the low-temperature side lead, the heat conduction of the reciprocating conductor reduces the amount of heat entering the cryogenic part, and further reduces the consumption of liquid helium. Benefits are obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の参考例になる超電導装置用電流リー
ドを模式化して示す断面図
FIG. 1 is a cross-sectional view schematically showing a current lead for a superconducting device according to a reference example of the present invention.

【図2】この発明の実施例の要部を示す拡大断面図FIG. 2 is an enlarged sectional view showing a main part of the embodiment of the present invention.

【図3】超電導装置の従来の電流リードを簡略化して示
す断面図
FIG. 3 is a simplified cross-sectional view showing a conventional current lead of a superconducting device.

【図4】従来の電流リードの要部を拡大して示す断面図FIG. 4 is an enlarged sectional view showing a main part of a conventional current lead.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 真空断熱容器 3 電流リード 4 高温側リード 5 低温側リード 7 芯材 8 酸化物系超電導導体 9 外管 10 電流リード 14 高温側リード 15 低温側リード 16 接続線 17 電気絶縁材 18 往復導体 18A 酸化物系超電導導体 18B 酸化物系超電導導体 19 外管 25 低温側リード 27 電気絶縁材 28 往復導体 28A 酸化物系超電導導体 28B 酸化物系超電導導体 He 液体ヘリウム GHe ヘリウムガス DESCRIPTION OF SYMBOLS 1 Superconducting coil 2 Vacuum heat insulation container 3 Current lead 4 High temperature side lead 5 Low temperature side lead 7 Core material 8 Oxide superconducting conductor 9 Outer tube 10 Current lead 14 High temperature side lead 15 Low temperature side lead 16 Connection line 17 Electrical insulation 18 Reciprocation Conductor 18A Oxide superconducting conductor 18B Oxide superconducting conductor 19 Outer tube 25 Low temperature side lead 27 Electrical insulating material 28 Reciprocating conductor 28A Oxide superconducting conductor 28B Oxide superconducting conductor He Liquid helium GHe Helium gas

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−135714(JP,A) 特開 昭63−245909(JP,A) 特開 平5−175048(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 39/04 ZAA H01F 6/00 ZAA H01F 6/06 ZAA ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-135714 (JP, A) JP-A-63-245909 (JP, A) JP-A-5-175048 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01L 39/04 ZAA H01F 6/00 ZAA H01F 6/06 ZAA

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空断熱容器内に収納され液体ヘリウムに
浸漬された超電導コイルに外部電源からの励磁電流を通
流する電流リードが良導電性金属からなる高温側リード
と、酸化物系超電導導体からなる低温側リードとの直列
接続体からなり、低温のヘリウムガスを前記電流リード
内に通流することにより前記低温側リードが超電導状態
となるものにおいて、前記低温側リードが電気絶縁材の
両面に支持されて互いに対向するよう配された一対の酸
化物系超電導導体からなる往復導体を備え、この往復導
体の低温端子側が前記超電導コイルの一対の端子に導電
接続されるよう形成されてなるとともに、前記往復導体
および前記電気絶縁材が、その長手方向にジグザグ状に
形成されてなることを特徴とする超電導装置用電流リー
ド。
A current lead for passing an exciting current from an external power supply to a superconducting coil housed in a vacuum insulated container and immersed in liquid helium, a current lead made of a good conductive metal, and an oxide superconducting conductor. And a low-temperature side lead in a superconducting state by flowing a low-temperature helium gas into the current lead. A reciprocating conductor composed of a pair of oxide-based superconducting conductors supported and arranged to face each other, and the low-temperature terminal side of the reciprocating conductor is formed so as to be conductively connected to the pair of terminals of the superconducting coil. A current lead for a superconducting device, wherein the reciprocating conductor and the electrical insulating material are formed in a zigzag shape in a longitudinal direction thereof.
JP30091391A 1991-11-18 1991-11-18 Current leads for superconducting devices Expired - Lifetime JP3218649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30091391A JP3218649B2 (en) 1991-11-18 1991-11-18 Current leads for superconducting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30091391A JP3218649B2 (en) 1991-11-18 1991-11-18 Current leads for superconducting devices

Publications (2)

Publication Number Publication Date
JPH05145126A JPH05145126A (en) 1993-06-11
JP3218649B2 true JP3218649B2 (en) 2001-10-15

Family

ID=17890639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30091391A Expired - Lifetime JP3218649B2 (en) 1991-11-18 1991-11-18 Current leads for superconducting devices

Country Status (1)

Country Link
JP (1) JP3218649B2 (en)

Also Published As

Publication number Publication date
JPH05145126A (en) 1993-06-11

Similar Documents

Publication Publication Date Title
KR101657600B1 (en) Arrangement having a superconducting cable
US4904970A (en) Superconductive switch
JP3032610B2 (en) Superconducting device current leads
JP3218649B2 (en) Current leads for superconducting devices
JP4599807B2 (en) Current leads for superconducting equipment
JP4477859B2 (en) Permanent current switch, superconducting magnet, and magnetic resonance imaging apparatus
JPH0341705A (en) Device for propagating quentch within superconductive magnet
JP2734171B2 (en) Current lead of superconducting magnet device
JP3178119B2 (en) Gas-cooled current leads for superconducting coils
JP3120482B2 (en) Current lead of superconducting magnet device
JP2889485B2 (en) Superconducting wire connection method and device, and superconducting coil device
JPS63292610A (en) Current supply lead for superconducting device
JPH0745420A (en) Current lead of superconducting apparatus
JPH10247532A (en) Current lead for superconductive device
JPH05114753A (en) Current lead of superconductive magnet device
JP3127705B2 (en) Current lead using oxide superconductor
JP3284656B2 (en) Current lead using oxide superconductor
JP2598164B2 (en) Non-inductive magnetic shield type bushing using high temperature superconducting material
JPH0869719A (en) Current lead for superconducting device
JP2000082851A (en) Current lead for supfrconducting device
JPH03283678A (en) Current lead of superconducting magnet apparatus
JPH07272921A (en) Current lead for superconducting device
JPH09116200A (en) Current lead for superconductive device
JPH11297524A (en) Current lead for superconducting device
JP2000101153A (en) Current lead for superconducting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11