JPH05114753A - Current lead of superconductive magnet device - Google Patents

Current lead of superconductive magnet device

Info

Publication number
JPH05114753A
JPH05114753A JP3272959A JP27295991A JPH05114753A JP H05114753 A JPH05114753 A JP H05114753A JP 3272959 A JP3272959 A JP 3272959A JP 27295991 A JP27295991 A JP 27295991A JP H05114753 A JPH05114753 A JP H05114753A
Authority
JP
Japan
Prior art keywords
lead
magnetic shield
low temperature
superconducting
current lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3272959A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takita
清 滝田
Shinichi Nose
眞一 能瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3272959A priority Critical patent/JPH05114753A/en
Publication of JPH05114753A publication Critical patent/JPH05114753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To keep stably in magnetic shielding effect by a method wherein the magnetic shield is arranged so as to surround a low temperature lead from outside. CONSTITUTION:A current lead 3 composed of a high-temperature lead 4 and a low-temperature lead 5 connected together in series is housed in a vacuum heat insulating chamber 2, where the low-temperature lead 5 is surrounded with a cylindrical magnetic shield 11. The magnetic shield 11 is made of oxide superconductor, and it is preferable that a flange-shaped constricted part 12 is provided to the lower end of the shield 11. The magnetic shield 11 concerned is cooled by cryogenic helium gas vaporized from liquid helium, and kept in a superconductive state. If the lower end of the shield 11 is directly dipped into liquid helium, the shield 11 can be kept at a lower temperature and kept stable in a superconductive state. By this setup, a magnetic shield can be kept stable in magnetic shield effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁気浮上列車,磁気
共鳴画像診断装置等の超電導応用機器に使用される超電
導磁石装置において、真空断熱容器に収納された超電導
コイルに外部電源からの励磁電流を通電する電流リード
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet device used in a superconducting application device such as a magnetic levitation train and a magnetic resonance imaging apparatus, and an exciting current from an external power source to a superconducting coil housed in a vacuum heat insulation container. It relates to a current lead that carries current.

【0002】[0002]

【従来の技術】超電導装置の超電導コイルは液体ヘリウ
ム等の極低温冷媒により冷却されて超電導状態を保持す
るので、液体窒素を用いた輻射シールドや多層断熱層を
有する真空断熱容器に液体ヘリウムに浸漬した状態で収
納される。また、電流リードはその低温側への侵入熱で
液体ヘリウムが気化した低温のヘリウムガスにより自己
冷却され、常温側からの侵入熱および電流リードで発生
するジュール熱が極低温部に侵入するのを阻止するよう
構成される。従来電流リードには導体として銅等の電気
良導体を用いていたが、銅は良導電体であると同時に良
熱伝導体でもあるため極低温部への侵入熱が増し、高価
な液体ヘリウムの気化損失が大きくなる。そこで、電流
リードの低温側に高温超電導体である酸化物系超電導導
体を用い、ジュール熱を零にすると同時にその低熱伝導
性を利用して極低温部への侵入熱を大幅に低減した電流
リードが本願出願人等により既に提案されている(例え
ば、特願平2−84252号)。
2. Description of the Related Art Since a superconducting coil of a superconducting device is kept in a superconducting state by being cooled by a cryogenic refrigerant such as liquid helium, it is immersed in liquid helium in a vacuum insulation container having a radiation shield using liquid nitrogen and a multilayer insulation layer. It will be stored in the closed condition. In addition, the current lead is self-cooled by the low temperature helium gas, which is liquid helium vaporized by the heat entering the low temperature side, and the heat entering from the room temperature side and the Joule heat generated in the current lead enter the cryogenic part. Configured to block. Conventionally, a good electrical conductor such as copper was used for the current lead as a conductor, but since copper is a good conductor and a good heat conductor at the same time, heat entering the cryogenic part increases, and expensive liquid helium vaporizes. The loss will increase. Therefore, an oxide-based superconducting conductor, which is a high-temperature superconductor, is used on the low temperature side of the current lead to reduce Joule heat to zero and at the same time utilize its low thermal conductivity to greatly reduce the heat entering the cryogenic part. Has already been proposed by the applicant of the present application (for example, Japanese Patent Application No. 2-84252).

【0003】図2は超電導磁石装置の従来の電流リード
を簡略化して示す断面図、図3は従来の電流リードの要
部を拡大して示す断面図である。図において、超電導コ
イル1は真空断熱容器2内に液体ヘリウムHe に浸漬し
た状態で収納され、リード線6により電流リード3の低
温端子5Aに導電接続される。電流リード3は上部に常
温端子4Aを有する良導電体からなる高温側リード4
と、低温端子5Aを有する低温側リード5の直列接続体
として構成され、低温のヘリウムガスGHe がリード内
を通って常温端子4A側に抜けることにより冷却され
る。低温側リードは図3に示すように、例えばステンレ
ス鋼,マンガン鋼,ニクロム鋼などの剛性が高く低熱伝
導性を有する丸棒を芯材7として、その外側に酸化物系
超電導導体8をら旋状に巻装し、低熱伝導性金属からな
る外管9に収納し、外管との間に低温のヘリウムガスに
よる冷却通路を形成し、酸化物系超電導導体8の温度を
液体窒素温度(約77K)以下に冷却することにより、
酸化物系超電導導体は超電導状態となって電流を通流し
た場合のジュ−ル熱が零になる。また、熱絶縁体である
酸化物系超電導導体8により高温側リードからの侵入熱
が低温側リードにより阻止されるので、低温端子5A側
への侵入熱が少なく、したがって液体ヘリウムの消費量
が少ない超電導装置の電流リードが得られる。
FIG. 2 is a sectional view showing a conventional current lead of a superconducting magnet device in a simplified manner, and FIG. 3 is an enlarged sectional view showing an essential part of the conventional current lead. In the figure, a superconducting coil 1 is housed in a vacuum heat insulating container 2 in a state of being immersed in liquid helium He, and is electrically connected to a low temperature terminal 5A of a current lead 3 by a lead wire 6. The current lead 3 is a high temperature side lead 4 made of a good conductor having a room temperature terminal 4A on the top.
And the low temperature side lead 5 having the low temperature terminal 5A is connected in series, and the low temperature helium gas GHe is cooled by passing through the lead to the room temperature terminal 4A side. As shown in FIG. 3, the low temperature side lead is made of, for example, a stainless steel, manganese steel, or nichrome steel round bar having high rigidity and low thermal conductivity as a core material 7, and an oxide superconducting conductor 8 is spirally wound on the outside thereof. It is wound in a circular shape and is housed in an outer tube 9 made of a metal having a low thermal conductivity, and a cooling passage is formed between the outer tube and the outer tube by a low temperature helium gas. By cooling below 77K),
The oxide-based superconducting conductor is in a superconducting state, and the Jule heat becomes zero when a current is passed. Further, since the oxide superconducting conductor 8 which is a heat insulator blocks the heat entering from the high temperature side lead by the low temperature side lead, the heat entering the low temperature terminal 5A side is small, and therefore the consumption of liquid helium is small. The current lead of the superconducting device can be obtained.

【0004】[0004]

【発明が解決しようとする課題】超電導磁石装置の電流
リードには、なるべく大きな励磁電流を超電導コイル1
に供給し、超電導コイルが磁場強度の高い磁界を発生で
きるよう構成することが求められる。従って、このよう
に構成された装置においては電流リード,ことに低温側
リード5は超電導コイルが発生する高磁界中に位置する
ことになる。ところが、超電導体の臨界電流密度は磁界
の影響受けて低下する性質があるため、超電導コイル1
の発生磁場強度を高める程、低温側リード5の酸化物系
超電導導体8における臨界電流密度が低下し、高価な酸
化物系超電導導体の断面積を大きくしなければならない
という問題がある。また、酸化物系超電導導体の断面積
を増すと、これに伴って酸化物系超電導導体の伝導によ
る侵入熱が増加するため、液体ヘリウムの気化損失が増
大し、超電導磁石装置のランニングコストに悪影響を及
ぼすという問題が発生する。
In the current lead of the superconducting magnet device, an exciting current as large as possible is applied to the superconducting coil 1.
Is supplied to the superconducting coil, and the superconducting coil is required to be configured to generate a magnetic field having high magnetic field strength. Therefore, in the device constructed as described above, the current lead, especially the low temperature side lead 5 is located in the high magnetic field generated by the superconducting coil. However, since the critical current density of the superconductor has the property of being lowered by the influence of the magnetic field, the superconducting coil 1
As the strength of the generated magnetic field is increased, the critical current density in the oxide-based superconducting conductor 8 of the low temperature side lead 5 decreases, and there is a problem that the cross-sectional area of the expensive oxide-based superconducting conductor must be increased. In addition, when the cross-sectional area of the oxide-based superconducting conductor is increased, the invasion heat due to the conduction of the oxide-based superconducting conductor is increased, which increases the vaporization loss of liquid helium and adversely affects the running cost of the superconducting magnet device. Occurs.

【0005】この発明の目的は、超電導コイルの発生磁
界が低温側リードに及ぼす影響を排除することにより、
酸化物系超電導導体の電流密度を高め、侵入熱を低減す
ることにある。
An object of the present invention is to eliminate the influence of the magnetic field generated by the superconducting coil on the low temperature side lead.
It is to increase the current density of the oxide-based superconducting conductor and reduce the heat of penetration.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、真空断熱容器内に収納され液体
ヘリウムに浸漬された超電導コイルに外部電源からの励
磁電流を通流する電流リードが良導電性金属からなる高
温側リードと、酸化物系超電導導体からなる低温側リー
ドとの直列接続体からなり、低温のヘリウムガスを前記
電流リード内に通流することにより前記低温側リードが
超電導状態となるものにおいて、酸化物系超電導体から
なる磁気シ−ルドを前記低温側リードをその外周側から
包囲するよう配置してなるものとする。
In order to solve the above-mentioned problems, according to the present invention, a current flowing through an exciting current from an external power source to a superconducting coil housed in a vacuum heat insulation container and immersed in liquid helium. The lead is composed of a series connection body of a high temperature side lead made of a good conductive metal and a low temperature side lead made of an oxide-based superconducting conductor, and the low temperature side lead is formed by flowing a low temperature helium gas into the current lead. In a superconducting state, a magnetic shield made of an oxide-based superconductor is arranged so as to surround the low temperature side lead from its outer peripheral side.

【0007】また、磁気シ−ルドが、その下端に狭窄部
を有する筒状に形成されてなるものとする。
Further, it is assumed that the magnetic shield is formed in a cylindrical shape having a narrowed portion at its lower end.

【0008】さらに、磁気シ−ルドが、低温のヘリウム
ガスにより冷却されるよう形成されてなるもの、または
磁気シ−ルドの下端部が液体ヘリウムにより冷却される
よう形成されてなるものとする。
Further, it is assumed that the magnetic shield is formed so as to be cooled by low temperature helium gas, or that the lower end portion of the magnetic shield is formed so as to be cooled by liquid helium.

【0009】[0009]

【作用】この発明の構成において、酸化物系超電導体か
らなる磁気シ−ルドを、低温側リードをその外周側から
包囲するよう配置したことにより、酸化物系超電導導体
の優れた磁気シ−ルド効果を利用して低温側リードに交
差する超電導コイルの発生磁束を零近くにまで低減する
ことが可能になり、酸化物系超電導導体の臨界電流密度
に及ぼす磁界の影響を排除して導体断面積の増大を阻止
する機能が得られる。
In the structure of the present invention, the magnetic shield made of the oxide-based superconductor is arranged so as to surround the low temperature side lead from the outer peripheral side thereof, so that the magnetic shield of the oxide-based superconductor is excellent. By utilizing the effect, it is possible to reduce the magnetic flux generated in the superconducting coil that intersects the low temperature side lead to near zero, eliminate the effect of the magnetic field on the critical current density of the oxide superconducting conductor, and cross-section the conductor. The function to prevent the increase of

【0010】また、磁気シ−ルドを、その下端に狭窄部
を有する筒状に形成すれば、低温側リードの下方に位置
する超電導コイルからの磁界が、低温側リード側に侵入
することをより効果的に排除する機能が得られる。
Further, if the magnetic shield is formed in a cylindrical shape having a narrowed portion at the lower end thereof, it is possible to prevent the magnetic field from the superconducting coil located below the low temperature side lead from entering the low temperature side lead side. The function of effectively eliminating is obtained.

【0011】さらに、磁気シ−ルドが、低温のヘリウム
ガスにより冷却されるよう形成すれば、液体ヘリウム容
器で気化した低温のヘリウムガスを有効に利用して磁気
シ−ルドを超電導状態に保ち、酸化物系超電導導体の磁
気シ−ルド効果を得ることができる。
Further, if the magnetic shield is formed so as to be cooled by the low temperature helium gas, the low temperature helium gas vaporized in the liquid helium container is effectively utilized to keep the magnetic shield in a superconducting state. The magnetic shield effect of the oxide-based superconducting conductor can be obtained.

【0012】さらにまた、磁気シ−ルドの下端部が液体
ヘリウムにより冷却されるよう形成すれば、磁気シ−ル
ドの液体ヘリウム温度近くに保持し、酸化物系超電導導
体の磁気シ−ルド効果をより安定に保持する機能が得ら
れる。
Furthermore, if the lower end of the magnetic shield is formed so as to be cooled by liquid helium, the temperature of the magnetic shield can be maintained near the liquid helium temperature, and the magnetic shield effect of the oxide-based superconducting conductor can be maintained. A more stable function can be obtained.

【0013】[0013]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる超電導磁石装置の電
流リードを簡略化して示す断面図であり、従来技術と同
じ構成部分には同一参照符号を付すことにより、重複し
た説明を省略する。図において、高温側リード4および
低温側リード5の直列接続体として形成される電流リー
ド3は、その低温側リード5の部分を筒状の磁気シ−ル
ド11により包囲した状態で、真空断熱容器2内に収納
され、低温端子5Aがリ−ド線6を介して超電導コイル
1に接続される。磁気シ−ルド11は例えば非磁性材料
を支持材としてその表面に薄い酸化物系超電導体からな
る磁気シ−ルド層を形成したものからなり、好ましくは
筒状の下端部分にフランジ状の狭窄部12が形成され
る。このように形成された磁気シ−ルド11は液体ヘリ
ウムHeが気化した低温のヘリウムガスGHeで冷却さ
れて超電導状態が保持される。また、下端部を液体ヘリ
ウム中に直接浸漬すれば、磁気シ−ルド11をより低温
に保持し、その超電導状態を安定に保持することができ
る。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a cross-sectional view showing a simplified current lead of a superconducting magnet device according to an embodiment of the present invention. The same components as those of the prior art are designated by the same reference numerals, and a duplicate description will be omitted. In the figure, a current lead 3 formed as a series connection of a high temperature side lead 4 and a low temperature side lead 5 is a vacuum heat insulation container in a state where the low temperature side lead 5 is surrounded by a cylindrical magnetic shield 11. 2, and the low temperature terminal 5A is connected to the superconducting coil 1 via the lead wire 6. The magnetic shield 11 is made of, for example, a non-magnetic material as a support material and a magnetic shield layer made of a thin oxide superconductor formed on the surface thereof, preferably a flange-shaped narrowed portion at the lower end of the cylinder. 12 is formed. The magnetic shield 11 thus formed is cooled by the low temperature helium gas GHe obtained by vaporizing the liquid helium He to maintain the superconducting state. If the lower end portion is directly immersed in liquid helium, the magnetic shield 11 can be kept at a lower temperature and its superconducting state can be kept stable.

【0014】このように構成された磁気シ−ルド11を
有する超電導磁石装置の電流リードにおいては、酸化物
系超電導体の優れた磁気シ−ルド効果を利用して磁気シ
−ルド11で包囲された空間内への磁束の侵入を阻止で
きるのて、低温側リード11に交差する超電導コイルの
発生磁束を零近くにまで低減することが可能になり、酸
化物系超電導導体の臨界電流密度に及ぼす磁界の影響を
排除することができる。従って、電流リードの通流電流
を一定とすれば、磁気シ−ルドを持たない従来の電流リ
ードに比べて低温側リード5の酸化物系超電導導体8
(図3参照)の導体断面積を縮小できる利点が得られ、
また導体断面積を従来のそれと同一に保てば電流リード
の通流電流を大きくできる利点が得られる。さらに、酸
化物系超電導導体の導体断面積が縮小されることによ
り、低温端子5A側への侵入熱が減り、従って高価な液
体ヘリウムの気化量も減るので、高価な酸化物系超電導
導体を低温側リード側に用いた電流リードの特徴を活か
して、液体ヘリウムの消費量が少なくランニングコスト
の低い超電導磁石装置を経済的に有利に提供できる利点
が得られる。
In the current lead of the superconducting magnet device having the magnetic shield 11 thus constructed, it is surrounded by the magnetic shield 11 by utilizing the excellent magnetic shield effect of the oxide superconductor. Since it is possible to prevent the magnetic flux from penetrating into the open space, it is possible to reduce the generated magnetic flux of the superconducting coil intersecting the low temperature side lead 11 to near zero, which affects the critical current density of the oxide superconducting conductor. The influence of the magnetic field can be eliminated. Therefore, if the current flowing through the current lead is constant, the oxide-based superconducting conductor 8 of the low temperature side lead 5 can be compared with a conventional current lead having no magnetic shield.
The advantage of being able to reduce the conductor cross-sectional area (see FIG. 3) is obtained,
Further, if the conductor cross-sectional area is kept the same as the conventional one, there is an advantage that the current flowing through the current lead can be increased. Further, since the conductor cross-sectional area of the oxide-based superconducting conductor is reduced, the heat entering the low temperature terminal 5A is reduced, and the amount of vaporization of expensive liquid helium is also reduced. By utilizing the characteristics of the current lead used on the side lead side, it is possible to economically provide a superconducting magnet device with low consumption of liquid helium and low running cost.

【0015】[0015]

【発明の効果】この発明は前述のように、酸化物系超電
導導体からなる低温側リードをその外周側から包囲する
筒状の酸化物系超電導体からなる磁気シ−ルドを設ける
よう構成した。その結果、酸化物系超電導体の優れた磁
気シ−ルド効果を利用して低温側リードに交差する超電
導コイルの発生磁束を零近くにまで低減することが可能
になり、従来の電流リードで問題となった低温側リード
における酸化物系超電導導体の臨界電流密度に及ぼす磁
界の影響が排除され、電流リードの通流電流を一定とす
れば、磁気シ−ルドを持たない従来の電流リードに比べ
て酸化物系超電導導体の導体断面積および低温端子側へ
の侵入熱を低減できるので、高価な液体ヘリウムの気化
量が少なくランニングコストの低い電流リードを備えた
超電導磁石装置を経済的にも有利に提供することができ
る。また、低温側リードにおける酸化物系超電導導体の
導体断面積を従来のそれと同一に保てば、侵入熱を増大
させることなく電流リードの通流電流を大きくできる利
点が得られる。
As described above, according to the present invention, the magnetic shield made of the tubular oxide superconductor is provided which surrounds the low temperature side lead made of the oxide superconductor from the outer peripheral side thereof. As a result, it is possible to reduce the magnetic flux generated in the superconducting coil that intersects the low temperature side lead to near zero by utilizing the excellent magnetic shield effect of the oxide superconductor, which is a problem with conventional current leads. If the effect of the magnetic field on the critical current density of the oxide-based superconducting conductor in the low temperature side lead is eliminated, and the current flowing through the current lead is constant, then it is better than the conventional current lead without magnetic shield. Since it is possible to reduce the cross-sectional area of the oxide-based superconducting conductor and the heat that enters the low temperature terminal side, it is economically advantageous to use a superconducting magnet device equipped with a current lead with low vaporization amount of expensive liquid helium and low running cost. Can be provided to. Further, if the conductor cross-sectional area of the oxide-based superconducting conductor in the low temperature side lead is kept the same as that of the conventional one, there is an advantage that the current flowing through the current lead can be increased without increasing the penetration heat.

【0016】また、磁気シ−ルドを、その下端に狭窄部
を有する筒状に形成すれば、低温側リードの下方に位置
する超電導コイルからの磁界が、低温側リード側に侵入
することをより効果的に排除し、より高い磁気シ−ルド
効果を有する電流リードを備えた超電導磁石装置を提供
することができる。
Further, if the magnetic shield is formed in a cylindrical shape having a narrowed portion at its lower end, the magnetic field from the superconducting coil located below the low temperature side lead is prevented from entering the low temperature side lead side. It is possible to provide a superconducting magnet device including a current lead that is effectively eliminated and has a higher magnetic shield effect.

【0017】さらに、磁気シ−ルドを、低温のヘリウム
ガスにより冷却するよう構成すれば、液体ヘリウム容器
で気化した低温のヘリウムガスを有効に利用して磁気シ
−ルドを超電導状態に保ち、磁気シ−ルド効果を発揮で
きる利点が得られる。また、磁気シ−ルドの下端部を液
体ヘリウムにより冷却するよう構成すれば、磁気シ−ル
ドを液体ヘリウム温度近くに保持し、酸化物系超電導導
体の磁気シ−ルド効果をより安定して保持できる利点が
得られる。
Further, if the magnetic shield is constructed so as to be cooled by low temperature helium gas, the low temperature helium gas vaporized in the liquid helium container is effectively utilized to keep the magnetic shield in a superconducting state and There is an advantage that the shield effect can be exhibited. Also, if the lower end of the magnetic shield is configured to be cooled by liquid helium, the magnetic shield can be maintained near the liquid helium temperature and the magnetic shield effect of the oxide-based superconducting conductor can be maintained more stably. The advantage that can be obtained is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例になる超電導磁石装置の電流
リードを示す断面図
FIG. 1 is a sectional view showing a current lead of a superconducting magnet device according to an embodiment of the present invention.

【図2】超電導磁石装置の従来の電流リードを簡略化し
て示す断面図
FIG. 2 is a sectional view schematically showing a conventional current lead of a superconducting magnet device.

【図3】従来の電流リードの要部を拡大して示す断面図FIG. 3 is an enlarged cross-sectional view showing a main part of a conventional current lead.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 真空断熱容器 3 電流リード 4 高温側リード 5 低温側リード 7 芯材 8 酸化物系超電導導体 9 外管 11 磁気シ−ルド(酸化物系超電導体) 12 狭窄部 He 液体ヘリウム GHe ヘリウムガス 1 Superconducting Coil 2 Vacuum Insulation Container 3 Current Lead 4 High Temperature Side Lead 5 Low Temperature Side Lead 7 Core Material 8 Oxide Superconductor 9 Outer Tube 11 Magnetic Shield (Oxide Superconductor) 12 Constriction He Liquid Helium GHe Helium gas

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】真空断熱容器内に収納され液体ヘリウムに
浸漬された超電導コイルに外部電源からの励磁電流を通
流する電流リードが良導電性金属からなる高温側リード
と、酸化物系超電導導体からなる低温側リードとの直列
接続体からなり、低温のヘリウムガスを前記電流リード
内に通流することにより前記低温側リードが超電導状態
となるものにおいて、酸化物系超電導体からなる磁気シ
−ルドを前記低温側リードをその外周側から包囲するよ
う配置してなることを特徴とする超電導磁石装置の電流
リード。
1. A high-temperature-side lead whose current lead for passing an exciting current from an external power source is made of a good conductive metal in a superconducting coil housed in a vacuum heat insulation container and immersed in liquid helium, and an oxide superconducting conductor. A series connection body with a low temperature side lead, wherein the low temperature side lead is in a superconducting state by flowing a low temperature helium gas into the current lead. A current lead of a superconducting magnet device, characterized in that a field is arranged so as to surround the low temperature side lead from the outer peripheral side thereof.
【請求項2】磁気シ−ルドが、その下端に狭窄部を有す
る筒状に形成されてなることを特徴とする請求項1記載
の超電導磁石装置の電流リード。
2. The current lead of a superconducting magnet device according to claim 1, wherein the magnetic shield is formed in a cylindrical shape having a narrowed portion at its lower end.
【請求項3】磁気シ−ルドが、低温のヘリウムガスによ
り冷却されるよう形成されてなることを特徴とする請求
項1記載の超電導磁石装置の電流リード。
3. The current lead of a superconducting magnet device according to claim 1, wherein the magnetic shield is formed so as to be cooled by a low temperature helium gas.
【請求項4】磁気シ−ルドの下端部が液体ヘリウムによ
り冷却されるよう形成されてなることを特徴とする請求
項1記載の超電導磁石装置の電流リード。
4. The current lead of a superconducting magnet device according to claim 1, wherein the lower end of the magnetic shield is formed so as to be cooled by liquid helium.
JP3272959A 1991-10-22 1991-10-22 Current lead of superconductive magnet device Pending JPH05114753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3272959A JPH05114753A (en) 1991-10-22 1991-10-22 Current lead of superconductive magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3272959A JPH05114753A (en) 1991-10-22 1991-10-22 Current lead of superconductive magnet device

Publications (1)

Publication Number Publication Date
JPH05114753A true JPH05114753A (en) 1993-05-07

Family

ID=17521176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3272959A Pending JPH05114753A (en) 1991-10-22 1991-10-22 Current lead of superconductive magnet device

Country Status (1)

Country Link
JP (1) JPH05114753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117936222A (en) * 2024-03-22 2024-04-26 宁波健信超导科技股份有限公司 Superconducting magnet excitation low-temperature system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117936222A (en) * 2024-03-22 2024-04-26 宁波健信超导科技股份有限公司 Superconducting magnet excitation low-temperature system
CN117936222B (en) * 2024-03-22 2024-05-28 宁波健信超导科技股份有限公司 Superconducting magnet excitation low-temperature system

Similar Documents

Publication Publication Date Title
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
KR101657600B1 (en) Arrangement having a superconducting cable
JPH07142237A (en) Superconducting magnet device
JPH05114753A (en) Current lead of superconductive magnet device
JP2004335160A (en) Current lead for superconductive device
US11769615B2 (en) Superconducting joints
JPH05234749A (en) Superconducting device for magnetic levitation train
JP3218649B2 (en) Current leads for superconducting devices
JP2515813B2 (en) Current lead for superconducting equipment
JPH0548156A (en) Current lead for superconducting magnet device
JPH11329526A (en) Connecting device of superconducting wire for low temperature equipment
JPH03283678A (en) Current lead of superconducting magnet apparatus
JP3734630B2 (en) Conduction-cooled superconducting magnet system
JPH0511647B2 (en)
JP2981810B2 (en) Current lead of superconducting coil device
JP3127705B2 (en) Current lead using oxide superconductor
JPH07272921A (en) Current lead for superconducting device
JPH0418774A (en) Current lead of superconductive magnet device
JPH09116200A (en) Current lead for superconductive device
JPH11297524A (en) Current lead for superconducting device
JPH0869719A (en) Current lead for superconducting device
JP3144234B2 (en) Superconducting magnet device
JPH05160447A (en) Permanent current switch
JP2598164B2 (en) Non-inductive magnetic shield type bushing using high temperature superconducting material
JP4095742B2 (en) Conduction cooled superconducting magnet