JP2000101153A - Current lead for superconducting device - Google Patents

Current lead for superconducting device

Info

Publication number
JP2000101153A
JP2000101153A JP10264944A JP26494498A JP2000101153A JP 2000101153 A JP2000101153 A JP 2000101153A JP 10264944 A JP10264944 A JP 10264944A JP 26494498 A JP26494498 A JP 26494498A JP 2000101153 A JP2000101153 A JP 2000101153A
Authority
JP
Japan
Prior art keywords
temperature
low
superconducting
sheath
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10264944A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takita
清 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10264944A priority Critical patent/JP2000101153A/en
Publication of JP2000101153A publication Critical patent/JP2000101153A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current lead which is tolerant of thermal shrinkage and electromagnetic force without increase in heat penetration. SOLUTION: In a low temperature-side part of this current lead, a support 302 is provided with a channel. A sheath type high-temperature superconductor 300 is inserted in layers in the channel. Then, the support 302 and the sheath type high-temperature superconductor 300 are fastened into one body by an insulating tape 400. Both ends of the sheath type high-temperature superconductor 300 are connected electrically and mechanically to a low-temperature terminal 304 and a high-temperature terminal 303 respectively by solder 500. The low-temperature terminal 304 and the high-temperature terminal 303 are formed at copper or a copper alloy. The support 302 is formed of the material of a low coefficient of thermal conductivity. The insulating tape is constituted of an aramid fiber insulating sheet of high strength and an insulating sheet of a low coefficient of friction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気浮上列車、磁
気共鳴画像診断装置等の超電導装置において、真空断熱
容器に収納され液体ヘリウムに浸漬された超電導コイル
等に外部電源から電流を供給するための超電導装置用電
流リードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting apparatus such as a magnetic levitation train, a magnetic resonance imaging apparatus, etc., for supplying a current from an external power supply to a superconducting coil or the like which is housed in a vacuum insulated container and immersed in liquid helium. And a current lead for a superconducting device.

【0002】[0002]

【従来の技術】超電導装置の超電導コイルは、液体ヘリ
ウム等の極低温冷媒により冷却されることにより超電導
状態を保持するので、通常、極低温の窒素を用いた輻射
シールドや多重断熱層を備えた真空断熱容器中に、液体
ヘリウムに浸漬した状態で収納される。この超電導コイ
ルを励磁するためには、真空断熱容器に電流リードを組
み込み、外部電源と接続して励磁電流を通電する。この
とき、常温部と極低温部とを連結することになるので、
この電流リードを介して極低温部へ侵入する熱が多い
と、高価な液体ヘリウムを大量に消費することになる。
従って、電流リードは自身による熱侵入により気化した
低温のヘリウムガスを利用して自己冷却され、常温側か
らの伝導による熱侵入、および通電に伴うジュール発熱
が極低温部へ侵入するのを極力抑制するように配慮して
構成されている。常温部からの熱侵入を抑えるために
は、電流リードの導体の断面積を小さくすることが有効
であるが、導体の断面積を小さくすると電流リードの電
気抵抗が大きくなるので、ジュール発熱が大きくなる。
従って、冷却効果を勘案しこれらのバランスのとれた構
成とすることが重要である。
2. Description of the Related Art Since a superconducting coil of a superconducting device maintains a superconducting state by being cooled by a cryogenic refrigerant such as liquid helium, it is usually provided with a radiation shield using cryogenic nitrogen and multiple heat insulating layers. It is stored in a vacuum insulated container while immersed in liquid helium. In order to excite the superconducting coil, a current lead is incorporated in a vacuum insulated container and connected to an external power supply to supply an exciting current. At this time, since the normal temperature part and the extremely low temperature part will be connected,
If much heat enters the cryogenic part through the current lead, a large amount of expensive liquid helium will be consumed.
Therefore, the current lead is self-cooled by using the low-temperature helium gas vaporized by heat penetration by itself, minimizing the heat penetration due to conduction from the normal temperature side and the Joule heat generated by energization entering the cryogenic part as much as possible. It is configured with consideration for. It is effective to reduce the cross-sectional area of the conductor of the current lead in order to suppress heat intrusion from the room temperature part.However, if the cross-sectional area of the conductor is reduced, the electric resistance of the current lead increases, so that Joule heat increases. Become.
Therefore, it is important that these components be balanced in consideration of the cooling effect.

【0003】電流リードの導体には、一般に、銅あるい
は銅合金等の良電導体の金属が使用されてきたが、高温
超電導導体が発見されてから、高温超電導導体が液体窒
素温度状態でも超電導状態を保持できるため、ジュール
発熱がなく、かつ銅導体に比べ低熱伝導性を有すること
から、電流リードの低温側リード部の導体としての応用
が期待される。このため、極低温部への熱侵入を低減で
きる超電導装置用電流リードの開発が行われており、例
えば、特開平4−168705号で提案されている。こ
の提案では、電流リードが複数の平行に並ぶ酸化物超電
導導線で構成され、この酸化物超電導導線は酸化物超電
導導体が金属シースによって被覆されたものである。ま
た、この並列に配置した複数枚の超電導導線を拡散接合
により一体化して導体化している。また、特開平5−1
09530号では電流リードを超電導特性の異なる複数
種類、例えば低温部、中温部、高温部で構成し、これら
をそれぞれ接続部材で長さ方向に接続している。
[0003] In general, a good conductor such as copper or a copper alloy has been used as a conductor of a current lead. However, since the discovery of a high-temperature superconductor, the high-temperature superconductor has been in a superconducting state even at the temperature of liquid nitrogen. Therefore, since it does not generate Joule heat and has lower thermal conductivity than a copper conductor, it is expected to be used as a conductor of a low-temperature side lead portion of a current lead. For this reason, a current lead for a superconducting device capable of reducing heat penetration into a cryogenic portion has been developed, and is proposed in, for example, Japanese Patent Application Laid-Open No. 4-168705. In this proposal, a current lead is constituted by a plurality of parallelly arranged oxide superconducting wires, and the oxide superconducting wires are formed by covering an oxide superconducting conductor with a metal sheath. Further, the plurality of superconducting wires arranged in parallel are integrated into a conductor by diffusion bonding. Further, Japanese Patent Application Laid-Open No.
In Japanese Patent No. 09530, a plurality of types of current leads having different superconducting characteristics, for example, a low-temperature portion, a medium-temperature portion, and a high-temperature portion, are connected in the longitudinal direction by connecting members.

【0004】シース型高温超電導導体は、シース材料を
合金化(例えば、金を添加)することにより、熱伝導を
純銀に比べ小さく抑えることが現在の技術で可能であ
る。また、シース型高温超電導導体は、バルク型高温超
電導導体に比べ、導体部にクエンチ(超電導状態から常
電導状態に移行する現象)が発生した場合に、電流がシ
ース材(銀または銀合金)にバイパスして流れるため、
安全性が高いことから、大容量電流リードの低温側リー
ドへの応用が期待される。現在では、10kA級超電導
電流リードの開発例がある。このため、超電導装置の経
済的な運転を実現するために、高温超電導導体を用いた
電流リードの開発が活発化している。
[0004] The current technology makes it possible to suppress the heat conduction of a sheath-type high-temperature superconducting conductor to be smaller than that of pure silver by alloying the sheath material (for example, adding gold). In addition, compared to the bulk type high-temperature superconducting conductor, the sheath-type high-temperature superconducting conductor transfers current to the sheath material (silver or silver alloy) when a quench occurs in the conductor (transition from the superconducting state to the normal conducting state). Because it flows by bypass,
Because of its high safety, it is expected that large capacity current leads will be applied to low temperature side leads. At present, there is a development example of a 10 kA class superconducting current lead. Therefore, in order to realize economical operation of the superconducting device, the development of a current lead using a high-temperature superconducting conductor has been activated.

【0005】次に、具体的な図面で説明する。図4は、
従来技術による超電導装置用電流リードを用いた超電導
装置の一例を示す概要図であり、(a)は全体構成図、
(b)は(a)のB−B’部分の拡大断面図、(c)は
(a)のC−C’部分の拡大断面図である。図4におい
て、1は超電導コイル、2は電流リード、3は真空容
器、4は液体ヘリウム、10は液体ヘリウム容器、11
は引出しリード、20は中間接続金具、21は低温端
子、22は低温側リード、23は高温側リード、24は
常温端子、41はヘリウムガス、221は筒状容器、2
22は高温超電導導体、223は中空部、231は筒状
容器、232は導体束、233は中空部、241は出口
管、242は端子金具である。電流リード2は、下から
低温端子21、低温側リード22、高温側リード23お
よび常温端子24から構成され、低温側リード22と高
温側リード23は中間接続金具20により電気的機械的
に接続されている。低温端子21は、引出しリード11
を介して、真空で断熱された液体ヘリウム容器10に収
納された液体ヘリウム4に浸漬されている超電導コイル
1に接続されている。常温端子24は、一部だけを示す
真空容器3の外部の大気中にあり、端子金具242を介
して図示されていない外部電源に接続されている。ヘリ
ウムガス41は、低温端子21に設置された流通孔から
電流リード2の内部へ流入し、その内部にある導体を冷
却したのち、常温端子24に設置した出口管241より
外部に放出されるか、場合によっては回収される。低温
側リード22は、筒状容器221とこの内部に配置され
た高温超電導導体222とからなり、これらの間に中空
部223がある。この中空部223をヘリウムガス41
が流れることにより、高温超電導導体222が超電導状
態に保持される。図では、高温超電導導体222が平板
状のシース型で構成されたものを示している。高温側リ
ード23は、筒状容器231とこの中を通る導体束23
2とから構成され、中空部233を導体冷却のためのヘ
リウムガス41が流れる。
Next, a specific drawing will be described. FIG.
It is the schematic which shows an example of the superconducting device using the current lead for superconducting devices by a prior art, (a) is a whole block diagram,
(B) is an enlarged sectional view of a BB 'part of (a), and (c) is an enlarged sectional view of a CC' part of (a). 4, 1 is a superconducting coil, 2 is a current lead, 3 is a vacuum container, 4 is liquid helium, 10 is a liquid helium container, 11
Is a lead lead, 20 is an intermediate connection fitting, 21 is a low temperature terminal, 22 is a low temperature side lead, 23 is a high temperature side lead, 24 is a normal temperature terminal, 41 is helium gas, 221 is a cylindrical container,
22 is a high-temperature superconducting conductor, 223 is a hollow portion, 231 is a cylindrical container, 232 is a conductor bundle, 233 is a hollow portion, 241 is an outlet tube, and 242 is a terminal fitting. The current lead 2 includes a low-temperature terminal 21, a low-temperature lead 22, a high-temperature lead 23, and a normal-temperature terminal 24 from below, and the low-temperature lead 22 and the high-temperature lead 23 are electrically and mechanically connected by an intermediate fitting 20. ing. The low-temperature terminal 21 is connected to the lead 11
Is connected to the superconducting coil 1 immersed in the liquid helium 4 stored in the liquid helium container 10 insulated by vacuum. The room temperature terminal 24 is in the atmosphere outside the vacuum vessel 3 showing only a part thereof, and is connected to an external power supply (not shown) via a terminal fitting 242. The helium gas 41 flows into the inside of the current lead 2 from the flow hole provided in the low-temperature terminal 21, cools the conductor inside the current lead 2, and is discharged outside through the outlet tube 241 provided in the room temperature terminal 24. , And may be recovered. The low-temperature side lead 22 includes a cylindrical container 221 and a high-temperature superconducting conductor 222 disposed inside the cylindrical container 221, and has a hollow portion 223 between them. This hollow portion 223 is filled with helium gas 41
Flows, high-temperature superconducting conductor 222 is maintained in a superconducting state. In the drawing, the high-temperature superconducting conductor 222 is shown as a flat sheath. The high-temperature side lead 23 includes a cylindrical container 231 and a conductor bundle 23 passing therethrough.
The helium gas 41 for cooling the conductor flows through the hollow portion 233.

【0006】図5は、従来技術による超電導装置用電流
リードの低温側リードを示す概念図で、(a)は導体部
の概念図、(b)は低温側リードの導体構成を示す概念
図である。(a)に示すように、導体部は、シース型高
温超電導導体240〜243が、この順番で徐々に短く
され、これらのシース型高温超電導導体240〜243
の高温側端面を合わせるようにして並列配置される構成
であり、低温側になるほどシース型高温超電導導体の積
層枚数が低減する構成となっている。なお、シース型高
温超電導導体240〜243は、その金属シースが隣接
するもの同士の間で拡散接合されることにより一体化さ
れている。また、(b)に示すように、低熱伝導性の材
料からなる支持体200に設けられた溝部に、図5
(a)に示すシース型高温超電導導体240〜243を
挿入し、樹脂250を用いて固定している。
FIGS. 5A and 5B are conceptual diagrams showing a low-temperature side lead of a current lead for a superconducting device according to the prior art. FIG. 5A is a conceptual diagram of a conductor portion, and FIG. 5B is a conceptual diagram showing a conductor configuration of a low-temperature side lead. is there. As shown in (a), in the conductor portion, the sheath-type high-temperature superconductors 240 to 243 are gradually shortened in this order, and these sheath-type high-temperature superconductors 240 to 243 are formed.
Are arranged in parallel so that the high-temperature side end faces thereof are aligned, and the number of laminated sheath-type high-temperature superconducting conductors decreases as the temperature decreases. In addition, the sheath-type high-temperature superconducting conductors 240 to 243 are integrated by diffusion bonding between adjacent metal sheaths. Further, as shown in FIG. 5B, a groove provided in a support 200 made of a material having low thermal conductivity is provided in FIG.
The sheath-type high-temperature superconductors 240 to 243 shown in (a) are inserted and fixed using a resin 250.

【0007】[0007]

【発明が解決しようとする課題】上述した構成の低温側
リードにおいては、冷却された場合に、支持体200と
シース型高温超電導導体240〜243と樹脂250と
の相互の熱収縮率の差によって、樹脂250にクラック
の発生する恐れがある。また、高強度を保持するために
は、樹脂部の断面を大きくすることで解決できるが、樹
脂部の熱伝導により極低温部への熱侵入量が増大する。
In the low-temperature side lead having the above-described structure, when cooled, the difference in thermal shrinkage between the support 200, the sheath-type high-temperature superconducting conductors 240 to 243, and the resin 250 causes the difference. In this case, cracks may occur in the resin 250. Further, in order to maintain high strength, it is possible to solve the problem by enlarging the cross section of the resin portion. However, heat penetration into the cryogenic portion increases due to heat conduction of the resin portion.

【0008】本発明の目的は、熱侵入量を増加すること
なく、熱収縮および電磁力に耐えられる超電導装置用電
流リードを提供することにある。
An object of the present invention is to provide a current lead for a superconducting device which can withstand heat shrinkage and electromagnetic force without increasing the amount of heat penetration.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、真空断熱容器に収納され液体ヘ
リウムにより極低温に冷却された超電導コイルに外部電
源から電流を供給するものであって、良導電性金属から
なる高温側リードとシース型高温超電導導体からなる低
温側リードとが直列に接続された超電導装置用電流リー
ドにおいて、前記低温側リードの支持体に形成された溝
部に前記シース型高温超電導導体を積層して配置し、か
つ前記支持体と前記シース型高温超電導導体とを絶縁テ
ープを用いて一体化することとした。
According to the present invention, a current is supplied from an external power supply to a superconducting coil housed in a vacuum insulated container and cooled to a very low temperature by liquid helium. In a current lead for a superconducting device in which a high-temperature side lead made of a good conductive metal and a low-temperature side lead made of a sheath-type high-temperature superconducting conductor are connected in series, the groove formed in the support of the low-temperature side lead is The sheath-type high-temperature superconducting conductor is laminated and arranged, and the support and the sheath-type high-temperature superconducting conductor are integrated using an insulating tape.

【0010】また、上記で使用する絶縁テープを、低摩
擦係数の絶縁シートとアラミド繊維製の絶縁シートとか
らなる絶縁テープとした。
Further, the insulating tape used above is an insulating tape comprising an insulating sheet having a low coefficient of friction and an insulating sheet made of aramid fiber.

【0011】[0011]

【発明の実施の形態】図1は、この発明の超電導装置用
電流リードの低温側リードの導体構成例を示す概念図
で、(a)は断面図、(b)は(a)のA−A’面より
右側の部分の斜視図である。図1において、支持体30
2には溝部を設けてあり、ここにシース型高温超電導導
体300を積層して挿入し、絶縁テープ400により支
持体302とシース型高温超電導導体300とを一体に
固定する。また、このシース型高温超電導導体300の
両端部を、それぞれ低温端子304および高温端子30
3に半田500によって電気的機械的に接続する。な
お、低温端子304および高温端子303は、銅または
銅合金で構成されている。また、支持体302は、低熱
伝導率の性質を有する材料で構成され、例えばステンレ
ス鋼、またはガラス繊維強化樹脂などで構成される。
1 is a conceptual diagram showing an example of a conductor configuration of a low-temperature side lead of a current lead for a superconducting device according to the present invention. FIG. 1A is a cross-sectional view, and FIG. It is a perspective view of the part on the right side from A 'plane. In FIG. 1, the support 30
2 is provided with a groove, into which the sheath-type high-temperature superconducting conductor 300 is laminated and inserted, and the support 302 and the sheath-type high-temperature superconducting conductor 300 are integrally fixed by the insulating tape 400. Further, both ends of the sheath-type high-temperature superconducting conductor 300 are connected to the low-temperature terminal 304 and the high-temperature terminal 30 respectively.
3 is electrically and mechanically connected by a solder 500. The low-temperature terminal 304 and the high-temperature terminal 303 are made of copper or a copper alloy. The support 302 is made of a material having low thermal conductivity, for example, stainless steel or glass fiber reinforced resin.

【0012】図2は、図1の絶縁テープ400の構成例
を示す概念図である。絶縁テープ400は、高強度のア
ラミド繊維製の絶縁シート401と、低摩擦係数の絶縁
シート402とで構成している。なお、絶縁シート40
1の材料としては、極低温においても引張強度が高いこ
とからアラミド繊維を用いている。また、低摩擦係数の
絶縁シート402としては、例えば、ポリテトラフルオ
ルエチレン製のシートを用いることができる。また、絶
縁テープ400の両面のうち、低摩擦係数の絶縁シート
402の側の面がシース型高温超電導導体300に当接
するように絶縁テープ400を巻回することにより、熱
収縮の際に絶縁テープ400とシース型高温超電導導体
300との間の接触部にすべりが発生し、各部材の熱収
縮率の差によりシース型高温超電導導体300に歪みが
発生することがなくなり、歪みによる臨界電流値の劣化
が抑制され、熱収縮に耐える構成となる。
FIG. 2 is a conceptual diagram showing a configuration example of the insulating tape 400 of FIG. The insulating tape 400 includes an insulating sheet 401 made of high-strength aramid fiber and an insulating sheet 402 having a low friction coefficient. The insulating sheet 40
Aramid fiber is used as the material 1 because of its high tensile strength even at extremely low temperatures. As the insulating sheet 402 having a low friction coefficient, for example, a sheet made of polytetrafluoroethylene can be used. In addition, by winding the insulating tape 400 so that the surface on the side of the insulating sheet 402 having a low coefficient of friction is in contact with the sheath-type high-temperature superconducting conductor 300 among the two surfaces of the insulating tape 400, Slip occurs at the contact portion between the core 400 and the sheath-type high-temperature superconducting conductor 300, and no distortion occurs in the sheath-type high-temperature superconducting conductor 300 due to the difference in thermal shrinkage of each member. Deterioration is suppressed, and the structure is resistant to heat shrinkage.

【0013】また、図2に示される絶縁テープ400の
構成例においては、低摩擦係数の絶縁シート402の側
の面がシース型高温超電導導体300に当接するように
絶縁テープ400を巻回する場合に、低摩擦係数の絶縁
シート402とアラミド繊維製の絶縁シート401との
シート幅方向の相対位置が多少ずれてもアラミド繊維製
の絶縁シート401の面がシース型高温超電導導体30
0に当接することのないように、低摩擦係数の絶縁シー
ト402の幅をアラミド繊維製の絶縁シート401の幅
よりも広くしている。
In the configuration example of the insulating tape 400 shown in FIG. 2, the insulating tape 400 is wound so that the surface on the side of the insulating sheet 402 having a low friction coefficient abuts on the sheath-type high-temperature superconducting conductor 300. In addition, even if the relative positions of the low friction coefficient insulating sheet 402 and the aramid fiber insulating sheet 401 in the sheet width direction are slightly shifted, the surface of the aramid fiber insulating sheet 401 is not covered by the sheath-type high-temperature superconducting conductor 30.
The width of the insulating sheet 402 having a low coefficient of friction is made larger than the width of the insulating sheet 401 made of aramid fiber so as not to come into contact with zero.

【0014】図3は、この発明の超電導装置用電流リー
ドの低温側リードの異なる導体構成例を示す概念図であ
り、低温側リード部の部分的な側面図である。図3の導
体構成例では、図1の導体構成例と同様に、シース型高
温超電導導体300Aが支持体302Aに設けられた溝
部に挿入され、絶縁テープ400により支持体302A
とシース型高温超電導導体300Aとが一体に固定され
るが、このシース型超電導導体300Aの積層枚数が低
温側なるほど低減される構成となっている点で図1の導
体構成例と異なっている。図3では、右側の高温側から
左側の低温側になるほどシース型高温超電導導体300
Aの積層枚数が低減される構成が破線で示されている。
このような構成のシース型高温超電導導体300Aを絶
縁テープ400により支持体302Aに一体に固定でき
るようにするために、図3の左側の低温側において支持
体302Aの上面よりもシース型高温超電導導体300
Aの上面が低い位置にある箇所では、それぞれの箇所で
の支持体302Aの上面とシース型高温超電導導体30
0Aの上面との高さ寸法の差d1 ,d2 に合わせた深さ
のスリット311,312を設け、巻回される絶縁テー
プ400がシース型高温超電導導体300Aの上面に当
接するように構成されている。
FIG. 3 is a conceptual diagram showing a different conductor configuration example of the low-temperature side lead of the current lead for a superconducting device according to the present invention, and is a partial side view of the low-temperature side lead portion. In the conductor configuration example of FIG. 3, similarly to the conductor configuration example of FIG. 1, the sheath-type high-temperature superconducting conductor 300A is inserted into a groove provided in the support 302A, and the support 302A is insulated by the insulating tape 400.
1 and the sheath-type high-temperature superconducting conductor 300A are integrally fixed, but is different from the conductor configuration example of FIG. 1 in that the number of layers of the sheath-type superconducting conductor 300A decreases as the temperature decreases. In FIG. 3, the sheath-type high-temperature superconducting conductor 300 moves from the right high temperature side to the left low temperature side.
A configuration in which the number of stacked layers A is reduced is indicated by a broken line.
In order to enable the sheath-type high-temperature superconducting conductor 300A having such a configuration to be integrally fixed to the support 302A by the insulating tape 400, the sheath-type high-temperature superconducting conductor is located on the lower temperature side on the left side of FIG. 300
A, the upper surface of the support 302A and the sheath-type high-temperature
Slits 311 and 312 are provided with depths corresponding to the height differences d1 and d2 from the upper surface of 0A, and the wound insulating tape 400 is configured to abut the upper surface of the sheath-type high-temperature superconducting conductor 300A. I have.

【0015】なお、図3の導体構成例における、シース
型高温超電導導体300Aと図示されていない低温端子
および高温端子との接続の構成、絶縁テープ400の構
成、支持体302Aの材料、低温端子および高温端子の
材料については図1の導体構成例と同じものとしてよ
い。また、上述の図1あるいは図3に示される導体構成
例において、絶縁テープ400がより密に巻回されるほ
ど、シース型高温超電導導体300,300Aの支持体
302,302Aへの固定はより十分なものとなる。一
方、シース型超電導導体300,300Aにおいては、
低温のヘリウムガスとの直接の接触による冷却表面積が
最小限確保されている必要がある。従って、絶縁テープ
400は、シース型高温超電導導体300,300Aに
おける必要最小限な冷却表面積が確保された上で、支持
体302,302Aへの固定が十分なものとなるような
ピッチで巻回するようにするとよい。
In the example of the conductor configuration shown in FIG. 3, the configuration of the connection between the sheath-type high-temperature superconducting conductor 300A and the low-temperature terminal and the high-temperature terminal (not shown), the configuration of the insulating tape 400, the material of the support 302A, the low-temperature terminal and The material of the high-temperature terminal may be the same as the conductor configuration example of FIG. In the conductor configuration example shown in FIG. 1 or FIG. 3, as the insulating tape 400 is wound more densely, the fixing of the sheath-type high-temperature superconducting conductors 300, 300A to the supports 302, 302A becomes more sufficient. It becomes something. On the other hand, in the sheath type superconducting conductors 300 and 300A,
It is necessary that the cooling surface area by direct contact with the low-temperature helium gas be kept to a minimum. Therefore, the insulating tape 400 is wound at a pitch such that the necessary minimum cooling surface area of the sheath-type high-temperature superconducting conductors 300 and 300A is secured, and the fixing to the supports 302 and 302A is sufficient. It is good to do so.

【0016】[0016]

【発明の効果】本発明によれば、シース型高温超電導導
体と支持体とを絶縁テープを用いて一体化した導体構成
とすることにより、熱収縮および電磁力に耐える導体構
成を提供することができる。また、従来構成におけるよ
うな、シース型高温超電導導体を支持体に固定するため
の樹脂を使用しないので、極低温部への熱侵入量の増大
を防止することができる。さらに、絶縁テープとして、
低摩擦係数の絶縁シートと高強度のアラミド繊維製絶縁
シートとによる複合化した絶縁テープを使用することに
より、熱収縮の際には絶縁テープとシース型高温超電導
導体との間の接触部にすべりが発生し、熱収縮に耐える
構成とすることができる。
According to the present invention, by providing a conductor structure in which a sheath-type high-temperature superconducting conductor and a support are integrated using an insulating tape, it is possible to provide a conductor structure capable of withstanding heat shrinkage and electromagnetic force. it can. Further, since a resin for fixing the sheath-type high-temperature superconducting conductor to the support as in the conventional configuration is not used, it is possible to prevent an increase in the amount of heat entering the cryogenic portion. Furthermore, as insulating tape,
By using a composite insulating tape composed of an insulating sheet with a low coefficient of friction and a high-strength aramid fiber insulating sheet, slippage occurs at the contact between the insulating tape and the sheath-type high-temperature superconducting conductor during thermal contraction. Is generated, and the structure can withstand heat shrinkage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の超電導装置用電流リードの低温側リ
ードの導体構成例を示す概念図で、(a)は断面図、
(b)は(a)のA−A’面より右側の部分の斜視図。
FIG. 1 is a conceptual diagram showing an example of a conductor configuration of a low-temperature side lead of a current lead for a superconducting device according to the present invention.
(B) is a perspective view of a part on the right side of the AA 'plane of (a).

【図2】図1の絶縁テープの構成例を示す概念図。FIG. 2 is a conceptual diagram showing a configuration example of the insulating tape of FIG.

【図3】この発明の超電導装置用電流リードの低温側リ
ードの異なる導体構成例を示す概念図。
FIG. 3 is a conceptual diagram showing a different conductor configuration example of the low-temperature side lead of the current lead for a superconducting device of the present invention.

【図4】従来技術による超電導装置用電流リードを用い
た超電導装置の一例を示す概念図で、(a)は全体構成
図、(b)は(a)のB−B’部分の拡大断面図、
(c)は(a)のC−C’部分の拡大断面図。
4A and 4B are conceptual diagrams showing an example of a superconducting device using a current lead for a superconducting device according to the related art, where FIG. 4A is an overall configuration diagram, and FIG. 4B is an enlarged cross-sectional view of a portion BB ′ of FIG. ,
(C) is an enlarged sectional view of a CC ′ portion of (a).

【図5】従来技術による超電導装置用電流リードの低温
側リードを示す概念図で、(a)は導体部の概念図、
(b)は低温側リードの導体構成を示す概念図。
5A and 5B are conceptual diagrams showing a low-temperature side lead of a current lead for a superconducting device according to a conventional technique, wherein FIG.
(B) is a conceptual diagram showing a conductor configuration of a low-temperature side lead.

【符号の説明】[Explanation of symbols]

300,300A…シース型高温超電導導体、302,
302A…支持体、303…高温端子、304…低温端
子、311,312…スリット、400…絶縁テープ、
401…絶縁シート、402…低摩擦係数の絶縁シー
ト、500…半田。
300, 300A ... sheath type high-temperature superconducting conductor, 302,
302A: support, 303: high-temperature terminal, 304: low-temperature terminal, 311, 312: slit, 400: insulating tape,
Reference numeral 401 denotes an insulating sheet, 402 denotes an insulating sheet having a low coefficient of friction, and 500 denotes a solder.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真空断熱容器に収納され液体ヘリウムによ
り極低温に冷却された超電導コイルに外部電源から電流
を供給するものであって、良導電性金属からなる高温側
リードとシース型高温超電導導体からなる低温側リード
とが直列に接続された超電導装置用電流リードにおい
て、前記低温側リードの支持体に形成された溝部に前記
シース型高温超電導導体を積層して配置し、かつ前記支
持体と前記シース型高温超電導導体とを絶縁テープを用
いて一体化したことを特徴とする超電導装置用電流リー
ド。
An electric power is supplied from an external power supply to a superconducting coil housed in a vacuum insulated container and cooled to a very low temperature by liquid helium, wherein a high-temperature side lead made of a good conductive metal and a sheath-type high-temperature superconducting conductor are provided. In the current lead for superconducting devices, wherein the low-temperature side lead is connected in series, the sheath-type high-temperature superconducting conductor is laminated and arranged in a groove formed in a support of the low-temperature side lead, and A current lead for a superconducting device, wherein the sheath-type high-temperature superconducting conductor is integrated using an insulating tape.
【請求項2】請求項1記載の超電導装置用電流リードに
おいて、前記絶縁テープが低摩擦係数の絶縁シートとア
ラミド繊維製の絶縁シートとからなることを特徴とする
超電導装置用電流リード。
2. The current lead for a superconducting device according to claim 1, wherein said insulating tape comprises an insulating sheet having a low friction coefficient and an insulating sheet made of aramid fiber.
JP10264944A 1998-09-18 1998-09-18 Current lead for superconducting device Pending JP2000101153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10264944A JP2000101153A (en) 1998-09-18 1998-09-18 Current lead for superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10264944A JP2000101153A (en) 1998-09-18 1998-09-18 Current lead for superconducting device

Publications (1)

Publication Number Publication Date
JP2000101153A true JP2000101153A (en) 2000-04-07

Family

ID=17410366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10264944A Pending JP2000101153A (en) 1998-09-18 1998-09-18 Current lead for superconducting device

Country Status (1)

Country Link
JP (1) JP2000101153A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887584A1 (en) * 2006-08-08 2008-02-13 Nexans System with a superconducting cable
CN104733151A (en) * 2013-12-20 2015-06-24 通用电气公司 Device and method for storing superconductor leads and superconducting magnet system using device
US20210012930A1 (en) * 2018-03-26 2021-01-14 Mitsubishi Materials Corporation Method for manufacturing insulating superconductive wire rod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887584A1 (en) * 2006-08-08 2008-02-13 Nexans System with a superconducting cable
KR101314789B1 (en) 2006-08-08 2013-10-08 넥쌍 System with a superconducting cable
CN104733151A (en) * 2013-12-20 2015-06-24 通用电气公司 Device and method for storing superconductor leads and superconducting magnet system using device
US20210012930A1 (en) * 2018-03-26 2021-01-14 Mitsubishi Materials Corporation Method for manufacturing insulating superconductive wire rod

Similar Documents

Publication Publication Date Title
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
JPH0277106A (en) Ceramic superconductor very low temperature current conductor
WO2017057064A1 (en) High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil
WO1997024733A1 (en) High temperature superconductor lead assembly
US5298679A (en) Current lead for cryostat using composite high temperature superconductors
JPS60189207A (en) Superconductive magnet device
JP2980808B2 (en) Oxide superconducting current lead device
JP3151159B2 (en) Superconducting current lead
US4904970A (en) Superconductive switch
JP5266852B2 (en) Superconducting current lead
JPS6350844B2 (en)
JP2756551B2 (en) Conduction-cooled superconducting magnet device
JP4599807B2 (en) Current leads for superconducting equipment
JP2000101153A (en) Current lead for superconducting device
JP2008305765A (en) Oxide superconductive current lead
JP2020136637A (en) High-temperature superconducting magnet device
JPH11260162A (en) Superconducting current lead
US4395584A (en) Cable shaped cryogenically cooled stabilized superconductor
JP4638983B2 (en) Superconductor and manufacturing method thereof
US11769615B2 (en) Superconducting joints
JP6871117B2 (en) High-temperature superconducting coil device and high-temperature superconducting magnet device
JP2000082851A (en) Current lead for supfrconducting device
JPH10247532A (en) Current lead for superconductive device
JP2981810B2 (en) Current lead of superconducting coil device
JP3120625B2 (en) Oxide superconducting conductor