JPS63283003A - Superconducting coil device - Google Patents

Superconducting coil device

Info

Publication number
JPS63283003A
JPS63283003A JP62116833A JP11683387A JPS63283003A JP S63283003 A JPS63283003 A JP S63283003A JP 62116833 A JP62116833 A JP 62116833A JP 11683387 A JP11683387 A JP 11683387A JP S63283003 A JPS63283003 A JP S63283003A
Authority
JP
Japan
Prior art keywords
coil device
superconducting coil
superconducting
annular conductor
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62116833A
Other languages
Japanese (ja)
Other versions
JPH0787138B2 (en
Inventor
Yoshinori Shiraku
善則 白楽
Hisanao Ogata
久直 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62116833A priority Critical patent/JPH0787138B2/en
Publication of JPS63283003A publication Critical patent/JPS63283003A/en
Publication of JPH0787138B2 publication Critical patent/JPH0787138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain a coil which has a completely zero value in electric resistance by forming an annular conductor having no connector of an oxide superconducting ceramic material, and combining a plurality of the conductors to form a superconducting coil group. CONSTITUTION:Annular conductors 1a, 1b are formed of oxide superconducting ceramic material having perovskite-like crystal structure. Electric insulators 2a, 2b are provided between the conductors 1a and 1b. The ceramics are represented by a chemical formula made of (L1-xBax)CuOy(here 0.4<=x<=0.7, y<=3 and L is a lanthanoid element, such as Sc, Y and La). The insulators 2a, 2b use plastics, such as glass fiber-reinforced epoxy resin or ceramics, such as alumina, zirconia or the like. Thus, a coil having completely zero value is resistance is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超電導セラミクスを利用した超電導装
置に関し、特に永久磁場を発生するに好適な超電導コイ
ル装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting device using oxide superconducting ceramics, and particularly to a superconducting coil device suitable for generating a permanent magnetic field.

〔従来の技術〕[Conventional technology]

Y−Ba−Cu系酸化物(Y:イツトリウム、Ba:バ
リウム、Cu:銅)はTa205にの高い転移温度を有
する酸化物超電導材料である。このことは、フィジカル
・レビュー・レターズ(Physical Revie
w Letters ) 58 、 p p 908−
910 (1987)において論じられている。
Y--Ba--Cu based oxides (Y: yttrium, Ba: barium, Cu: copper) are oxide superconducting materials having a high transition temperature to Ta205. This is explained in Physical Review Letters.
w Letters) 58, pp 908-
910 (1987).

この超電導材料は、酸化性雰囲気においても高温まで安
定で、超電導素子に適用する場合には、信頼性が高く、
また液体窒素温度レベルに動作温度を設定できる可能性
が述べられている。
This superconducting material is stable up to high temperatures even in oxidizing atmospheres, and is highly reliable when applied to superconducting elements.
The possibility of setting the operating temperature at the liquid nitrogen temperature level is also mentioned.

さて、Y−Ba−Cu系酸化物の超電導材料の線の製法
は、例えば銅や銀などの管に前記酸化物の粉末を充てん
し、これを熱処理することによって達成されている。と
ころが、このようにして得られた線を用いてコイルを作
り、閉ループとするためには、必ず酸化物超電導体間の
接続が必要となる。この接続は、従来インジウムなどを
用いて行われていたが、その接続抵抗は完全に零とする
ことができないため、永久電流モードで前記超電導コイ
ルを動作させることが難しかった。
Now, a method for manufacturing a wire of a superconducting material of Y--Ba--Cu based oxide is accomplished by filling a tube of copper, silver, etc. with powder of the oxide and heat-treating the tube. However, in order to make a coil using the wire obtained in this way and create a closed loop, connections between the oxide superconductors are necessarily required. This connection has conventionally been made using indium or the like, but since the connection resistance cannot be made completely zero, it has been difficult to operate the superconducting coil in persistent current mode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、超電導セラミクス線の電気的接続の点
について配慮がされておらず、接続部で必ず有限の電気
抵抗が存在し、そのため完全に零抵抗で動作する超電導
コイルが得られないという問題があった。
The above-mentioned conventional technology does not take into consideration the electrical connection of superconducting ceramic wires, and there is always a finite electrical resistance at the connection part, which makes it impossible to obtain a superconducting coil that operates with completely zero resistance. was there.

本発明の目的は、酸化物系の超電導セラミクスで構成す
る、完全に零抵抗で動作する超電導コイル装置を提供す
ることにある。
An object of the present invention is to provide a superconducting coil device constructed of oxide-based superconducting ceramics and operating with completely zero resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、酸化物超電導セラミクス材料で接続部のな
い環状導体を形成し、この環状導体を複数個組合せて超
電導コイル群を構成し、これらの環状導体に沿って超電
導流を誘導させることにより、達成される。
The above purpose is to form an annular conductor without a connection part using an oxide superconducting ceramic material, combine a plurality of annular conductors to form a superconducting coil group, and induce a superconducting current along these annular conductors. achieved.

即ち本発明に係る超電導フィル装置は、ペロブスカイト
状結晶構造よりなる酸化物超電導セラミクス材料を利用
するものであつ−C1この酸化物超 −電導材料で複数
の環状導体群を構成し、これらの環状導体群に電流を流
して永久磁場発生器にすることを特徴とする。
That is, the superconducting film device according to the present invention utilizes an oxide superconducting ceramic material having a perovskite-like crystal structure. It is characterized by passing an electric current through the group and turning it into a permanent magnetic field generator.

〔作用〕[Effect]

前記酸化物超電導セラミクスの環状導体は、一体成形し
、焼結、熱処理を行う。それによって、前記環状導体は
接続部がなく、完全に超電導体で閉ループを形成できる
ので、電気抵抗が完全に零のコイルを得ることができる
The annular conductor of the oxide superconducting ceramic is integrally molded, sintered, and heat treated. As a result, the annular conductor has no connecting portion and can form a closed loop completely of superconductor, thereby making it possible to obtain a coil with completely zero electrical resistance.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。la
’、lb・・・は、ペロブスカイト状結晶構造をもつ酸
化物超電導セラミクス材料より構成された環状導体で、
この場合円形状導体を示している。
An embodiment of the present invention will be described below with reference to FIG. la
', lb... are annular conductors made of an oxide superconducting ceramic material with a perovskite crystal structure,
In this case, a circular conductor is shown.

前記酸化物超電導セラミクスは、(Lx−xBax) 
Cu0y(ここで、0.4≦X≦o、7yy<3+Lは
Sa。
The oxide superconducting ceramic has (Lx-xBax)
Cu0y (where 0.4≦X≦o, 7yy<3+L is Sa.

Y及びLaなどのランタノイド元素)なる化学式で表わ
される。これは、次のような方法で製造できる。例えば
、(Yr−xBax)Cu Oyの場合には、酸化イツ
トリウム(Y2O2)、炭酸バリウム(BaCO3)、
酸化第2銅(Cu O)の粉末を所望の化学量論組成比
(0,4≦X≦0.7)で混合し、この混合粉末を90
0℃、数時間、空気中で反応させ、前記反応物を粉砕し
、これを所望の環状導体の形状に成形し、この成形物を
950°、数時間、酸化性雰囲気中で、焼結し、さらに
600’C〜800℃、数十時間アニール熱処理するこ
とで得られる。上記、粉末の成形、焼結は、粉末を焼結
する前の段階の有機のバインダーで固めたグリーンシー
トを成形し、焼結する方法が有望である。
Lanthanide elements such as Y and La). This can be manufactured by the following method. For example, in the case of (Yr-xBax)CuOy, yttrium oxide (Y2O2), barium carbonate (BaCO3),
Cupric oxide (CuO) powder is mixed at the desired stoichiometric ratio (0.4≦X≦0.7), and this mixed powder is
The reactant was reacted in air at 0°C for several hours, the reactant was pulverized and molded into a desired annular conductor shape, and this molded product was sintered at 950°C for several hours in an oxidizing atmosphere. , by further annealing heat treatment at 600'C to 800C for several tens of hours. As for the above-mentioned molding and sintering of the powder, a promising method is to mold and sinter a green sheet solidified with an organic binder before sintering the powder.

2a、2b、・・・は、電気絶縁体であり、これらは、
複数の環状導体1a、2b、・・・の間の電気絶縁体と
して使用され、その材質としてはガラス繊維強化エポキ
シ樹脂などのプラスチックス、あるいはアルミナ、ジル
コニアなどのセラミクスなどを用いることができる。
2a, 2b, ... are electrical insulators, and these are
It is used as an electrical insulator between the plurality of annular conductors 1a, 2b, . . . , and its material may be plastics such as glass fiber reinforced epoxy resin, or ceramics such as alumina or zirconia.

また、第1図では同一径の環状導体群のみを示したが、
径の異なる環状導体を組み合わせてもよい。
In addition, although only a group of annular conductors with the same diameter is shown in Figure 1,
Annular conductors with different diameters may be combined.

上記の説明では、環状導体1a、lb・・及び電気絶縁
体2a、2b、・・・は、それぞれ別々に製造し、これ
らを組合わせるものである。このように、別々に製造し
、組合せるのでなく、環状導体1a。
In the above description, the annular conductors 1a, lb, . . . and the electrical insulators 2a, 2b, . . . are manufactured separately and then combined. In this way, the annular conductor 1a is manufactured separately and not combined.

1b、・・・及び電気絶縁体2a、2b・・・を一体成
形し、焼結し、その後アニール熱処理を行い、複合環状
導体を得る方法について説明する。環状導体la、lb
、−の材料組成としては、(Y 1−X B ax)C
u Oyを例にとって説明する。先ず、酸化イツトリウ
ム(Y2O2)、炭酸バリウム(B a CO8) 。
1b, . . . and electric insulators 2a, 2b, . Annular conductor la, lb
, - material composition is (Y 1-X B ax)C
This will be explained using u Oy as an example. First, yttrium oxide (Y2O2) and barium carbonate (B a CO8).

酸化第2銅(Cu O)の粉末を超電導体となるための
化学量論組成比(0,4≦X≦0.7)で混合し、この
混合粉末を900℃、数時間、空気中で反応させ、前記
反応物を粉砕し、反応粉末を準備する。次に、電気絶縁
体2a、2b、・・・の材料組成として、同じペロブス
カイト状結晶構造となり、かつ同じ元素系の(Y 1−
x B ax) Cu Oyを選定する。ここで、酸化
イツトリウム(Y20g)−炭酸バリウム(BaCO2
)、酸化第2銅(CuO)の粉末を所望の化学量論組成
比(0≦x≦0.3)で混合し、この混合粉末を900
℃、数時間、空気中で反応させ、この反応物を粉砕し、
反応粉末を準備する。上記のように準備した酸化物超電
導体となる環状導体用の反応粉末と電気絶縁体となる反
応粉条を、所望量、順々に積層し、これをプレス成形し
、この成形物を950℃、数時間、酸化性雰囲気中で焼
結し、さらに600℃〜800°Cで数十時間、酸化性
雰囲気中でアニール熱処理することで複数の超電導体の
環状等体と複数の電気絶縁体とからなる超電導コイルを
得ることができる。前記超電導体となる環状導体は黒色
を示し、また前記電気絶縁体は緑色を示している。この
ように、電気絶縁体も、同じペロブスカイト状結晶構造
をもつもので構成すると、焼結温度、熱膨張率などが超
電導体となる環状導体と同じになるので、製造し易く、
かつ熱サイクルに対する安定性があるものができる。上
記、超電導体の環状導体と電気絶縁体の製法は、前記超
電導体となる環状導体及び電気絶縁体のグリーンシート
、すなわち粉末を焼結する・前の段階の有機のバインダ
ーで固めたものを利用できることは言うまでもない。
Cupric oxide (CuO) powder is mixed in a stoichiometric composition ratio (0.4≦X≦0.7) to become a superconductor, and this mixed powder is heated at 900°C for several hours in air. A reaction powder is prepared by reacting and pulverizing the reactant. Next, the material compositions of the electrical insulators 2a, 2b, . . . have the same perovskite-like crystal structure and the same element system (Y 1-
x B ax) Select Cu Oy. Here, yttrium oxide (Y20g) - barium carbonate (BaCO2
), cupric oxide (CuO) powder is mixed at a desired stoichiometric composition ratio (0≦x≦0.3), and this mixed powder is
℃ for several hours in air, and the reactants are crushed and
Prepare reaction powder. The reaction powder for an annular conductor that will become an oxide superconductor and the reaction powder strip that will become an electrical insulator, prepared as described above, are laminated in order in the desired amount, press-molded, and molded at 950°C. By sintering in an oxidizing atmosphere for several hours and then annealing in an oxidizing atmosphere at 600°C to 800°C for several tens of hours, a plurality of annular isobodies of superconductors and a plurality of electrical insulators are separated. A superconducting coil can be obtained. The annular conductor serving as the superconductor is shown in black, and the electrical insulator is shown in green. In this way, if an electrical insulator is made of materials with the same perovskite-like crystal structure, the sintering temperature, coefficient of thermal expansion, etc. will be the same as the annular conductor that becomes the superconductor, making it easier to manufacture.
Moreover, it is possible to produce a product that is stable against thermal cycles. The method for manufacturing the annular conductor and electrical insulator of the superconductor described above uses the green sheet of the annular conductor and electrical insulator that will become the superconductor, that is, the powder is sintered and solidified with an organic binder in the previous step. It goes without saying that it can be done.

次に、上記のようにして得られた超電導コイル群を励磁
する方法について説明する。
Next, a method of exciting the superconducting coil group obtained as described above will be explained.

先ず、超電導体である環状導体に直接外部電源により通
電することで励磁する方法について第2図を用いて説明
する。環状導体1a、lb、・・・に、銅などの材料よ
りなる通電端子3a、3b・・・及び4a、4b、・・
・をインジウムなどの半田によって、超音波半田コテを
用いて取り付けておく。さらに、ヒータ5a、5b、・
・・を前記通電端子3a、3b・・・及び4a、4b、
・・・の間に前記環状導体と電気的には絶縁し、熱的に
は充分接触させる。こうして、第3図に示すようにそれ
ぞれの環状導体が直列になるように接続し、その両端に
外部電源6を接続する。ヒータ5a、5b、・・・には
、図示しないヒータ用電源に接続される。環状導体の超
電導転移温度はほぼ90にであるので、環状導体を図示
しない冷却装置により、90に以下の温度に冷却するこ
とで超電導状態に転移させることができる。環状導体が
全て超電導状態(電気抵抗零)へ転移した後、ヒータ5
a、5bに通電し、ヒータを取り付けた環状導体の一部
分を90に以上の温度に加熱し、この部分を常電導化す
る。このような状態で、外部電源6により、直流電流を
通電すると、この電流はそれぞれ環状導体の部分のうち
超電導状態にある部分のラインに沿って流れる。
First, a method of exciting an annular superconductor by directly applying current to it from an external power source will be described with reference to FIG. 2. The annular conductors 1a, lb, . . . are provided with current-carrying terminals 3a, 3b, . . . and 4a, 4b, .
・Attach with solder such as indium using an ultrasonic soldering iron. Furthermore, heaters 5a, 5b,
. . . the current-carrying terminals 3 a, 3 b . . . and 4 a, 4 b,
... to be electrically insulated from the annular conductor and to be in sufficient thermal contact with the annular conductor. In this way, the respective annular conductors are connected in series as shown in FIG. 3, and the external power source 6 is connected to both ends thereof. The heaters 5a, 5b, . . . are connected to a heater power source (not shown). Since the superconducting transition temperature of the annular conductor is approximately 90°C, the annular conductor can be transformed into a superconducting state by cooling the annular conductor to a temperature below 90°C using a cooling device (not shown). After all the annular conductors have transitioned to a superconducting state (zero electrical resistance), the heater 5
A and 5b are energized to heat a part of the annular conductor to which the heater is attached to a temperature of 90° C. or more, thereby making this part normally conductive. In this state, when direct current is applied by the external power source 6, this current flows along the lines of the portions of the annular conductor that are in a superconducting state.

この電流値を所望の数値となるまで上昇させた後に、ヒ
ータ5a、5bの通電を停止し、環状導体のループ中の
ヒータ5a、5bを取り付けた部分の温度が低下し、9
0に以下になると、この部分は超電導状態へ転移し、環
状導体に超電導ループ電流が生じる。このようにして、
外部電源6から供給する電流を徐々に減少させ、零にし
、外部電源を取り除いたとしても、環状導体は全て超電
導状態にあるので、前記超電導ループ電流は電気抵抗零
の状態で流れ、永久電流モード状態となる。
After increasing this current value to a desired value, the heaters 5a and 5b are de-energized, and the temperature of the portion of the loop of the annular conductor to which the heaters 5a and 5b are attached decreases.
When it becomes less than 0, this part transitions to a superconducting state and a superconducting loop current is generated in the annular conductor. In this way,
Even if the current supplied from the external power source 6 is gradually reduced to zero and the external power source is removed, all the annular conductors are in a superconducting state, so the superconducting loop current flows in a state of zero electrical resistance and is in persistent current mode. state.

次に、超電導状態にある環状導体群に外部磁場発生マグ
ネットにより、誘導電流を発生させるという方法により
、励磁する方法を第4図〜第6図により説明する。■環
状導体は、その超電導転移温度より高い温度状態(T>
Tc)に保ち、常電導状態にしておく (第4図)。こ
こで、Tは環状導体の温度、TCは超電導転移温度を表
わす。この状態で、外部磁場発生マグネット7により、
磁場分布8を発生させる。■次に、前記環状導体群を冷
却し、その温度をTc以下にする( T < T c 
Next, a method of exciting a ring-shaped conductor group in a superconducting state by generating an induced current using an external magnetic field generating magnet will be explained with reference to FIGS. 4 to 6. ■The annular conductor is in a temperature state higher than its superconducting transition temperature (T>
Tc) and keep it in a normal conductive state (Figure 4). Here, T represents the temperature of the annular conductor, and TC represents the superconducting transition temperature. In this state, the external magnetic field generating magnet 7 causes
A magnetic field distribution 8 is generated. ■Next, the ring-shaped conductor group is cooled down to a temperature below Tc (T < Tc
.

第5図)。そうすると、環状導体群は超電導状態になり
、超電導体の特性の一つであるマイスナー効果(完全反
磁性効果)により、前記環状導体群の中に磁束は入れな
いので、発生の一部磁束は、環状導体群にトラップされ
る。■最後に、外部磁場発生マグネット7の発生磁場を
減少させ、零にする。この状態では、複数の環状導体群
1a。
Figure 5). Then, the annular conductor group becomes superconducting, and due to the Meissner effect (perfect diamagnetic effect), which is one of the characteristics of superconductors, no magnetic flux enters the annular conductor group, so some of the generated magnetic flux is Trapped in a group of ring conductors. (2) Finally, the magnetic field generated by the external magnetic field generating magnet 7 is reduced to zero. In this state, a plurality of annular conductor groups 1a.

lb、・・・にトラップされた磁束9は超電導体のマイ
スナー効果により、残留する( T < Tc 、第6
図)。以上の方法により、複数の環状導体群を励磁する
ことができる。上記の方法では、外部磁場発生マグネッ
ト7は、複数の環状導体群の外周側に配置したが、これ
は内周側に配置しても、前記と同様に励磁できる。
The magnetic flux 9 trapped in lb,... remains due to the Meissner effect of the superconductor (T < Tc, 6th
figure). By the above method, a plurality of annular conductor groups can be excited. In the above method, the external magnetic field generating magnet 7 is arranged on the outer circumferential side of the plurality of annular conductor groups, but it can be excited in the same manner as described above even if it is arranged on the inner circumferential side.

最後に、超電導体となる環状導体群の冷却方法について
第7図で説明する。例えば、Yz−xBaxCuOy(
xzo、6.y<3 )のセラミクスの場合、超電導臨
界温度は約93にである。そのため、環状導体群を前記
温度より低い状態に冷却する必要がある。そこで、前記
環状導体群をギフオード・マクマホンサイクルソルベー
サイクル、スターリングサイクルなどで動作する小型ヘ
リウムガス冷凍機で直接冷却する方法を示す。環状導体
群10は、ヘリウムガス11で満された熱伝導容器12
の中に収納する。13は、支持体である。前記熱伝導容
器12は、良熱伝導性の材料で構成することが望ましい
。熱伝導容器12は、小型冷凍機14のコールドヘッド
15の先端に充分熱的にも接続できるように取り付けら
れる。前記熱伝導容器12及びコールドヘッド15は、
断熱のための真空層16を保つために、真空容器17の
中に収納される。これにより、冷凍機14の運転により
、そのコールドヘッド15を介して、良熱伝導用ガスと
してのヘリウムガス11を含む熱伝導容器12によって
、前記コールドヘッド15の温度と、被冷却物体である
環状導体群1oの温度とほぼ同一温度に維持することが
できる。18.19はそれぞれ環状導体群への通電用の
リード線18を熱伝導容器12から真空層16へ、及び
真空層16から外部へ導出するためのハーメチックシー
ルである。
Finally, a method for cooling the annular conductor group that will become a superconductor will be explained with reference to FIG. For example, Yz-xBaxCuOy(
xzo, 6. For ceramics with y<3), the superconducting critical temperature is approximately 93°C. Therefore, it is necessary to cool the annular conductor group to a temperature lower than the above temperature. Therefore, a method of directly cooling the annular conductor group with a small helium gas refrigerator operating on the Gifford-McMahon cycle Solvay cycle, Stirling cycle, etc. will be described. The annular conductor group 10 includes a thermally conductive container 12 filled with helium gas 11.
Store it inside. 13 is a support. The heat conductive container 12 is desirably made of a material with good thermal conductivity. The heat conduction container 12 is attached to the tip of the cold head 15 of the small refrigerator 14 so as to be sufficiently thermally connected. The heat conductive container 12 and cold head 15 are
It is housed in a vacuum container 17 to maintain a vacuum layer 16 for heat insulation. As a result, when the refrigerator 14 is operated, the temperature of the cold head 15 and the annular shape which is the object to be cooled are changed via the cold head 15 by the heat conductive container 12 containing helium gas 11 as a gas for good heat conduction. The temperature can be maintained at approximately the same temperature as that of the conductor group 1o. Reference numerals 18 and 19 denote hermetic seals for leading the lead wires 18 for supplying current to the annular conductor group from the heat conduction container 12 to the vacuum layer 16 and from the vacuum layer 16 to the outside.

21.22は、冷凍機14の図示しない外部コップレッ
サーへの接続される管の接続用コネクターである。また
、環状導体群10により、発生された磁場は、磁場利用
空間23でいろいろと利用できることは言うまでもない
。また、前記環状導体群は、通常の液体窒素などの冷媒
を用いて冷却できることは言うまでもない。
21 and 22 are connectors for connecting pipes to an external copresser (not shown) of the refrigerator 14. It goes without saying that the magnetic field generated by the annular conductor group 10 can be used in various ways in the magnetic field utilization space 23. Furthermore, it goes without saying that the annular conductor group can be cooled using a normal refrigerant such as liquid nitrogen.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超電導体間の電気的接続を全く必要と
しないので、永久電流モード状態で安定に利用できる超
電導コイル装置を提供できる効果がある。
According to the present invention, since there is no need for any electrical connection between superconductors, it is possible to provide a superconducting coil device that can be used stably in persistent current mode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々本発明の実施例に係る超電導コ
イル装置の斜視図、第3図は本発明の一実施例装置にお
ける環状導体群の励磁をするための電気的接続図、第4
図、第5図、第6図は夫々第3図の実施例装置の動作原
理説明用断面図、第7図は、第3図の実施例装置の冷却
部の断面図である。 la、lb・・・酸化物超電導セラミクス材料製環状導
体、2a、2b・・・電気絶縁体製環状導体。
1 and 2 are respectively perspective views of a superconducting coil device according to an embodiment of the present invention, FIG. 3 is an electrical connection diagram for exciting a ring conductor group in an embodiment of the device of the present invention, and FIG. 4
5 and 6 are sectional views for explaining the operating principle of the embodiment device shown in FIG. 3, respectively, and FIG. 7 is a sectional view of the cooling section of the embodiment device shown in FIG. 3. la, lb... Annular conductor made of oxide superconducting ceramic material, 2a, 2b... Annular conductor made of electrical insulator.

Claims (1)

【特許請求の範囲】 1、ペロブスカイト状結晶構造よりなる酸化物超電導セ
ラミクス材料を利用する超電導コイル装置において、前
記酸化物超電導材料で複数の環状導体群を構成し、これ
らの環状導体群に電流を流し、永久磁場発生器にするこ
とを特徴とする超電導コイル装置。 2、前記酸化物超電導材料より成る複数の環状導体の間
の絶縁方法として、この酸化物超電導材料として、(L
_1_−_xB_a_x)CuOy〔ここで0.4≦x
≦0.7、y≦3、LはY及びLaなどのランタノイド
元素〕で表わされるものを使用する場合、この酸化物超
電導材料と同じ元素系あるいはL元素として、Sc、Y
及びLaなどのランタノイド元素のうち他の1つからな
り、そして同等のペロブスカイト状結晶構造を持ち、か
つ0≦x≦0.3、y≦3なるL元素リッチな化学量論
組成比をもつ材料を利用することを特徴とする特許請求
の範囲第1項記載の超電導コイル装置。 3、前記酸化物超電導材料よる成る複数の環状導体のそ
れぞれについて、その環状導体の一部分だけを、常電導
化するためのヒータを設け、前記常電導化された環状導
体の領域の両端に通電のための電極端を設けたことを特
徴とする特許請求の範囲第1項記載の超電導コイル装置
。 4、外部磁場発生マグネットの磁場発生量を変化させる
ことにより、前記複数の環状導体群に誘導電流を発生せ
しめ、これらの環状導体群を励磁することを特徴とする
特許請求の範囲第1項記載の超電導コイル装置。 5、前記環状導体群を、ヘリウムガスを充てんした熱伝
導容器中に収納し、前記ヘリウムガスの熱伝導により、
主に冷却することを特徴とする特許請求の範囲第1項記
載の超電導コイル装置。 6、前記熱伝導容器をギフオードマクマホンサイクルな
どで動作する小型ガス冷凍機のコールドヘッドに直接取
り付け、冷却することを特徴とする特許請求の範囲第5
項記載の超電導コイル装置。
[Claims] 1. In a superconducting coil device using an oxide superconducting ceramic material having a perovskite-like crystal structure, a plurality of annular conductor groups are formed of the oxide superconducting material, and a current is applied to these annular conductor groups. A superconducting coil device that is characterized by being made into a permanent magnetic field generator. 2. As an insulation method between a plurality of annular conductors made of the oxide superconducting material, as this oxide superconducting material (L
_1_-_xB_a_x)CuOy [where 0.4≦x
≦0.7, y≦3, L is a lanthanoid element such as Y and La], if the same element system as this oxide superconducting material or L element is used, Sc, Y
and one other lanthanoid element such as La, and has an equivalent perovskite-like crystal structure and a stoichiometric composition rich in L element such that 0≦x≦0.3, y≦3. The superconducting coil device according to claim 1, characterized in that the superconducting coil device utilizes the following. 3. For each of the plurality of annular conductors made of the oxide superconducting material, a heater is provided to make only a portion of the annular conductor normal conductive, and electricity is supplied to both ends of the area of the annular conductor that has been made normal conductivity. 2. The superconducting coil device according to claim 1, further comprising an electrode end for use in the superconducting coil device. 4. The method according to claim 1, characterized in that an induced current is generated in the plurality of annular conductor groups to excite the annular conductor groups by changing the amount of magnetic field generated by an external magnetic field generating magnet. superconducting coil device. 5. The ring-shaped conductor group is housed in a heat conduction container filled with helium gas, and due to the heat conduction of the helium gas,
The superconducting coil device according to claim 1, characterized in that the superconducting coil device mainly performs cooling. 6. Claim 5, characterized in that the heat conductive container is directly attached to a cold head of a small gas refrigerator operating on a Gifford-McMahon cycle or the like for cooling.
The superconducting coil device described in .
JP62116833A 1987-05-15 1987-05-15 Superconducting coil device Expired - Lifetime JPH0787138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62116833A JPH0787138B2 (en) 1987-05-15 1987-05-15 Superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62116833A JPH0787138B2 (en) 1987-05-15 1987-05-15 Superconducting coil device

Publications (2)

Publication Number Publication Date
JPS63283003A true JPS63283003A (en) 1988-11-18
JPH0787138B2 JPH0787138B2 (en) 1995-09-20

Family

ID=14696753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62116833A Expired - Lifetime JPH0787138B2 (en) 1987-05-15 1987-05-15 Superconducting coil device

Country Status (1)

Country Link
JP (1) JPH0787138B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316408A (en) * 1987-06-18 1988-12-23 Yokogawa Medical Syst Ltd Superconducting electromagnet and its manufacture
JPH02192104A (en) * 1989-01-20 1990-07-27 Nippon Steel Corp Magnet using oxide superconducting material
JP2007129158A (en) * 2005-11-07 2007-05-24 Aisin Seiki Co Ltd Magnetic field generator and nuclear magnetic resonance unit
DE10130678B4 (en) * 2000-06-26 2009-06-25 Riken, Wako Nuclear magnetic resonance apparatus
US7667562B1 (en) * 1990-02-20 2010-02-23 Roy Weinstein Magnetic field replicator and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268204A (en) * 1987-04-24 1988-11-04 Furukawa Electric Co Ltd:The Superconducting magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268204A (en) * 1987-04-24 1988-11-04 Furukawa Electric Co Ltd:The Superconducting magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316408A (en) * 1987-06-18 1988-12-23 Yokogawa Medical Syst Ltd Superconducting electromagnet and its manufacture
JPH02192104A (en) * 1989-01-20 1990-07-27 Nippon Steel Corp Magnet using oxide superconducting material
JPH0782939B2 (en) * 1989-01-20 1995-09-06 新日本製鐵株式会社 Magnet using oxide superconductor and method for manufacturing the same
US7667562B1 (en) * 1990-02-20 2010-02-23 Roy Weinstein Magnetic field replicator and method
DE10130678B4 (en) * 2000-06-26 2009-06-25 Riken, Wako Nuclear magnetic resonance apparatus
JP2007129158A (en) * 2005-11-07 2007-05-24 Aisin Seiki Co Ltd Magnetic field generator and nuclear magnetic resonance unit

Also Published As

Publication number Publication date
JPH0787138B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
JP2754564B2 (en) Method for producing superconducting composite
CN88102434A (en) Superconducting device
JPH11144938A (en) Current lead device and refrigerator-cooled superconducting magnet
JP2909212B2 (en) Composite lead for conducting current between a temperature of 75-80K and a temperature of 4.5K
JPS63283003A (en) Superconducting coil device
JP2002525790A (en) Protected superconducting component and its manufacturing method
US5017552A (en) Superconductor wire and method of making same
KR101343887B1 (en) Splicing method for superconductive wires containing mg and b
JP3357820B2 (en) Connection device and superconducting magnet
JP3450318B2 (en) Thermoelectric cooling type power lead
JPH04291702A (en) High temperature superconductive coil
JP2007093059A (en) Cooling method using nitrogen-oxygen mixed refrigerant
JP2002289049A (en) Low-resistance conductor and its manufacturing method, and electric member using them
JP2584989B2 (en) Pipe made of superconducting ceramic material
JPH1027928A (en) Superconductive coil with permanent current switch and its manufacturing method
JPS63307150A (en) Oxide cremics based superconductor and production thereof
JPS63307622A (en) Manufacture of superconductive wire
JP2770247B2 (en) Method for producing superconducting composite with electrode
JP2569335B2 (en) Method for manufacturing superconducting wire
Beales et al. Review of conductor development for use in high-temperature superconducting cables
JPH10188696A (en) Oxide superconductive wire and its connecting method
JP2644433B2 (en) Hollow-cooled multi-core high-temperature superconductor
JP2828631B2 (en) Manufacturing method of superconducting material
JP2000133514A (en) Current lead for superconducting coil
JPH05319824A (en) Production of oxide superconductor laminated body