JPH02192104A - Magnet using oxide superconducting material - Google Patents

Magnet using oxide superconducting material

Info

Publication number
JPH02192104A
JPH02192104A JP1009894A JP989489A JPH02192104A JP H02192104 A JPH02192104 A JP H02192104A JP 1009894 A JP1009894 A JP 1009894A JP 989489 A JP989489 A JP 989489A JP H02192104 A JPH02192104 A JP H02192104A
Authority
JP
Japan
Prior art keywords
superconductor
magnet
magnetic field
superconducting
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1009894A
Other languages
Japanese (ja)
Other versions
JPH0782939B2 (en
Inventor
Mitsuru Morita
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1009894A priority Critical patent/JPH0782939B2/en
Publication of JPH02192104A publication Critical patent/JPH02192104A/en
Publication of JPH0782939B2 publication Critical patent/JPH0782939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the title magnet by performing the minimum machining work using a specific superconducting bulk material. CONSTITUTION:An optional-shape forming work is conducted on a bulk material having magnetic characteristics of M/D value of 500emu/cm<4> or above when the average diameter against the magnetic field of a superconducting body is D, consisting of a plate-like or wire-like superconducting material constituted by a superconducting material or its aggregate having no wide-angled grain boundary of uniform orientation spreading over the region of REBa2Cu3O7-y crystal of 50mm<3> or above manufactured by the melting method such as one- direction solidification, having the texture wherein an RE2BaCuO5 phase is finely dispersed in the superconducting material and magnetic characteristics of M/D value 500emu/cm<4> or more when the average diameter of vertical direction against the magnetic field of the superconducting material is set at D. They are combined to carry a permanent current and used as a permanent magnet. As a result, the magnet making the best of the characteristics of the bulk material, can be obtained with the minimum machining work.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、比較的高磁界をエネルギ損失なしに発生させ
ることのできる酸化物超電導体を用いたマグネットに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnet using an oxide superconductor that can generate a relatively high magnetic field without energy loss.

[従来の技術] 従来のマグネットは、大別して永久磁石と電磁石とがあ
る。また、電磁石には、銅線などを用いた常伝導マグネ
ットとNbTi線などを用いた超電導マグネットに分け
られる。永久磁石は、磁場強度の点で限界があり、また
常電導マグネットは冷却の必要上、小型でか−)高磁場
発生可能にすることはむずかしい。これに対しNbTi
等を用いた超電導マグネットは、小型でかつ高磁場発生
が可能である。しかしながらNbTiなとは、高価な液
体ヘリウムで冷却する必要があり、このことが超電導マ
グネット使用の大きな壁になっていた。また最近発見さ
れた酸化物超電導体は、磁場中での臨界電流密度の向上
、線材化などの多くの問題点があり、未だマグネット化
には至っていない。
[Prior Art] Conventional magnets can be broadly classified into permanent magnets and electromagnets. Furthermore, electromagnets can be divided into normal conducting magnets using copper wire or the like and superconducting magnets using NbTi wire or the like. Permanent magnets have a limit in terms of magnetic field strength, and normal conducting magnets require cooling, making it difficult to make them small enough to generate a high magnetic field. On the other hand, NbTi
Superconducting magnets using such materials are small and capable of generating high magnetic fields. However, NbTi magnets require cooling with expensive liquid helium, which has been a major barrier to using superconducting magnets. In addition, the recently discovered oxide superconductor has many problems, such as an increase in critical current density in a magnetic field and the difficulty of making it into a wire, so it has not yet been made into a magnet.

[発明が解決しようとする課題] 酸化物超電導体は、NbTiなどの合金系超電導体と異
なり常温時の加工性は殆ど無い。また、溶融法により作
製したバルク材を超電導特性を劣化させることなく接合
することは、極めて困難である。そこで本発明は超電導
特性の極めて高い酸化物超電導バルク材を最小限の加工
してマグネットを提供することを目的とする。
[Problems to be Solved by the Invention] Unlike alloy superconductors such as NbTi, oxide superconductors have almost no workability at room temperature. Furthermore, it is extremely difficult to join bulk materials produced by a melting method without degrading superconducting properties. Therefore, an object of the present invention is to provide a magnet by minimally processing an oxide superconducting bulk material having extremely high superconducting properties.

[課題を解決するための手段] 本発明は、一方向凝固などの溶融法により作製したRE
Ba2Cu3O.−y結晶が50mm3以上の領域にわ
たって方位の揃った大傾角粒界のない超電導体もしくは
それらの集合体をなす板もしくは線状超電導体であり、
前記超電導体中にはRE2BaCLlOs相(以’7”
 21T相とする)が微細に分散した組織であり、さら
に77にで上記超電導体を1T以上の磁場中で配置し励
磁したのち磁場中から取り出したとき、そのときの磁化
率をM (emu/cm’)とし、また上記超電導体の
磁場に対して垂直方向の平均径をDとしたときM/Dの
値が500emu/cm’以上の磁気特性を有するバル
ク材料を任意の形状に加工し、それらを組み合わせ永久
電流を流し永久磁石として使用することによって、最小
限の加工で上記バルク月料の特性を十分生かしマグネッ
トを作ることにある。
[Means for Solving the Problems] The present invention provides an RE manufactured by a melting method such as unidirectional solidification.
Ba2Cu3O. - A superconductor in which y crystals are oriented over an area of 50 mm or more and have no large-angle grain boundaries, or a plate or linear superconductor forming an aggregate thereof,
The superconductor contains a RE2BaCLlOs phase (hereinafter referred to as '7'').
21T phase) is finely dispersed, and when the superconductor is placed in a magnetic field of 1T or more in step 77, excited, and then taken out of the magnetic field, the magnetic susceptibility at that time is M (emu/ cm'), and when the average diameter of the superconductor in the direction perpendicular to the magnetic field is D, a bulk material having magnetic properties with an M/D value of 500 emu/cm' or more is processed into an arbitrary shape, By combining them and using them as a permanent magnet by flowing a persistent current, it is possible to make a magnet by making full use of the characteristics of the above-mentioned bulk materials with minimal processing.

[作用コ 本発明による酸化物超電導体のマグネットは、方向凝固
などの溶融法により作製したものであり、REBa2C
u3O7−y結晶が50mm3以上の領域にわたって方
位の揃った大傾角粒界のない21T相が微細に分散した
超電導体もしくはそれらの集合体をなす板もしくは線状
超電導体からなる。これらバルク超電導体中は1.IC
を低下させる原因である大傾角粒界がなく、両側の結晶
方位の差の少ない小傾角粒界だけから成るため高臨界電
流密度かえられ、また広い領域にわたって方位が揃って
いるため大きな磁化が得られる。さらに21T相が微細
分散しているために、機械的にも優れた実用に耐える特
性を持っている。他のバルク材料、例えば焼結体などで
は、Jcは極めて低く特に磁場中では極端に悪くなる。
[Function] The oxide superconductor magnet according to the present invention is produced by a melting method such as directional solidification, and is made of REBa2C.
The u3O7-y crystal consists of a superconductor in which 21T phase with uniform orientation and no large angle grain boundaries is finely dispersed over an area of 50 mm3 or more, or a plate or linear superconductor forming an aggregate thereof. In these bulk superconductors, 1. IC
There are no large-angle grain boundaries that cause a decrease in the crystal orientation, and the critical current density can be increased because it consists only of small-angle grain boundaries with little difference in crystal orientation on both sides.Also, because the orientations are aligned over a wide area, large magnetization can be achieved. It will be done. Furthermore, since the 21T phase is finely dispersed, it has excellent mechanical properties that can withstand practical use. In other bulk materials, such as sintered bodies, Jc is extremely low and becomes extremely poor, especially in a magnetic field.

また、超電導体中にピン止めされた量子化された磁束(
フラックス)がはずれて磁束密度が低下して行くフラッ
クスクリープも極めて大きく、焼結体を永久モートて永
久磁石として使用することは不可能である。これに対し
、本発明の超電導バルク材はJcが非常に大きく、十分
に磁石材料として使用することが可能といえる。
Also, the quantized magnetic flux pinned in the superconductor (
Flux creep, in which the magnetic flux density decreases as the flux is removed, is also extremely large, making it impossible to use the sintered body as a permanent magnet with a permanent moat. On the other hand, the superconducting bulk material of the present invention has a very large Jc and can be said to be sufficiently usable as a magnet material.

形状に関して、従来の金属系超電導材料は安定化の必要
トから極細多芯線などの形状にしなければならなかった
。これに対し酸化物超電導体は、比熱、熱伝導率の大き
さ、液体窒素中での使用が可能であることから、細線等
にする必要がない。
Regarding the shape, conventional metallic superconducting materials had to be shaped into ultrafine multifilamentary wires due to the need for stability. On the other hand, oxide superconductors do not need to be made into thin wires because of their high specific heat and thermal conductivity, and because they can be used in liquid nitrogen.

したがって、比較的バルクに近い状態でマグネットにす
ることができる。逆に、バルク材に永久電流を流して永
久磁石として用いる場合、励磁した後の磁化率の大きさ
Mは、バルク材の厚さDにほぼ比例するために、そのた
めM/Dの値は永久磁石の特性を示す目安となる。77
Kにおいて、焼結体でできたマグネットの場合M/Dは
、3O以下と極めて低いのに対し、本発明によるマグネ
ットは1T以上の磁場で励磁した後のM/Dが500以
上と高いものであり、実用レベルの磁場を得ることが可
能な材料である。
Therefore, it can be made into a magnet in a relatively bulk state. Conversely, when a permanent current is applied to a bulk material and used as a permanent magnet, the magnitude of magnetic susceptibility M after excitation is approximately proportional to the thickness D of the bulk material, so the value of M/D is It serves as a guide to the characteristics of a magnet. 77
In K, in the case of a magnet made of a sintered body, the M/D is extremely low at 3O or less, whereas the magnet according to the present invention has a high M/D of 500 or more after being excited in a magnetic field of 1T or more. This material makes it possible to obtain a magnetic field at a practical level.

小型のマグネットは、上記材料を第1図の様にブロック
状に切り出してマグネットとして用いることができる。
A small magnet can be used as a magnet by cutting the above material into a block shape as shown in FIG.

比較的大きなマグネットは、第2図の様に板状の材料を
重ねることによっC1また磁場の均一性が必要な場合に
は、第3図の様に、リング状の材料を重ねることによっ
て得られる。
Relatively large magnets can be obtained by stacking plate-shaped materials as shown in Figure 2.If uniformity of the magnetic field is required, a relatively large magnet can be obtained by stacking ring-shaped materials as shown in Figure 3. It will be done.

また、さらに大きなマグネットをつくる場合は、第4図
の様に六角柱状の物を隙間を少なくして並べることによ
って、またこれらの形状の材料を3次元的に組み合わせ
て作ることができる。
Furthermore, when making an even larger magnet, it can be made by arranging hexagonal column-shaped items with fewer gaps as shown in Figure 4, or by combining materials of these shapes three-dimensionally.

上記高品位酸化物電導マクネットは、以下のようにして
作られる。 RE、Ba、Cuの酸化物からなる溶融体
を急冷凝固した板もしくは線状成形体を、2℃/cm以
上の温度勾配を有する1000℃から970℃の温度領
域で0.4cm/hr以下の移動速度で移動させるか、
あるいは前記成形体を加熱炉中に固定し前記加熱炉の温
度勾配2℃/cm以十となし、前記温度勾配を維持しつ
つ前記加熱炉の温度を0.8℃/hr以下の速度で低−
ドさせながら、前記成形体の1000℃から950℃の
温度領域を通過させ方位の揃った超電導相を作り酸素中
でアニールした後、励磁する。
The above-mentioned high-grade oxide conductive mucknet is made as follows. A plate or linear molded product obtained by rapidly cooling and solidifying a melt consisting of oxides of RE, Ba, and Cu is heated at a rate of 0.4 cm/hr or less in a temperature range of 1000°C to 970°C with a temperature gradient of 2°C/cm or more. Move at movement speed, or
Alternatively, the molded body is fixed in a heating furnace, the temperature gradient of the heating furnace is set to 2°C/cm or more, and the temperature of the heating furnace is lowered at a rate of 0.8°C/hr or less while maintaining the temperature gradient. −
The molded body is passed through a temperature range of 1000° C. to 950° C. while being heated to form a superconducting phase with uniform orientation, annealed in oxygen, and then excited.

励磁力法としては、例として以下のような方法で行なう
As an example of the excitation force method, the following method is used.

■一方向凝固などの溶融法作製した高臨界電流密度のバ
ルク材料をリング状に加工する。
■Processing bulk materials with high critical current density produced by melting methods such as unidirectional solidification into ring shapes.

■リングおよびリングを組み合わせたマグネットを磁場
中に置く。
■Place the ring and the magnet that combines the rings in a magnetic field.

■このマグネット液体窒素または液体ヘリウムなどで超
電導遷移温度以下に冷却する。
■This magnet is cooled to below the superconducting transition temperature using liquid nitrogen or liquid helium.

■外部磁場を減じる。■Reduce external magnetic field.

■リング内に、はじめの磁場を保とうとして、超電導体
中には、大きな超電導電流が流れ、マグネットを励磁す
ることができる。
■In an attempt to maintain the original magnetic field within the ring, a large superconducting current flows through the superconductor, which can excite the magnet.

■また、■で作製したマグネットを組み合わせてさらに
大きなマグネットを作ることができる。
■Also, you can make even larger magnets by combining the magnets made in step (■).

■温度を保つことによってエネルギ損失のない高磁場マ
グネットができる。
■By maintaining the temperature, a high magnetic field magnet with no energy loss can be created.

また、超電導状態にしたリングをフラックスポンプなど
で励磁する方法もある。上記のようにして高品位のマグ
ネットが得られる。
Another method is to use a flux pump to excite the superconducting ring. A high-quality magnet can be obtained as described above.

[実施例] 実施例1 15℃/cmの温度勾配中で0.5mtn/hrの成長
速度で徐冷することによって一方向凝固を行い、約25
×25X 1 mmの領域にねたっ゛C方位が揃ったバ
ルク材を得た。このバルク材の組織は上記の領域にわた
って第5図の様に21T相が微細分散しかつ、双晶パタ
ーンが示すように方位か揃っている組織であった。これ
を用いて第6図のような外径25mm、内径5mm、厚
さ1.0±0.2mmリングを作製し、1.0Tの磁場
中に置き液体窒素で冷却した後減磁した。その結果、中
心磁界が0.157でM/Dが約1000のマグネット
が得られた。
[Example] Example 1 One-way solidification was performed by slow cooling at a growth rate of 0.5 mtn/hr in a temperature gradient of 15°C/cm, and
A bulk material with uniform C orientation was obtained in an area of ×25 × 1 mm. The structure of this bulk material was such that the 21T phase was finely dispersed over the above region as shown in FIG. 5, and the orientation was aligned as shown by the twin pattern. Using this, a ring having an outer diameter of 25 mm, an inner diameter of 5 mm, and a thickness of 1.0±0.2 mm as shown in FIG. 6 was produced, and the ring was placed in a 1.0 T magnetic field and cooled with liquid nitrogen, followed by demagnetization. As a result, a magnet with a central magnetic field of 0.157 and an M/D of about 1000 was obtained.

実施例2 実施例1の方法により作製したリング状超電導体3つ重
ねて1.0Tの磁場中に置き液体窒素中で冷却した後減
磁した。その結果、中心磁界が0.18Tとリング状コ
イル単独の時よりも0 、0 :I T強い磁場が得ら
れ、M/Dの値も約1200と向上した。
Example 2 Three ring-shaped superconductors produced by the method of Example 1 were placed in a 1.0 T magnetic field, cooled in liquid nitrogen, and then demagnetized. As a result, the central magnetic field was 0.18 T, which was 0,0:IT stronger than when using only the ring-shaped coil, and the M/D value was also improved to about 1200.

[発明の効果] 以上詳述したごとく、本発明はこれまで不可能であった
高品位の酸化物超電導マグネットの製造を可能とするも
ので、しかも成形品として各種分野での応用が可能であ
り、極めて工業的効果が大きい。具体例としては、 (1)小型マグネットとして、軸受け、小型モーターの
磁石等がある。
[Effects of the Invention] As detailed above, the present invention makes it possible to manufacture high-quality oxide superconducting magnets, which have been impossible until now, and can be applied as molded products in various fields. , has extremely large industrial effects. Specific examples include: (1) Small magnets include bearings, magnets for small motors, etc.

(2)大型マグネットとして、リニアモーターカー用マ
グネット、加速器用マグネット、シリコン弓き上げ用マ
グネット、核磁気共鳴用マグネット等がある。
(2) Large magnets include magnets for linear motor cars, magnets for accelerators, magnets for silicon bows, magnets for nuclear magnetic resonance, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ブロック状のマグネットの一例を示す。第2
図は、円盤状のマグネットを重ねたマグネットの一例を
示す。第3図は、リング状のマグネットを重ねたマグネ
ットを示すものて、比較的均一な磁場が得られる。第4
図は、より大型のマグネットを得るために六角柱状のマ
グネットを隙間を少なくして三次元的に組み合わせた例
を示す。第5図は、マクネットに用いた超電導ハルク材
の組織を示す写真。第6図は、実施例に用いたリングの
形状を示す。
FIG. 1 shows an example of a block-shaped magnet. Second
The figure shows an example of a magnet in which disk-shaped magnets are stacked. FIG. 3 shows a magnet in which ring-shaped magnets are stacked, and a relatively uniform magnetic field can be obtained. Fourth
The figure shows an example in which hexagonal columnar magnets are three-dimensionally combined with fewer gaps in order to obtain a larger magnet. Figure 5 is a photograph showing the structure of the superconducting Hulk material used in MacNet. FIG. 6 shows the shape of the ring used in the example.

Claims (2)

【特許請求の範囲】[Claims] 1.RE(Yを含む希土類元素)、Ba、Cuの酸化物
超電導体を用いたマグネットにおいて、 REBa_2Cu_3O_7_−_y結晶が50mm^
3以上の領域にわたって方位の揃った大傾角粒界のない
超電導体もしくはそれらの集合体をなす板もしくは線状
超電導体であり、前記板もしくは線状超電導体はRE_
2BaCuO_5相が微細に分散した組織であり、77
Kで上記超電導体を1T以上の磁場中で配置し励磁した
のち磁場中から取り出したとき、そのときの磁化率をM
(emu/cm^3)とし、また上記超電導体の磁場に
対して垂直方向の平均厚さをDとしたときM/Dの値が
500emu/cm^4以上の磁気特性を有することを
特徴とする酸化物超電導体を用いたマグネット。
1. In a magnet using oxide superconductors of RE (rare earth elements including Y), Ba, and Cu, the REBa_2Cu_3O_7_-_y crystal is 50 mm^
A superconductor without high-angle grain boundaries with uniform orientation over three or more regions, or a plate or linear superconductor forming an aggregate thereof, and the plate or linear superconductor is RE_
It has a structure in which 2BaCuO_5 phase is finely dispersed, and 77
When the above-mentioned superconductor is placed in a magnetic field of 1 T or more and excited at K and then taken out from the magnetic field, the magnetic susceptibility at that time is M
(emu/cm^3), and when the average thickness of the superconductor in the direction perpendicular to the magnetic field is D, the superconductor is characterized by having magnetic properties such that the value of M/D is 500 emu/cm^4 or more. A magnet using an oxide superconductor.
2.RE(Yを含む希土類元素)、Ba、Cuの酸化物
超電導体を用いたマグネットにおいて、 REBa_2Cu_3O_7_−_y結晶が50mm^
3以上の領域にわたって方位の揃った大傾角粒界のない
超電導体もしくはそれらの集合体をなす板もしくは線状
超電導体であり、前記板もしくは線状超電導体はRE_
2BaCuO_5相が微細に分散した組織であり、77
Kで上記超電導体を1T以上の磁場中で配置し励磁した
のち磁場中から取り出したとき、そのときの磁化率をM
(emu/cm^3)とし、また上記超電導体の磁場に
対して垂直方向の平均径をDとしたときM/Dの値が5
00emu/cm^4以上の磁気特性を有することを特
徴とする酸化物超電導体をブロック、リング、板状に加
工したもの、又はこれらの組合せからなることを特徴と
する酸化物超電導体を用いたマグネット。
2. In a magnet using oxide superconductors of RE (rare earth elements including Y), Ba, and Cu, the REBa_2Cu_3O_7_-_y crystal is 50 mm^
A superconductor without high-angle grain boundaries with uniform orientation over three or more regions, or a plate or linear superconductor forming an aggregate thereof, and the plate or linear superconductor is RE_
It has a structure in which 2BaCuO_5 phase is finely dispersed, and 77
When the above-mentioned superconductor is placed in a magnetic field of 1 T or more and excited at K and then taken out from the magnetic field, the magnetic susceptibility at that time is M
(emu/cm^3), and when the average diameter of the superconductor in the direction perpendicular to the magnetic field is D, the value of M/D is 5.
An oxide superconductor characterized by having a magnetic property of 00 emu/cm^4 or more processed into a block, ring, or plate shape, or a combination thereof is used. magnet.
JP1009894A 1989-01-20 1989-01-20 Magnet using oxide superconductor and method for manufacturing the same Expired - Lifetime JPH0782939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009894A JPH0782939B2 (en) 1989-01-20 1989-01-20 Magnet using oxide superconductor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009894A JPH0782939B2 (en) 1989-01-20 1989-01-20 Magnet using oxide superconductor and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02192104A true JPH02192104A (en) 1990-07-27
JPH0782939B2 JPH0782939B2 (en) 1995-09-06

Family

ID=11732835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009894A Expired - Lifetime JPH0782939B2 (en) 1989-01-20 1989-01-20 Magnet using oxide superconductor and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0782939B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024047A1 (en) * 1994-03-04 1995-09-08 Nippon Steel Corporation Superconducting magnet and production method thereof
US5659278A (en) * 1992-11-30 1997-08-19 Imra Material R&D Co., Ltd. Superconducting magnet device, magnetizing device and method for superconductor
US7138581B2 (en) * 2001-01-16 2006-11-21 Nippon Steel Corporation Low resistance conductor, processes of production thereof, and electrical members using same
JP2008034692A (en) * 2006-07-31 2008-02-14 Aisin Seiki Co Ltd Superconductor, superconductive magnetic field generating element, superconductive magnetic field generating apparatus, and nuclear magnetic resonance apparatus
JP2014165382A (en) * 2013-02-26 2014-09-08 Nippon Steel & Sumitomo Metal Superconducting bulk magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240005A (en) * 1987-03-27 1988-10-05 Semiconductor Energy Lab Co Ltd Manufacture of superconducting material
JPS63283003A (en) * 1987-05-15 1988-11-18 Hitachi Ltd Superconducting coil device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240005A (en) * 1987-03-27 1988-10-05 Semiconductor Energy Lab Co Ltd Manufacture of superconducting material
JPS63283003A (en) * 1987-05-15 1988-11-18 Hitachi Ltd Superconducting coil device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659278A (en) * 1992-11-30 1997-08-19 Imra Material R&D Co., Ltd. Superconducting magnet device, magnetizing device and method for superconductor
WO1995024047A1 (en) * 1994-03-04 1995-09-08 Nippon Steel Corporation Superconducting magnet and production method thereof
US7138581B2 (en) * 2001-01-16 2006-11-21 Nippon Steel Corporation Low resistance conductor, processes of production thereof, and electrical members using same
JP2008034692A (en) * 2006-07-31 2008-02-14 Aisin Seiki Co Ltd Superconductor, superconductive magnetic field generating element, superconductive magnetic field generating apparatus, and nuclear magnetic resonance apparatus
JP2014165382A (en) * 2013-02-26 2014-09-08 Nippon Steel & Sumitomo Metal Superconducting bulk magnet

Also Published As

Publication number Publication date
JPH0782939B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
McGinn et al. Microstructure and critical current density of zone melt textured YBa2Cu3O6+ x with Y2BaCuO5 additions
McGinn et al. Texture processing of bulk YBa2Cu3O6+ x by zone melting
US5084436A (en) Oriented superconductor containing a dispersed non-superconducting phase
JPH0440289B2 (en)
US5508253A (en) REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof
JP4799979B2 (en) Oxide superconductor coil, oxide superconductor coil manufacturing method, oxide superconductor coil excitation method, oxide superconductor coil cooling method, and magnet system
JPH02192104A (en) Magnet using oxide superconducting material
JP2011142303A (en) Oxide superconducting bulk magnet member
JP5195961B2 (en) Oxide superconducting bulk magnet member
Nariki et al. Development of high-performance QMG bulk magnets for high magnetic field engineering applications
JP3962107B2 (en) Oxide superconducting composite, method for producing the same, oxide superconducting magnet, and superconducting coil device
Hlásek et al. Trapped field in different shapes of RE-Ba-Cu-O single grains for the use in production of superconducting bearings
Kütük et al. Levitation Force Density on Different Thicknesses of YBa 2 Cu 3 O 7− x Bulk Superconductor Fabricated by FQMG Process
US5306701A (en) Superconducting magnet and fabrication method
Alford et al. Microstructural and magnetization studies of sintered and melt‐textured Y‐Ba‐Cu‐O
JPH06219736A (en) Superconductor
JP6435927B2 (en) Superconducting bulk magnet and method of magnetizing superconducting bulk magnet
EP0853600B1 (en) A method of biaxially aligning crystalline material
JP6202190B2 (en) Oxide superconducting bulk magnet
JP3283691B2 (en) High damping oxide superconducting material and method of manufacturing the same
Staines et al. Thick film biaxially textured YBCO coated tape conductors prepared using magnetic grain alignment
McGinn Progress in the melt texturing of RE-123 superconductors
RU2258685C2 (en) Method of manufacturing articles from high-temperature superconducting ceramics
JP4101930B2 (en) Oxide bulk superconductor
JPH0311604A (en) Superconductive magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 14