JP2014165382A - Superconducting bulk magnet - Google Patents

Superconducting bulk magnet Download PDF

Info

Publication number
JP2014165382A
JP2014165382A JP2013036068A JP2013036068A JP2014165382A JP 2014165382 A JP2014165382 A JP 2014165382A JP 2013036068 A JP2013036068 A JP 2013036068A JP 2013036068 A JP2013036068 A JP 2013036068A JP 2014165382 A JP2014165382 A JP 2014165382A
Authority
JP
Japan
Prior art keywords
superconducting bulk
bulk body
superconducting
magnet
bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013036068A
Other languages
Japanese (ja)
Other versions
JP6136361B2 (en
Inventor
Hidekazu Tejima
英一 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013036068A priority Critical patent/JP6136361B2/en
Publication of JP2014165382A publication Critical patent/JP2014165382A/en
Application granted granted Critical
Publication of JP6136361B2 publication Critical patent/JP6136361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting bulk magnet of a high magnetic force, the superconducting bulk magnet utilizing a superconducting bulk aggregate formed from a plurality of superconducting bulk bodies.SOLUTION: The superconducting bulk magnet comprises a first superconducting bulk body 2 formed from a plurality of superconducting bulk bodies 1, and a hollow second superconducting bulk body 3 surrounding an outer periphery of the first superconducting bulk body. The first superconducting bulk body has a superconducting bulk aggregate structure formed by arranging a plurality of not-hollow superconducting bulk bodies side by side in a predetermined direction and combining them in a planar shape, and the second superconducting bulk body has an integral structure.

Description

本発明は、超電導バルク体を利用した超電導バルク磁石に関する。   The present invention relates to a superconducting bulk magnet using a superconducting bulk body.

RE1Ba2Cu3Oy(REはY又は希土類元素から選ばれる1種又は2種以上の元素。yは酸素量で、6.8≦y≦7.1)中にRE2BaCuO5が微細分散した超電導バルク体は、強いピン止め力を有しているので、従来の永久磁石に比べて非常に強力な磁場発生源になりうる。このような超電導バルク体を利用した磁場発生源は超電導バルク磁石と呼ばれている。超電導バルク磁石には、コンパクトで強磁場、高い磁場勾配という優れた特長があり、磁気分離を始め、船舶用モータや風力発電用発電機などの磁石を利用する応用において、これらの機器を大幅に小型軽量化するものとして期待されている。 (In RE is one or more elements .y is oxygen are selected from Y or a rare earth element, 6.8 ≦ y ≦ 7.1) RE 1 Ba 2 Cu 3 O y is RE 2 BaCuO 5 in Since the finely dispersed superconducting bulk body has a strong pinning force, it can be a very strong magnetic field generation source compared to a conventional permanent magnet. A magnetic field generation source using such a superconducting bulk body is called a superconducting bulk magnet. Superconducting bulk magnets have excellent features such as compact, strong magnetic field, and high magnetic field gradient. These devices can be greatly used in applications that use magnets such as marine motors and wind power generators, as well as magnetic separation. Expected to be smaller and lighter.

磁性体に作用する磁気力は、単純には磁場強度と磁場勾配との積に比例する。個々の超電導バルク体の磁場分布は中央部の磁場強度が高くなっているため、高い磁場勾配を有している。従って、超電導バルク体を利用すれば、コンパクトで磁気力の強い磁石を構成することができる。特に、複数個の超電導バルク体を並べて配置することにより超電導バルク磁石を構成すると、高い磁場勾配を有して空間的に周期性がある磁場を発生させることができるため、超電導バルク体の強い磁気力を有効に利用できる。ここで複数個の超電導バルク体を並べて配置したものを超電導バルク集合体と呼ぶことにする。複数個の超電導バルク体を並べて配置した超電導バルク集合体を用いて超電導バルク磁石を構成することは、例えば、特許文献1に提案されている。特許文献1には、立方体や直方体等の多角柱体形状の複数個の超電導バルク体をエポキシ樹脂等の接着剤で接着させて一体化させた超電導バルク集合体を用いて超電導バルク磁石を形成することが記載されている。   The magnetic force acting on the magnetic material is simply proportional to the product of the magnetic field strength and the magnetic field gradient. The magnetic field distribution of each superconducting bulk body has a high magnetic field gradient because the magnetic field strength at the center is high. Therefore, if a superconducting bulk body is used, a compact and strong magnet can be constructed. In particular, when a superconducting bulk magnet is formed by arranging a plurality of superconducting bulk bodies side by side, a magnetic field having a high magnetic field gradient and spatially periodicity can be generated. Power can be used effectively. Here, a structure in which a plurality of superconducting bulk bodies are arranged side by side is referred to as a superconducting bulk aggregate. For example, Patent Document 1 proposes that a superconducting bulk magnet is configured using a superconducting bulk assembly in which a plurality of superconducting bulk bodies are arranged side by side. In Patent Document 1, a superconducting bulk magnet is formed using a superconducting bulk assembly in which a plurality of superconducting bulk bodies having a polygonal column shape such as a cube or a rectangular parallelepiped are bonded and integrated with an adhesive such as an epoxy resin. It is described.

特開2001−307916号公報JP 2001-307916 A 特開2011−142303号公報JP 2011-142303 A

上述したように、複数個の超電導バルク体を並べて配置した超電導バルク集合体を用いて超電導バルク磁石を構成すれば、高い磁場勾配を有して空間的に周期性がある磁場を発生させることができる。ところが、超電導体は低温に冷却してクライオスタット等の冷却容器内に収納されて用いられるため、冷却容器の隔壁を介しても強い磁気力が得られるように、より磁気力の強い超電導バルク磁石が求められている。しかしながら、特許文献1に記載されているような、立方体や直方体等の多角柱体形状の複数個の超電導バルク体を単に縦や横に配置した超電導バルク集合体を用いただけでは、エポキシ樹脂等で一体化しても個々の超電導バルク体間に超電導電流が流れるわけではなく、隣り合う超電導バルク体の間では磁場強度がゼロになっているため、磁気力の更なる向上は難しいという問題があった。   As described above, if a superconducting bulk magnet is configured using a superconducting bulk assembly in which a plurality of superconducting bulk bodies are arranged side by side, a magnetic field having a high magnetic field gradient and spatial periodicity can be generated. it can. However, since the superconductor is cooled to a low temperature and stored in a cooling container such as a cryostat, a superconducting bulk magnet having a stronger magnetic force is used so that a strong magnetic force can be obtained even through the partition wall of the cooling container. It has been demanded. However, only using a superconducting bulk assembly in which a plurality of superconducting bulk bodies having a polygonal column shape such as a cube or a rectangular parallelepiped, as described in Patent Document 1, are used in a vertical or horizontal manner can be used. Even if they are integrated, the superconducting current does not flow between the individual superconducting bulk bodies, and the magnetic field strength is zero between the adjacent superconducting bulk bodies, which makes it difficult to further improve the magnetic force. .

そこで、本発明では、上記の問題を解決し、複数個の超電導バルク体からなる超電導バルク集合体を利用した超電導バルク磁石において、磁気力の大きい超電導バルク磁石を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above problems and provide a superconducting bulk magnet having a large magnetic force in a superconducting bulk magnet using a superconducting bulk assembly composed of a plurality of superconducting bulk bodies.

本発明の超電導バルク体を利用した超電導バルク磁石は、以下のとおりである。
(1)複数個の超電導バルク体から構成される第一の超電導バルク体、及び前記第一の超電導バルク体の外周を取り囲む中空状の第二の超電導バルク体からなる超電導バルク磁石であって、前記第一の超電導バルク体は中空状でない複数の超電導バルク体を所定の方向に並べて配置して面状に組み合わせた超電導バルク集合体構造であり、前記第二の超電導バルク体は一体構造であることを特徴とする超電導バルク磁石。
(2)前記第一の超電導バルク体、または前記第一の超電導バルク体及び前記第二の超電導バルク体を構成する超電導バルク体が、RE1Ba2Cu3Oy(REはY又は希土類元素から選ばれる1種又は2種以上の元素。yは酸素量で、6.8≦y≦7.1)中にRE2BaCuO5が微細分散した超電導体であることを特徴とする(1)記載の超電導バルク磁石。
(3)前記第一の超電導バルク体を構成する超電導バルク体が、RE1Ba2Cu3Oy(REはY又は希土類元素から選ばれる1種又は2種以上の元素。yは酸素量で、6.8≦y≦7.1)中にRE2BaCuO5が微細分散した超電導体であり、前記第二の超電導バルク体がMgとBとからなる超電導バルク体であることを特徴とする(1)記載の超電導バルク磁石。
(4)前記第一の超電導バルク体を構成する複数の超電導バルク体の間、及び前記第一の超電導バルク体と前記第二の超電導バルク体との間に、低融点金属層、樹脂層、又はグリース層からなる緩衝層が設けられていることを特徴とする(1)〜(3)のいずれか1つに記載の超電導バルク磁石。
The superconducting bulk magnet using the superconducting bulk body of the present invention is as follows.
(1) A superconducting bulk magnet composed of a first superconducting bulk body composed of a plurality of superconducting bulk bodies, and a hollow second superconducting bulk body surrounding the outer periphery of the first superconducting bulk body, The first superconducting bulk body is a superconducting bulk assembly structure in which a plurality of non-hollow superconducting bulk bodies are arranged in a predetermined direction and combined in a planar shape, and the second superconducting bulk body is a monolithic structure. A superconducting bulk magnet.
(2) The first superconducting bulk body or the superconducting bulk body constituting the first superconducting bulk body and the second superconducting bulk body is RE 1 Ba 2 Cu 3 O y (RE is Y or a rare earth element) One or two or more elements selected from the above, wherein y is the amount of oxygen and is a superconductor in which RE 2 BaCuO 5 is finely dispersed in (6.8 ≦ y ≦ 7.1) (1) The superconducting bulk magnet described.
(3) The superconducting bulk body constituting the first superconducting bulk body is RE 1 Ba 2 Cu 3 O y (RE is one or more elements selected from Y or rare earth elements. Y is the amount of oxygen. 6.8 ≦ y ≦ 7.1) in which RE 2 BaCuO 5 is finely dispersed, and the second superconducting bulk body is a superconducting bulk body composed of Mg and B. (1) The superconducting bulk magnet according to (1).
(4) A low-melting point metal layer, a resin layer, between the plurality of superconducting bulk bodies constituting the first superconducting bulk body, and between the first superconducting bulk body and the second superconducting bulk body, Or the buffer layer which consists of a grease layer is provided, The superconducting bulk magnet as described in any one of (1)-(3) characterized by the above-mentioned.

本発明により、複数個の超電導バルク体からなる超電導バルク集合体を利用した超電導バルク磁石において、磁気力の大きい超電導バルク磁石を提供することができる。   According to the present invention, a superconducting bulk magnet using a superconducting bulk assembly composed of a plurality of superconducting bulk bodies can provide a superconducting bulk magnet having a large magnetic force.

本発明の実施形態に係る超電導バルク磁石の一例を示す概念図である。It is a conceptual diagram which shows an example of the superconducting bulk magnet which concerns on embodiment of this invention. 従来の超電導バルク磁石の一例を示す概念図である。It is a conceptual diagram which shows an example of the conventional superconducting bulk magnet. 超電導バルク磁石の磁場分布を示す模式図である。It is a schematic diagram which shows the magnetic field distribution of a superconducting bulk magnet. 本発明の実施形態に係る超電導バルク磁石の別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the superconducting bulk magnet which concerns on embodiment of this invention.

以下に、本発明の実施形態について、図に沿って説明する。
図1は、本実施形態における超電導バルク磁石の一例を示す概念図である。図1は、中空状でない四角形状の超電導バルク体1が複数個並べられて構成された第一の超電導バルク体2の外周を第二の超電導バルク体3が取り囲む構成となっている。比較のため、図2に従来技術の一例を示す。図2に示す例も、四角形状の超電導バルク体10が複数個並べられて超電導バルク集合体を構成しているが、その外周を取り囲む第二の超電導バルク体がない。なお、図1及び図2に示す例では、超電導バルク体を収納する容器や冷却システム等は省略されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a conceptual diagram showing an example of a superconducting bulk magnet in the present embodiment. FIG. 1 shows a configuration in which a second superconducting bulk body 3 surrounds an outer periphery of a first superconducting bulk body 2 formed by arranging a plurality of rectangular superconducting bulk bodies 1 that are not hollow. For comparison, an example of the prior art is shown in FIG. In the example shown in FIG. 2 as well, a plurality of quadrangular superconducting bulk bodies 10 are arranged to form a superconducting bulk aggregate, but there is no second superconducting bulk body surrounding the outer periphery thereof. In the example shown in FIGS. 1 and 2, a container for storing the superconducting bulk body, a cooling system, and the like are omitted.

図3は、図1及び図2に示した超電導バルク磁石の表面での磁場分布の概念図である。個々の超電導バルク体の磁場分布は中央部の磁場強度が大きく、高い磁場勾配を有しているため、超電導バルク体を複数個並べて配置して超電導バルク集合体とすることにより、高い磁場勾配を有して空間的に周期性がある磁場を発生させることができる。しかし、図2に示す従来技術の場合、その磁場分布は図3(a)に示すように、高い磁場勾配は有しているものの、隣り合う超電導バルク体との間では磁場強度がゼロになる。それは、図2に示すように個々の超電導バルク体10をエポキシ樹脂等で一体化して配置して超電導バルク集合体としただけでは、隣り合う超電導バルク体間には超電導電流が流れないためである。   FIG. 3 is a conceptual diagram of the magnetic field distribution on the surface of the superconducting bulk magnet shown in FIGS. 1 and 2. Since the magnetic field distribution of each superconducting bulk body has a large magnetic field strength in the center and a high magnetic field gradient, a plurality of superconducting bulk bodies are arranged side by side to form a superconducting bulk assembly. A magnetic field having spatial periodicity can be generated. However, in the case of the prior art shown in FIG. 2, the magnetic field distribution has a high magnetic field gradient as shown in FIG. 3A, but the magnetic field strength becomes zero between adjacent superconducting bulk bodies. . This is because a superconducting current does not flow between adjacent superconducting bulk bodies simply by arranging and arranging individual superconducting bulk bodies 10 with an epoxy resin or the like as shown in FIG. 2 to form a superconducting bulk assembly. .

一方、本実施形態の場合、複数個の超電導バルク体1からなる第一の超電導バルク体2を構成する隣り合う超電導バルク体間には超電導電流が流れないものの、第一の超電導バルク体2の外周を取り囲むように第二の超電導バルク体3が存在するため、その磁場分布は図3(b)に示すように、ほぼ同じような磁場勾配を有しつつ磁場分布全体が上方にシフトした磁場分布になっている。すなわち、第二の超電導バルク体3は、複数個の超電導バルク体1からなる第一の超電導バルク体2から発生する磁場分布を嵩上げする機能を有する。そのため、磁場強度と磁場勾配との積で表わされる磁気力において、磁場勾配は図1及び図2に示す例ではほぼ同じであるが、全体的な磁場強度が高いため、本実施形態である図1に示す構成の超電導バルク磁石においては、その磁気力が格段に大きくなる。なお、第二の超電導バルク体3の大きさは、嵩上げしたい磁場の大きさや冷却温度に応じて決められる。   On the other hand, in the case of the present embodiment, although the superconducting current does not flow between adjacent superconducting bulk bodies constituting the first superconducting bulk body 2 composed of a plurality of superconducting bulk bodies 1, the first superconducting bulk body 2 Since the second superconducting bulk body 3 exists so as to surround the outer periphery, the magnetic field distribution has a substantially similar magnetic field gradient and the entire magnetic field distribution is shifted upward as shown in FIG. Distribution. That is, the second superconducting bulk body 3 has a function of raising the magnetic field distribution generated from the first superconducting bulk body 2 composed of a plurality of superconducting bulk bodies 1. Therefore, in the magnetic force represented by the product of the magnetic field strength and the magnetic field gradient, the magnetic field gradient is almost the same in the example shown in FIGS. 1 and 2, but the overall magnetic field strength is high, and therefore the diagram of this embodiment. In the superconducting bulk magnet having the configuration shown in 1, the magnetic force is remarkably increased. In addition, the magnitude | size of the 2nd superconducting bulk body 3 is determined according to the magnitude | size and cooling temperature of the magnetic field which wants to raise.

図3(b)に示すような磁場分布は、図2に示す従来技術の超電導バルク磁石に、電磁石や超電導コイルを用いた超電導磁石による外部磁場を組み合わせることでも可能であるが、電磁石や超電導コイルを用いた超電導磁石と組み合わせるとコンパクトで強磁場という超電導バルク磁石の優れた特長を損なうので好ましくない。本実施形態の場合、第二の超電導バルク体3が、電磁石や超電導コイルを用いた超電導磁石による外部磁場を印加することと同じ機能を有しているため、コンパクトで強磁場という超電導バルク磁石の優れた特長を損なうことなく超電導バルク磁石の磁気力を高めることができる。   The magnetic field distribution as shown in FIG. 3B can be obtained by combining the superconducting bulk magnet of the prior art shown in FIG. 2 with an external magnetic field by a superconducting magnet using an electromagnet or a superconducting coil. When combined with a superconducting magnet using a magnet, the excellent features of a superconducting bulk magnet such as a compact and strong magnetic field are impaired. In the case of the present embodiment, the second superconducting bulk body 3 has the same function as the application of an external magnetic field by a superconducting magnet using an electromagnet or a superconducting coil. The magnetic force of the superconducting bulk magnet can be increased without impairing the excellent features.

本発明に用いられる第一の超電導バルク体を構成する超電導バルク体としては、単結晶状のRE1Ba2Cu3Oy(REはY又は希土類元素から選ばれる1種又は2種以上の元素。yは酸素量で、6.8≦y≦7.1)中にRE2BaCuO5が微細分散した酸化物超電導バルク体が、強いピン止め力を有しており、捕捉磁場特性が優れているため好ましい。本発明に用いられる第二の超電導バルク体としても、RE1Ba2Cu3Oy中にRE2BaCuO5が微細分散した酸化物超電導バルク体が好ましい。しかし、第二の超電導バルク体には、第一の超電導バルク体により発生する磁場分布を嵩上げする機能が求められるので、第二の超電導バルク体は、複数個の超電導バルク体からなる第一の超電導バルク体のように複数個の超電導バルク体をエポキシ等で一体化したものではなく、第二の超電導バルク体全体に超電導電流が流れるようにする必要があり、一体構造の超電導バルク体とする。 As the superconducting bulk body constituting the first superconducting bulk body used in the present invention, single crystalline RE 1 Ba 2 Cu 3 O y (RE is Y or one or more elements selected from rare earth elements) Y is the amount of oxygen, and the oxide superconducting bulk material in which RE 2 BaCuO 5 is finely dispersed in 6.8 ≦ y ≦ 7.1) has a strong pinning force and excellent trapping magnetic field characteristics. Therefore, it is preferable. As the second superconducting bulk material used in the present invention, an oxide superconducting bulk material in which RE 2 BaCuO 5 is finely dispersed in RE 1 Ba 2 Cu 3 O y is preferable. However, since the second superconducting bulk body is required to have a function of increasing the magnetic field distribution generated by the first superconducting bulk body, the second superconducting bulk body is composed of a plurality of superconducting bulk bodies. A superconducting bulk body is not an integrated superconducting bulk body made of epoxy or the like, but a superconducting current must flow through the entire second superconducting bulk body. .

一方、RE1Ba2Cu3Oy中にRE2BaCuO5が微細分散した酸化物超電導バルク体は、高い捕捉磁場特性を発揮させるには全体を単結晶状にする必要があるが、単結晶状の大きな超電導バルク体を一体構造で製造するのは困難であるため、大型の超電導バルク磁石である第二の超電導バルク体に適用することは難しい。このことから大型の超電導バルク磁石である第二の超電導バルク体にはMgとBとからなる多結晶状MgB2の超電導バルク体を用いてもよい。RE1Ba2Cu3Oy中にRE2BaCuO5が微細分散した酸化物超電導バルク体の超電導転移温度(Tc)が90K程度であるのに比べて、MgとBとからなる超電導バルク体(MgB2)の超電導転移温度(Tc)は40K程度と低いものの、単結晶状ではなく多結晶状の超電導バルク体でも全体に超電導電流が流れる。多結晶状の超電導バルク体の製造は単結晶状の超電導バルク体の製造に比較して容易である。 On the other hand, an oxide superconducting bulk in which RE 2 BaCuO 5 is finely dispersed in RE 1 Ba 2 Cu 3 O y needs to be made into a single crystal as a whole in order to exhibit high trapping magnetic field characteristics. Since it is difficult to manufacture a large superconducting bulk body with a single structure, it is difficult to apply it to a second superconducting bulk body that is a large superconducting bulk magnet. Therefore, a polycrystalline MgB 2 superconducting bulk body composed of Mg and B may be used for the second superconducting bulk body which is a large superconducting bulk magnet. Compared to the superconducting transition temperature (T c ) of an oxide superconducting bulk in which RE 2 BaCuO 5 is finely dispersed in RE 1 Ba 2 Cu 3 O y , the superconducting bulk consists of Mg and B. Although the superconducting transition temperature (T c ) of (MgB 2 ) is as low as about 40 K, a superconducting current flows in the whole of a superconducting bulk material that is not a single crystal but a polycrystalline one. The production of a polycrystalline superconducting bulk body is easier than the production of a single crystalline superconducting bulk body.

第二の超電導バルク体がMgとBとからなる超電導バルク体である場合、その充填率は80%以上であることが好ましい。ここで充填率とは、理論密度に対する実際の密度の比である。MgとBとからなる超電導バルク体は、一般的にはMg粉末とB粉末とを混合して成形したものを焼結して作製されるが、Mgの融点が650℃でBの融点が2076℃と大きく異なるため、MgがBに吸収される形で反応が進み、充填率が50%程度と低くなる。充填率が低いMgとBとからなる超電導バルク体の機械的強度は極端に小さくなる。本発明の超電導バルク磁石では、第二の超電導バルク体は複数個の超電導バルク体からなる第一の超電導バルク体の外周を取り囲むように配置されるので、複数個の超電導バルク体からなる第一の超電導バルク体を構成する超電導バルク体同士の磁気的な反発力を第二の超電導バルク体が受けることになる。したがって、第二の超電導バルク体の機械的強度が極端に小さいと、第二の超電導バルク体の外周に補強リングを設けたとしても、第二の超電導バルク体が破損するおそれがある。このことから充填率が80%以上であれば、MgとBとからなる超電導バルク体においても十分な機械的強度を得ることができる。充填率80%以上のMgとBとからなる超電導バルク体を得るには、焼結中に圧力を加えることが有効な手段である。焼結中に圧力を加える手段としては、例えば、熱間等方圧加圧(HIP)などがある。   When the second superconducting bulk body is a superconducting bulk body composed of Mg and B, the filling rate is preferably 80% or more. Here, the filling rate is the ratio of the actual density to the theoretical density. A superconducting bulk body composed of Mg and B is generally produced by sintering a mixture of Mg powder and B powder, and the melting point of Mg is 650 ° C. and the melting point of B is 2076. Since it is greatly different from ° C., the reaction proceeds in a form in which Mg is absorbed by B, and the filling rate becomes as low as about 50%. The mechanical strength of a superconducting bulk body composed of Mg and B with a low filling rate becomes extremely small. In the superconducting bulk magnet of the present invention, the second superconducting bulk body is disposed so as to surround the outer periphery of the first superconducting bulk body composed of a plurality of superconducting bulk bodies. The second superconducting bulk body receives the magnetic repulsion between the superconducting bulk bodies constituting the superconducting bulk body. Therefore, if the mechanical strength of the second superconducting bulk body is extremely small, the second superconducting bulk body may be damaged even if a reinforcing ring is provided on the outer periphery of the second superconducting bulk body. From this, if the filling rate is 80% or more, sufficient mechanical strength can be obtained even in a superconducting bulk body composed of Mg and B. In order to obtain a superconducting bulk body composed of Mg and B with a filling rate of 80% or more, it is an effective means to apply pressure during sintering. Examples of means for applying pressure during sintering include hot isostatic pressing (HIP).

本発明の超電導バルク磁石では、複数個の超電導バルク体からなる第一の超電導バルク体と第二の超電導バルク体とを組み合わせて超電導バルク磁石を構成するものであるが、個々の超電導バルク体間にはお互いの磁場による反発力が作用する。すなわち、隣り合う超電導バルク体は互いに反発力を及ぼしあっている。個々の超電導バルク体の加工精度が低いと、隣り合う超電導バルク体間の反発力が均一に伝わらず、超電導バルク体の一部に局所的な反発力が作用して破損する恐れがあるため、個々の超電導バルク体を精度よく加工する必要がある。そこで、図4に示すように、複数個の超電導バルク体1の間や、その外周を覆う第二の超電導バルク体3との間に、緩衝層4を設けてもよい。これにより、隣り合う超電導バルク体間の反発力をより均一に伝えることができ、超電導バルク体の破損を低減することができる。本発明に用いられる緩衝層としては、超電導バルク体よりも柔らかければよく、樹脂、低融点金属やグリース等のいずれかが好ましい。また、図4に示すように、複数個の超電導バルク体1を縦方向及び横方向に配置して第一の超電導バルク体を構成するようにしてもよい。さらに本実施形態では、四角形状の超電導バルク体を複数並べる例について説明したが、その他の多角形(三角形や六角形など)の超電導バルク体を複数並べてもよい。   In the superconducting bulk magnet of the present invention, a superconducting bulk magnet is configured by combining a first superconducting bulk body composed of a plurality of superconducting bulk bodies and a second superconducting bulk body. The repulsive force of each other's magnetic field acts on. That is, the adjacent superconducting bulk bodies are repelling each other. If the processing accuracy of each superconducting bulk body is low, the repulsive force between adjacent superconducting bulk bodies may not be transmitted uniformly, and local repulsive force may act on a part of the superconducting bulk body, causing damage. It is necessary to process each superconducting bulk body with high accuracy. Therefore, as shown in FIG. 4, a buffer layer 4 may be provided between the plurality of superconducting bulk bodies 1 and between the second superconducting bulk body 3 covering the outer periphery thereof. Thereby, the repulsive force between adjacent superconducting bulk bodies can be transmitted more uniformly, and damage to the superconducting bulk bodies can be reduced. The buffer layer used in the present invention may be softer than the superconducting bulk material, and any of resin, low melting point metal, grease and the like is preferable. Further, as shown in FIG. 4, a plurality of superconducting bulk bodies 1 may be arranged in the vertical and horizontal directions to constitute the first superconducting bulk body. Furthermore, in the present embodiment, an example in which a plurality of rectangular superconducting bulk bodies are arranged has been described. However, a plurality of other superconducting bulk bodies having other polygonal shapes (such as triangles and hexagons) may be arranged.

(実施例1)
Ptを0.5質量%およびAgを10質量%含み、かつGd1Ba2Cu3Oy中に25モル%のGd2BaCuO5が微細分散した一辺30mm、高さ15mmの四角形状の超電導バルク体を3個並べて第一の超電導バルク体とし、その外周に外形130mm×70mm、高さ15mmに90mm×30mmの内穴を開けた、第一の超電導バルク体と同じ組成からなる第二の超電導バルク体1個を組み合わせて超電導バルク磁石を作製した。第一の超電導バルク体を構成する個々の超電導バルク体及び第二の超電導バルク体は、どちらも溶融結晶成長法で単結晶状に結晶成長させたバルク体から所定の形状に加工した。
Example 1
A rectangular superconducting bulk with a side of 30 mm and a height of 15 mm, containing 0.5% by mass of Pt and 10% by mass of Ag, and 25 mol% of Gd 2 BaCuO 5 finely dispersed in Gd 1 Ba 2 Cu 3 O y A second superconducting body having the same composition as the first superconducting bulk body, in which three bodies are arranged to form a first superconducting bulk body, and an outer hole of 130 mm × 70 mm and a height of 15 mm and an inner hole of 90 mm × 30 mm are formed on the outer periphery. A superconducting bulk magnet was fabricated by combining one bulk body. Each of the individual superconducting bulk body and the second superconducting bulk body constituting the first superconducting bulk body was processed into a predetermined shape from a bulk body crystal-grown into a single crystal by the melt crystal growth method.

この超電導バルク磁石の外周を肉厚5mmのステンレス鋼のリングで補強した後、外部磁場3Tで磁場中冷却して着磁し、液体窒素中(77K)で磁場分布を測定した。この超電導バルク磁石は、個々の第一の超電導バルク体の中央部の磁場強度が強くなる磁場分布を有し、隣り合う超電導バルク体の間の磁場強度は1.3Tであった。比較のため、本実施例と同じ材料の複数の超電導バルク体からなる第一の超電導バルク体のみで同様の測定を行ったところ、隣り合う超電導バルク体の間の磁場強度は0.1T以下であった。本結果から、本発明の構造を有する超電導バルク磁石において、磁気力が大きな超電導バルク磁石を提供することができる。   After the outer periphery of this superconducting bulk magnet was reinforced with a 5 mm thick stainless steel ring, the magnetic field was cooled and magnetized with an external magnetic field 3T, and the magnetic field distribution was measured in liquid nitrogen (77K). This superconducting bulk magnet had a magnetic field distribution in which the magnetic field strength at the center of each first superconducting bulk body was increased, and the magnetic field strength between adjacent superconducting bulk bodies was 1.3T. For comparison, when the same measurement was performed only on the first superconducting bulk body composed of a plurality of superconducting bulk bodies made of the same material as in this example, the magnetic field strength between adjacent superconducting bulk bodies was 0.1 T or less. there were. From this result, it is possible to provide a superconducting bulk magnet having a large magnetic force in the superconducting bulk magnet having the structure of the present invention.

(実施例2)
CeO2を1.0質量%含み、かつY1Ba2Cu3Oy中に20モル%のY2BaCuO5が微細分散した一辺50mm、高さ20mmの四角形状の超電導バルク体を3個並べて第一の超電導バルク体とし、その外周に外形180mm×80mm、高さ20mmに150mm×50mmの内穴を開けた、MgB2の組成からなる第二の超電導バルク体1個を組み合わせて超電導バルク磁石を作製した。第一の超電導バルク体を構成する個々の超電導バルク体は、溶融結晶成長法で単結晶状に結晶成長させたバルク体から所定の形状に加工した。一方、第二の超電導バルク体は、HIP法により98MPaの圧力で作製した多結晶状のバルク体から所定の形状に加工したものであり、その充填率は80%であった。また、複数個の超電導バルク体からなる第一の超電導バルク体と第二の超電導バルク体とを組み合わせて超電導バルク磁石を作製する際、個々の超電導バルク体の間及び第一の超電導バルク体と第二の超電導バルク体との間にグリースを塗布して緩衝層とした。
(Example 2)
Three rectangular superconducting bulks each containing 50 mass% of CeO 2 and 20 mol% Y 2 BaCuO 5 finely dispersed in Y 1 Ba 2 Cu 3 O y and having a side of 50 mm and a height of 20 mm are arranged side by side. A superconducting bulk magnet is formed by combining one second superconducting bulk body composed of MgB 2 and having an outer diameter of 180 mm × 80 mm and an inner hole of 150 mm × 50 mm at a height of 20 mm as the first superconducting bulk body. Was made. The individual superconducting bulk bodies constituting the first superconducting bulk body were processed into a predetermined shape from the bulk body crystal-grown into a single crystal by the melt crystal growth method. On the other hand, the second superconducting bulk body was obtained by processing a polycrystalline bulk body produced by the HIP method at a pressure of 98 MPa into a predetermined shape, and the filling rate was 80%. Further, when a superconducting bulk magnet is manufactured by combining a first superconducting bulk body composed of a plurality of superconducting bulk bodies and a second superconducting bulk body, between each superconducting bulk body and the first superconducting bulk body, Grease was applied between the second superconducting bulk body to form a buffer layer.

この超電導バルク磁石の外周を肉厚2mmのステンレス鋼のリングで補強した後、外部磁場5Tで磁場中冷却して着磁し、20Kで磁場分布を測定した。この超電導バルク磁石は、個々の第一の超電導バルク体の中央部の磁場強度が強くなる磁場分布を有し、隣り合う第一の超電導バルク体の間の磁場強度は1Tであった。比較のため、加圧をしない焼結法で作製した充填率50%の第二の超電導バルク体であるMgB2を用いた超電導バルク磁石で同様の測定を行ったところ、第二の超電導バルク体にクラックが発生し、そこから磁場が漏れたため、隣り合う超電導バルク体の間の磁場強度は0.1T以下であった。本結果から、本発明の構造を有する超電導バルク磁石において、磁気力が大きな超電導バルク磁石を提供することができる。 The outer periphery of this superconducting bulk magnet was reinforced with a 2 mm thick stainless steel ring, and then cooled and magnetized in an external magnetic field 5T, and the magnetic field distribution was measured at 20K. This superconducting bulk magnet has a magnetic field distribution in which the magnetic field strength at the center of each first superconducting bulk body is increased, and the magnetic field strength between adjacent first superconducting bulk bodies is 1T. For comparison, when the same measurement was performed with a superconducting bulk magnet using MgB 2 which is a second superconducting bulk body with a filling rate of 50% prepared by a sintering method without applying pressure, the second superconducting bulk body was obtained. Since a crack was generated and a magnetic field leaked therefrom, the magnetic field strength between adjacent superconducting bulk bodies was 0.1 T or less. From this result, it is possible to provide a superconducting bulk magnet having a large magnetic force in the superconducting bulk magnet having the structure of the present invention.

(実施例3)
Ptを0.5質量%およびAgを15質量%含み、かつGd1Ba2Cu3Oy中に30モル%のY2BaCuO5が微細分散した外径40mm×30mm、高さ15mmの四角形状の第一の超電導バルク体6個を3個×2列に並べて超電導バルク集合体とし、その外周に外形130mm×120mm、高さ15mmに90mm×80mmの内穴を開けた、MgB2の組成からなる第二の超電導バルク体1個を組み合わせて超電導バルク磁石を作製した。第一の超電導バルク体を構成する個々の超電導バルク体は、溶融結晶成長法で単結晶状に結晶成長させたバルク体から所定の形状に加工した。一方、第二の超電導バルク体は、HIP法により196MPaの圧力で作製した多結晶状のバルク体から所定の形状に加工したもので、その充填率は90%であった。また、複数個の超電導バルク体からなる第一の超電導バルク体と第二の超電導バルク体とを組み合わせて超電導バルク磁石を作製する際、個々の超電導バルク体の間及び第一の超電導バルク体と第二の超電導バルク体との間に融点60℃の低融点金属を充填して緩衝層とした。
(Example 3)
A rectangular shape having an outer diameter of 40 mm × 30 mm and a height of 15 mm, containing 0.5% by mass of Pt and 15% by mass of Ag, and 30 mol% of Y 2 BaCuO 5 finely dispersed in Gd 1 Ba 2 Cu 3 O y From the composition of MgB 2 in which six first superconducting bulk bodies were arranged in 3 × 2 rows to form a superconducting bulk assembly, and an outer hole of 130 mm × 120 mm and an inner hole of 90 mm × 80 mm were formed at a height of 15 mm. A superconducting bulk magnet was manufactured by combining one second superconducting bulk body. The individual superconducting bulk bodies constituting the first superconducting bulk body were processed into a predetermined shape from the bulk body crystal-grown into a single crystal by the melt crystal growth method. On the other hand, the second superconducting bulk body was processed into a predetermined shape from a polycrystalline bulk body produced at a pressure of 196 MPa by the HIP method, and the filling rate was 90%. Further, when a superconducting bulk magnet is manufactured by combining a first superconducting bulk body composed of a plurality of superconducting bulk bodies and a second superconducting bulk body, between each superconducting bulk body and the first superconducting bulk body, A low melting point metal having a melting point of 60 ° C. was filled between the second superconducting bulk body to form a buffer layer.

この超電導バルク磁石の外周を肉厚3mmのステンレス鋼のリングで補強した後、外部磁場5Tで磁場中冷却して着磁し、30Kで磁場分布を測定した。この超電導バルク磁石は、個々の超電導バルク体の中央部の磁場強度が強くなる磁場分布を有し、隣り合う超電導バルク体の間の磁場強度は1Tであった。比較のため、緩衝層を設けない超電導バルク磁石で同様の測定を行ったところ、6個の超電導バルク体のうち1個に小さな破損が発生し、その箇所で複数個の超電導バルク体からなる第一の超電導バルク体から発生する周期的な磁場分布に乱れが生じた。本結果から、本発明の構造を有する超電導バルク磁石において、磁気力が大きな超電導バルク磁石を提供することができる。   The outer periphery of this superconducting bulk magnet was reinforced with a 3 mm thick stainless steel ring, and then cooled and magnetized in an external magnetic field 5T, and the magnetic field distribution was measured at 30K. This superconducting bulk magnet had a magnetic field distribution in which the magnetic field strength at the center of each superconducting bulk body was increased, and the magnetic field strength between adjacent superconducting bulk bodies was 1T. For comparison, a similar measurement was performed using a superconducting bulk magnet without a buffer layer. As a result, one of the six superconducting bulk bodies was slightly damaged, and a plurality of superconducting bulk bodies were formed at that location. Disturbance occurred in the periodic magnetic field distribution generated from one superconducting bulk material. From this result, it is possible to provide a superconducting bulk magnet having a large magnetic force in the superconducting bulk magnet having the structure of the present invention.

1 超電導バルク体
2 第一の超電導バルク体
3 第二の超電導バルク体
4 緩衝層
DESCRIPTION OF SYMBOLS 1 Superconducting bulk body 2 First superconducting bulk body 3 Second superconducting bulk body 4 Buffer layer

Claims (4)

複数個の超電導バルク体から構成される第一の超電導バルク体、及び前記第一の超電導バルク体の外周を取り囲む中空状の第二の超電導バルク体からなる超電導バルク磁石であって、前記第一の超電導バルク体は中空状でない複数の超電導バルク体を所定の方向に並べて配置して面状に組み合わせた超電導バルク集合体構造であり、前記第二の超電導バルク体は一体構造であることを特徴とする超電導バルク磁石。   A superconducting bulk magnet comprising a first superconducting bulk body composed of a plurality of superconducting bulk bodies and a hollow second superconducting bulk body surrounding an outer periphery of the first superconducting bulk body, The superconducting bulk body is a superconducting bulk assembly structure in which a plurality of non-hollow superconducting bulk bodies are arranged side by side in a predetermined direction and combined in a plane shape, and the second superconducting bulk body is an integral structure. Superconducting bulk magnet. 前記第一の超電導バルク体、または前記第一の超電導バルク体及び前記第二の超電導バルク体を構成する超電導バルク体が、RE1Ba2Cu3Oy(REはY又は希土類元素から選ばれる1種又は2種以上の元素。yは酸素量で、6.8≦y≦7.1)中にRE2BaCuO5が微細分散した超電導体であることを特徴とする請求項1記載の超電導バルク磁石。 The first superconducting bulk body, or the superconducting bulk body constituting the first superconducting bulk body and the second superconducting bulk body is selected from RE 1 Ba 2 Cu 3 O y (RE is Y or a rare earth element) The superconductivity according to claim 1, characterized in that one or more elements, wherein y is the amount of oxygen, and RE 2 BaCuO 5 is finely dispersed in 6.8 ≦ y ≦ 7.1). Bulk magnet. 前記第一の超電導バルク体を構成する超電導バルク体が、RE1Ba2Cu3Oy(REはY又は希土類元素から選ばれる1種又は2種以上の元素。yは酸素量で、6.8≦y≦7.1)中にRE2BaCuO5が微細分散した超電導体であり、前記第二の超電導バルク体がMgとBとからなる超電導バルク体であることを特徴とする請求項1記載の超電導バルク磁石。 The superconducting bulk body constituting the first superconducting bulk body is RE 1 Ba 2 Cu 3 O y (RE is one or more elements selected from Y or rare earth elements. Y is the amount of oxygen; 8. A superconductor in which RE 2 BaCuO 5 is finely dispersed in 8 ≦ y ≦ 7.1), and the second superconducting bulk body is a superconducting bulk body composed of Mg and B. The superconducting bulk magnet described. 前記第一の超電導バルク体を構成する複数の超電導バルク体の間、及び前記第一の超電導バルク体と前記第二の超電導バルク体との間に、低融点金属層、樹脂層、又はグリース層からなる緩衝層が設けられていることを特徴とする請求項1〜3のいずれか1項に記載の超電導バルク磁石。   A low-melting-point metal layer, a resin layer, or a grease layer between a plurality of superconducting bulk bodies constituting the first superconducting bulk body and between the first superconducting bulk body and the second superconducting bulk body. A superconducting bulk magnet according to any one of claims 1 to 3, wherein a buffer layer made of is provided.
JP2013036068A 2013-02-26 2013-02-26 Superconducting bulk magnet Active JP6136361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013036068A JP6136361B2 (en) 2013-02-26 2013-02-26 Superconducting bulk magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013036068A JP6136361B2 (en) 2013-02-26 2013-02-26 Superconducting bulk magnet

Publications (2)

Publication Number Publication Date
JP2014165382A true JP2014165382A (en) 2014-09-08
JP6136361B2 JP6136361B2 (en) 2017-05-31

Family

ID=51615716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013036068A Active JP6136361B2 (en) 2013-02-26 2013-02-26 Superconducting bulk magnet

Country Status (1)

Country Link
JP (1) JP6136361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057634A1 (en) * 2015-10-02 2017-04-06 新日鐵住金株式会社 Oxide superconducting bulk magnet

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106004A (en) * 1988-10-15 1990-04-18 Toyota Motor Corp Superconducting magnet
JPH02192104A (en) * 1989-01-20 1990-07-27 Nippon Steel Corp Magnet using oxide superconducting material
JPH09255333A (en) * 1996-03-22 1997-09-30 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide superconducting combined body and its production
JPH11284238A (en) * 1998-03-27 1999-10-15 Imura Zairyo Kaihatsu Kenkyusho:Kk Superconducting magnetic field generating element
JP2001307916A (en) * 2000-04-24 2001-11-02 Toshiba Corp Superconducting magnet device
JP2001358007A (en) * 2000-06-13 2001-12-26 Nippon Steel Corp Superconducting oxide bulk magnet
JP2004349276A (en) * 2003-04-25 2004-12-09 Japan Science & Technology Agency Superconducting permanent magnet unit
JP2008235263A (en) * 2007-02-21 2008-10-02 National Institute For Materials Science MANUFACTURING METHOD OF MgB2 SUPERCONDUCTOR AND MgB2 SUPERCONDUCTOR
JP2011142303A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
JP2011142304A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
JP2012099564A (en) * 2010-10-29 2012-05-24 Railway Technical Research Institute Method of manufacturing magnesium diboride superconducting bulk magnet, and magnesium diboride superconducting bulk magnet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106004A (en) * 1988-10-15 1990-04-18 Toyota Motor Corp Superconducting magnet
JPH02192104A (en) * 1989-01-20 1990-07-27 Nippon Steel Corp Magnet using oxide superconducting material
JPH09255333A (en) * 1996-03-22 1997-09-30 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide superconducting combined body and its production
JPH11284238A (en) * 1998-03-27 1999-10-15 Imura Zairyo Kaihatsu Kenkyusho:Kk Superconducting magnetic field generating element
JP2001307916A (en) * 2000-04-24 2001-11-02 Toshiba Corp Superconducting magnet device
JP2001358007A (en) * 2000-06-13 2001-12-26 Nippon Steel Corp Superconducting oxide bulk magnet
JP2004349276A (en) * 2003-04-25 2004-12-09 Japan Science & Technology Agency Superconducting permanent magnet unit
JP2008235263A (en) * 2007-02-21 2008-10-02 National Institute For Materials Science MANUFACTURING METHOD OF MgB2 SUPERCONDUCTOR AND MgB2 SUPERCONDUCTOR
JP2011142303A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
JP2011142304A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
JP2012099564A (en) * 2010-10-29 2012-05-24 Railway Technical Research Institute Method of manufacturing magnesium diboride superconducting bulk magnet, and magnesium diboride superconducting bulk magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057634A1 (en) * 2015-10-02 2017-04-06 新日鐵住金株式会社 Oxide superconducting bulk magnet
JPWO2017057634A1 (en) * 2015-10-02 2018-08-09 新日鐵住金株式会社 Oxide superconducting bulk magnet
US20180301260A1 (en) * 2015-10-02 2018-10-18 Nippon Steel & Sumitomo Metal Corporation Oxide superconducting bulk magnet
EP3358581A4 (en) * 2015-10-02 2019-05-15 Nippon Steel & Sumitomo Metal Corporation Oxide superconducting bulk magnet
US10748691B2 (en) 2015-10-02 2020-08-18 Nippon Steel Corporation Oxide superconducting bulk magnet

Also Published As

Publication number Publication date
JP6136361B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
Johansen Flux-pinning-induced stress and magnetostriction in bulk superconductors
Zhou et al. An overview of rotating machine systems with high-temperature bulk superconductors
Murakami Processing and applications of bulk RE–Ba–Cu–O superconductors
JP6119851B2 (en) Oxide superconducting bulk magnet
TW317597B (en)
US8948829B2 (en) Oxide superconducting bulk magnet member
Namburi et al. A trapped field of 14.3 T in Y–Ba–Cu–O bulk superconductors fabricated by buffer-assisted seeded infiltration and growth
US10283243B2 (en) Oxide superconducting bulk magnet
WO2012093303A1 (en) Superconductors and methods of manufacturing the
JP2002222619A (en) Magnesium diboride superconducting wire material
JP6422631B2 (en) Superconducting bulk magnet
JP6136361B2 (en) Superconducting bulk magnet
JP4799979B2 (en) Oxide superconductor coil, oxide superconductor coil manufacturing method, oxide superconductor coil excitation method, oxide superconductor coil cooling method, and magnet system
JP4719308B1 (en) Oxide superconducting bulk magnet member
JP3389094B2 (en) Superconducting magnetic field generator
JP5195961B2 (en) Oxide superconducting bulk magnet member
Mizuguchi Superconductivity in BiS2-based layered compounds
Chu et al. The rise of Tc: A promising paradigm via interfacial mechanism
WO2015133537A1 (en) Oxide superconductive bulk magnet
JP6435927B2 (en) Superconducting bulk magnet and method of magnetizing superconducting bulk magnet
Ma et al. Magnetic interaction force between high-Tc superconductor-ring and magnet
Tsurudome et al. Improvement of a large bore cryogen-free superconducting magnet for a hybrid magnet
JP5742752B2 (en) Superconducting bulk magnet member and manufacturing method thereof
JP2006054454A (en) Superconducting coil structure, superconducting spectral meter, generation method for magnetic flux, and momentum measurement method for charged particles
Zhang et al. Development of a compact superconducting magnet with a GdBCO magnetic lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R151 Written notification of patent or utility model registration

Ref document number: 6136361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350