JPH0427690B2 - - Google Patents

Info

Publication number
JPH0427690B2
JPH0427690B2 JP61277517A JP27751786A JPH0427690B2 JP H0427690 B2 JPH0427690 B2 JP H0427690B2 JP 61277517 A JP61277517 A JP 61277517A JP 27751786 A JP27751786 A JP 27751786A JP H0427690 B2 JPH0427690 B2 JP H0427690B2
Authority
JP
Japan
Prior art keywords
carbon
gas
carbon film
producing
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61277517A
Other languages
Japanese (ja)
Other versions
JPS62167885A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP27751786A priority Critical patent/JPS62167885A/en
Publication of JPS62167885A publication Critical patent/JPS62167885A/en
Publication of JPH0427690B2 publication Critical patent/JPH0427690B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は、プラズマCVD法によりダイヤモン
ド構造を有する炭素被膜を作製する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a carbon film having a diamond structure by plasma CVD.

本発明は、かかる炭素または炭素を主成分とす
る被膜をガラス、金属またはセラミツクスの表面
にコーテイングすることにより、ガラス板の補強
材、また機械的ストレスに対する保護材を得んと
している複合体の作製方法に関する。
The present invention aims to produce a composite material which is intended to serve as a reinforcing material for a glass plate and as a protective material against mechanical stress by coating the surface of glass, metal or ceramics with such carbon or a film mainly composed of carbon. Regarding the method.

本発明は、アセチレン、メタンのような炭化水
素気体をプラズマ雰囲気中に導入し分解せしめる
ことにより、C−C結合を作り、結果としてグラ
フアイトのような導電性または不良導電性の炭素
を作るのではなく、光学的にエネルギバンド巾
(Egという)が2.0eV以上、好ましくは2.6〜
4.5eVを有する単結晶ダイヤモンドに類似のダイ
ヤモンド構造を有する絶縁性の炭素を形成するこ
とを特徴としている。さらにこの本発明の炭素
は、その硬度も4500Kg/mm2以上、代表的には6500
Kg/mm2というダイヤモンド類似の硬さを有する。
そしてその結晶学的構造は5〜200〓の大きさの
微結晶性を有している。またこの炭素は水素、ハ
ロゲン元素が25モル%以下の量を同時に含有して
いる。
The present invention creates C-C bonds by introducing a hydrocarbon gas such as acetylene or methane into a plasma atmosphere and decomposing it, resulting in the creation of conductive or poorly conductive carbon such as graphite. Rather, the optical energy band width (called Eg) is 2.0eV or more, preferably 2.6~
It is characterized by the formation of insulating carbon with a diamond structure similar to single crystal diamond with a voltage of 4.5eV. Furthermore, the carbon of the present invention has a hardness of 4500 Kg/mm 2 or more, typically 6500 Kg/mm 2 or more.
It has a hardness of Kg/mm 2 similar to diamond.
Its crystallographic structure has microcrystallinity with a size of 5 to 200 mm. Further, this carbon simultaneously contains hydrogen and halogen elements in an amount of 25 mol% or less.

また本発明の炭素に価またはV価の不純物を
5モル%以下に添加し、PまたはN型の導電型を
有せしめ得る。
Further, the carbon of the present invention can be made to have P or N type conductivity by adding valence or V valence impurities to 5 mol % or less.

本発明は、この炭素を形成させる際の基板に加
える温度を150〜450℃とし、従来より知られた
CVD法において用いられる基板の温度に比べ500
〜1500℃も低い温度で形成したことを他の特徴と
する。
In the present invention, the temperature applied to the substrate when forming this carbon is 150 to 450 degrees Celsius, which is different from conventionally known methods.
500° compared to the substrate temperature used in the CVD method.
Another feature is that it was formed at temperatures as low as ~1500℃.

また本発明はこの炭素に価の不純物であるホ
ウ素を0.1〜5モル%の濃度に添加し、P型の炭
素を設け、またV価の不純物であるリンを同様に
0.1〜5モル%の濃度に添加し、N型の炭素を設
けることにより、この基板上面の炭素をグラフア
イト構造とは異なる価電子制御による半導電性を
有せしめたことを他の特徴としている。
In addition, in the present invention, boron, which is a valent impurity, is added to this carbon at a concentration of 0.1 to 5 mol% to provide P-type carbon, and phosphorus, which is a V-valent impurity, is added to the carbon at a concentration of 0.1 to 5 mol%.
Another feature is that by adding N-type carbon at a concentration of 0.1 to 5 mol%, the carbon on the upper surface of the substrate has semiconductivity due to valence electron control, which is different from the graphite structure. .

さらに本発明は、この基板上にPIN接合または
NIP接合を有する炭素を設けることにより、ダイ
オード特性を有する半導体的特性を有せしめるこ
とを特徴としている。
Furthermore, the present invention provides PIN bonding or
By providing carbon with an NIP junction, it is characterized in that it has semiconductor characteristics with diode characteristics.

また本発明は基板特にガラスまたはセラミツク
を用い、その後この基板の一部を選択的に除去し
てインクジエツトノズル、光通信用石英ガラスの
引き出し用ノズルとして設けるものである。
Further, the present invention uses a substrate, particularly glass or ceramic, and then selectively removes a portion of the substrate to provide an inkjet nozzle or a nozzle for extracting quartz glass for optical communication.

また本発明は、ガラス基板上に選択的に炭素被
膜を設け、電子ビーム露光装置または紫外線の露
光装置のフオトマスクとして用いることを他の特
徴としている。
Another feature of the present invention is that a carbon film is selectively provided on a glass substrate and used as a photomask for an electron beam exposure device or an ultraviolet exposure device.

さらに本発明の複合体はバルブ、耐磨耗材料、
またはPIN型を有する半導体としての装置例えば
受光または発光素子への反応が可能である。
Furthermore, the composite of the present invention can be used as a valve, wear-resistant material,
Alternatively, it is possible to react to a device as a semiconductor having a PIN type, such as a light receiving or light emitting element.

以下に図面に従つて本発明に用いられた複合体
またはその複合体の作製方法を記す。
The composite used in the present invention and the method for producing the composite will be described below according to the drawings.

実施例 1 第1図は本発明の炭素を形成するためのプラズ
マCVD装置の概要を示す。
Example 1 FIG. 1 shows an outline of a plasma CVD apparatus for forming carbon according to the present invention.

図面において反応性気体である炭化水素気体、
例えばアセチレンが8よりバルブ、流量計5をへ
て反応系中の励起室4に導入される。さらに必要
に応じて、キヤリアガスを水素またはヘリユーム
により7よりバルブ、流量計6をへて同様に励起
室に至る。ここに価またはV価の不純物、例え
ばジボランまたはフオスヒンを導入する場合はさ
らに同様にこの系に加えればよい。
hydrocarbon gas, which is a reactive gas in the drawing;
For example, acetylene is introduced from 8 through a valve and a flow meter 5 into an excitation chamber 4 in the reaction system. Further, if necessary, the carrier gas is supplied with hydrogen or helium from 7 through a valve and a flow meter 6 to reach the excitation chamber in the same manner. When introducing a valent or V-valent impurity, such as diborane or phoschin, it may be added to the system in the same manner.

これらの反応性気体は2.45GHzのマイクロ波に
よる電磁エネルギにより0.1〜5Kwのエネルギを
加えられ、励起室にて活性化、分解または反応さ
せられてC−C結合を生成した。さらにこの反応
性気体は反応炉1にて加熱炉9により150〜450℃
に加熱させ、さらに13.56MHzの高周波エネルギ
2により反応、重合され、C−C結合を多数形成
した炭素を生成する。この際、加える高周波やマ
イクロ波の電磁エネルギが小さい場合はアモルフ
アス構造の炭素が生成される。このため本発明方
法ではこの電磁エネルギを強く加え、5〜200〓
の大きさのダイヤモンド形状の微結晶性を有する
炭素を生成させる。この反応は電源13によりヒ
ータ11を加熱し、さらにその上の基板10を加
熱して行う。そしてこの基板の上面に被膜として
反応生成物の炭素被膜が形成される。反応後の不
要物は排気口12よりロータリーポンプを経て排
気される。反応室1は0.001〜10torr代表的には
0.1〜0.5torrに保持されており、マイクロ波3、
高周波2のエネルギにより反応室1内はプラズマ
状態が生成される。特に1GHz以上の周波数にあ
つては、C−H結合より水素を分離し、0.1〜
50MHzの周波数にあつてはC≡C結合、C=C結
合を分解し、C−C結合または−C−C−結
合を作り、炭素の不対結合手同志を互いに衝突さ
せて共有結合させ、安定なダイヤモンド構造を有
せしめた。
These reactive gases were applied with 0.1 to 5 Kw of electromagnetic energy by microwaves at 2.45 GHz, and activated, decomposed or reacted in an excitation chamber to form C--C bonds. Furthermore, this reactive gas is heated to a temperature of 150 to 450°C in a heating furnace 9 in a reactor 1.
The carbon is heated to , and then reacted and polymerized by high frequency energy 2 of 13.56 MHz to produce carbon having many C--C bonds. At this time, if the applied high frequency or microwave electromagnetic energy is small, carbon with an amorphous structure is produced. Therefore, in the method of the present invention, this electromagnetic energy is strongly applied to
This produces diamond-shaped microcrystalline carbon with a size of . This reaction is carried out by heating the heater 11 with the power supply 13 and further heating the substrate 10 thereon. Then, a carbon film of the reaction product is formed as a film on the upper surface of this substrate. Unwanted substances after the reaction are exhausted from the exhaust port 12 via a rotary pump. Reaction chamber 1 is typically 0.001 to 10 torr.
It is maintained at 0.1 to 0.5 torr, and microwave 3,
A plasma state is generated within the reaction chamber 1 by the energy of the high frequency wave 2 . In particular, at frequencies above 1 GHz, hydrogen is separated from the C-H bond, and 0.1~
At a frequency of 50MHz, C≡C bonds and C=C bonds are decomposed, C-C bonds or -C-C- bonds are created, and unpaired carbon bonds are collided with each other to form covalent bonds. It has a stable diamond structure.

かくしてガラス、金属、セラミツクスよりなる
被形成面を有する基板上に炭素特に炭素中に水素
を25モル%以下含有する炭素またP、IまたはN
型の導電型を有する炭素を形成させた。
Thus, carbon, especially carbon containing 25 mol% or less of hydrogen, P, I or N, is applied onto a substrate having a surface made of glass, metal or ceramics.
Carbon having a conductivity type of the type was formed.

以上の説明より明らかな如く、本発明はガラ
ス、金属またはセラミツクスの表面または内部に
炭素または炭素を主成分とした被膜をコーテイン
グして設けたものである。この複合体は他の多く
の実施例にみられる如く、その応用は計り知れな
いものであり、特にこの炭素が450℃以下の低温
で形成され、その硬度また基板に対する密着性が
きわめて優れているのが特徴である。
As is clear from the above description, the present invention provides a film in which carbon or a film containing carbon as a main component is coated on the surface or inside of glass, metal, or ceramic. As seen in many other examples, the applications of this composite are immeasurable, especially since this carbon is formed at a low temperature of 450°C or less, and its hardness and adhesion to substrates are extremely excellent. It is characterized by

本発明におけるセラミツクはアルミナ、ジルコ
ニア、またはそれらに炭素またはランタン等の希
土類元素が添加された任意の材料を用いることが
できる。また金属にあつては、ステンレス、モリ
ブテン、タングステン等の少なくとも300〜450℃
の温度に耐えられる材料ならばすべてに応用可能
である。またガラスは石英のみならずソーダガラ
ス等に対しても被膜化が可能であり、その応用は
きわめて広い。
The ceramic used in the present invention may be alumina, zirconia, or any material to which a rare earth element such as carbon or lanthanum is added. For metals, stainless steel, molybdenum, tungsten, etc. must be heated to at least 300 to 450℃.
It can be applied to any material that can withstand this temperature. Further, glass can be coated not only on quartz but also on soda glass, etc., and its applications are extremely wide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の炭素を被形成面上に作製する
製造装置の概要を示す。
FIG. 1 shows an outline of a manufacturing apparatus for manufacturing carbon of the present invention on a surface to be formed.

Claims (1)

【特許請求の範囲】 1 炭化水素気体と水素又はヘリユームの混合気
体とを反応系に導入し、1GHz以上の周波数のマ
イクロ波及び0.1〜50MHzの高周波の電磁エネル
ギーを前記混合気体に供給してプラズマ化し、ダ
イヤモンド構造の結晶を有する炭素被膜を被膜形
成面上に形成することを特徴とする炭素被膜の作
製方法。 2 炭化水素気体がアセチレン又はメタンである
特許請求の範囲第1項に記載の炭素被膜の作製方
法。 3 炭化水素気体と水素又はヘリユームの混合気
体と価又はV価の不純物気体とを反応系に導入
し、1GHz以上のマイクロ波及び0.1〜50MHzの高
周波の電磁エネルギーを前記混合気体に供給して
プラズマ化し、P型又はN型のダイヤモンド構造
の結晶を有する炭素被膜を被膜形成面上に形成す
ることを特徴とする炭素被膜の作製方法。 4 炭化物気体がアセチレン又はメタンである特
許請求の範囲第3項に記載の炭素被膜の作製方
法。
[Claims] 1. A gas mixture of hydrocarbon gas and hydrogen or helium is introduced into a reaction system, and microwaves with a frequency of 1 GHz or more and electromagnetic energy with a high frequency of 0.1 to 50 MHz are supplied to the gas mixture to generate a plasma. 1. A method for producing a carbon film, which comprises forming a carbon film having diamond-structured crystals on a film-forming surface. 2. The method for producing a carbon film according to claim 1, wherein the hydrocarbon gas is acetylene or methane. 3. A mixed gas of hydrocarbon gas, hydrogen or helium, and a valent or V-valent impurity gas are introduced into the reaction system, and microwaves of 1 GHz or more and high frequency electromagnetic energy of 0.1 to 50 MHz are supplied to the mixed gas to generate plasma. 1. A method for producing a carbon film, which comprises forming a carbon film having P-type or N-type diamond structure crystals on a film-forming surface. 4. The method for producing a carbon film according to claim 3, wherein the carbide gas is acetylene or methane.
JP27751786A 1986-11-19 1986-11-19 Production of composite body having carbon film Granted JPS62167885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27751786A JPS62167885A (en) 1986-11-19 1986-11-19 Production of composite body having carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27751786A JPS62167885A (en) 1986-11-19 1986-11-19 Production of composite body having carbon film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56146930A Division JPS5848428A (en) 1981-09-17 1981-09-17 Compound material having carbon film and manufacture therefor

Publications (2)

Publication Number Publication Date
JPS62167885A JPS62167885A (en) 1987-07-24
JPH0427690B2 true JPH0427690B2 (en) 1992-05-12

Family

ID=17584698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27751786A Granted JPS62167885A (en) 1986-11-19 1986-11-19 Production of composite body having carbon film

Country Status (1)

Country Link
JP (1) JPS62167885A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470661A (en) * 1993-01-07 1995-11-28 International Business Machines Corporation Diamond-like carbon films from a hydrocarbon helium plasma
JPH07161646A (en) * 1993-12-13 1995-06-23 Nec Corp Formation of polycrystalline film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328576A (en) * 1976-08-13 1978-03-16 Nat Res Dev Surface coating process with cargonaceous material and apparatus therefor
JPS5578524A (en) * 1978-12-10 1980-06-13 Shunpei Yamazaki Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328576A (en) * 1976-08-13 1978-03-16 Nat Res Dev Surface coating process with cargonaceous material and apparatus therefor
JPS5578524A (en) * 1978-12-10 1980-06-13 Shunpei Yamazaki Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS62167885A (en) 1987-07-24

Similar Documents

Publication Publication Date Title
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
Kondoh et al. Determination of activation energies for diamond growth by an advanced hot filament chemical vapor deposition method
US20010009693A1 (en) Thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the same
JPS59128281A (en) Manufacture of silicon carbide coated matter
JPH05109625A (en) Polycrystalline cvd diamond substrate for epitaxially growing semiconductor single crystal
WO1996030557A1 (en) Enhanced adherence of diamond coatings employing pretreatment process
JPS5848428A (en) Compound material having carbon film and manufacture therefor
Bachmann et al. Diamond thin films: preparation, characterization and selected applications progress report
JPS62202897A (en) Production of diamond
JPS62167886A (en) Composite body having carbon film
JPS62162366A (en) Composite having carbon coat
JPH0427690B2 (en)
JPS62167884A (en) Composite body having carbon film
JPH0366280B2 (en)
JPS62265198A (en) Method for synthesizing diamond
JPS62161960A (en) Formation of complex having carbon film
JPH0237087B2 (en)
JPH0427691B2 (en)
JPH02248038A (en) Manufacture of polycrystalline semiconductor substance layer
JPH0448757B2 (en)
JPS62162367A (en) Composite having carbon coat
JPH02244045A (en) Photomask
JPH08208207A (en) Vapor phase synthesis of boron nitride
KR910001360B1 (en) Method for synthesizing diamondbulk material
JPS6369973A (en) Production of cubic boron nitride film