JPH0237087B2 - - Google Patents

Info

Publication number
JPH0237087B2
JPH0237087B2 JP61277521A JP27752186A JPH0237087B2 JP H0237087 B2 JPH0237087 B2 JP H0237087B2 JP 61277521 A JP61277521 A JP 61277521A JP 27752186 A JP27752186 A JP 27752186A JP H0237087 B2 JPH0237087 B2 JP H0237087B2
Authority
JP
Japan
Prior art keywords
carbon
substrate
present
film
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61277521A
Other languages
Japanese (ja)
Other versions
JPS62167883A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP56146930A external-priority patent/JPS5848428A/en
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP27752186A priority Critical patent/JPS62167883A/en
Publication of JPS62167883A publication Critical patent/JPS62167883A/en
Publication of JPH0237087B2 publication Critical patent/JPH0237087B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ガラス、金属またはセラミツクス上
に炭素被膜をコーテイングし、その機械的強度を
補強しようとするものであり、特にアセチレン、
メタンのような炭化水素気体をプラズマ雰囲気中
に導入し分解せしめることにより、C−C結合を
作り、結果としてグラフアイトのような導電性ま
たは不良導電性の炭素を作るのではなく、光学的
エネルギバンド巾(Egという)が2.0eV以上、好
ましくは2.6〜4.5eVを有するダイヤモンドに類似
の絶縁性の炭素を形成することを特徴としてい
る。さらにこの本発明の炭素は、その硬度も4500
Kg/mm2以上、代表的には6500Kg/mm2というダイヤ
モンド類似の硬さを有する。そしてその結晶学的
構造はアモルフアス(非晶質)または5〜200Å
の大きさの微結晶性を有している。またこの炭素
は水素、ハロゲン元素が25モル%以下の量を同時
に含有している。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to coat glass, metal or ceramics with a carbon film to reinforce its mechanical strength.
By introducing a hydrocarbon gas such as methane into a plasma atmosphere and allowing it to decompose, it creates C-C bonds that produce optical energy rather than creating conductive or poorly conductive carbons such as graphite. It is characterized by the formation of insulating carbon similar to diamond having a band width (referred to as Eg) of 2.0 eV or more, preferably 2.6 to 4.5 eV. Furthermore, the carbon of the present invention has a hardness of 4500
It has a hardness similar to diamond, at Kg/mm 2 or more, typically 6500 Kg/mm 2 . And its crystallographic structure is amorphous or 5-200 Å
It has microcrystallinity with a size of . Further, this carbon simultaneously contains hydrogen and halogen elements in an amount of 25 mol% or less.

かかる炭素はきわめて熱的に化学的に安定であ
るため、一般に知られている選択エツチングがで
きない。このため、本発明はこの化学的に安定な
炭素被膜を選択的に除去し、基板または基体上に
炭素を残存させんとするものである。本発明は、
かかる炭素被膜の選択除去に関する作成方法であ
る。
Such carbon is extremely thermally and chemically stable and therefore cannot be selectively etched as is generally known. Therefore, the present invention aims to selectively remove this chemically stable carbon film and leave carbon on the substrate or substrate. The present invention
This is a method for selectively removing such a carbon film.

本発明はこれらの炭素(以下本発明においては
単に炭素という)をガラス、金属またはセラミツ
クス上に設けた複合体を設けたものである。
The present invention provides a composite body in which these carbons (hereinafter simply referred to as carbon in the present invention) are provided on glass, metal, or ceramics.

本発明は、この炭素を形成させる際の基板に加
える温度を150〜450℃とし、従来より知られた
CVD法において用いられる基板の温度に比べ500
〜1500℃も低い温度で形成したことを他の特徴と
する。
In the present invention, the temperature applied to the substrate when forming this carbon is 150 to 450 degrees Celsius, which is different from conventionally known methods.
500° compared to the substrate temperature used in CVD method.
Another feature is that it was formed at temperatures as low as ~1500℃.

また本発明は、ガラス基板上に選択的に炭素被
膜を設け、電子ビーム露光装置または紫外線の露
光装置のフオトマスクとして用いることを他の特
徴としている。
Another feature of the present invention is that a carbon film is selectively provided on a glass substrate and used as a photomask for an electron beam exposure device or an ultraviolet exposure device.

さらに本発明の複合体はバルブ、耐磨耗材料、
またはPIN型を有する半導体としての装置例えば
受光または発光素子への応用が可能である。
Furthermore, the composite of the present invention can be used as a valve, wear-resistant material,
Alternatively, it can be applied to a device as a semiconductor having a PIN type, such as a light receiving or light emitting device.

以下に図面に従つて本発明に用いられた複合体
またはその複合体の作製方法を記す。
The composite used in the present invention and the method for producing the composite will be described below according to the drawings.

実施例 1 第1図は本発明の炭素を形成するためのプラズ
マCVD装置概要を示す。
Example 1 FIG. 1 shows an outline of a plasma CVD apparatus for forming carbon according to the present invention.

図面において反応性気体である炭化水素気体、
例えばアセチレン8よりバルブ、流量計5をへて
反応系中の励起室4に導入される。さらに必要に
応じて、キヤリアガスを水素またはヘリユームに
より7よりバルブ、流量計6をへて同様に励起室
に至る。ここに価または価の不純物、例えば
ジボランまたはフオスヒンを導入する場合はさら
に同様にこの系に加えればよい。
hydrocarbon gas, which is a reactive gas in the drawing;
For example, acetylene 8 is introduced into the excitation chamber 4 in the reaction system through a valve and a flow meter 5. Further, if necessary, the carrier gas is supplied with hydrogen or helium from 7 through a valve and a flow meter 6 to reach the excitation chamber in the same manner. If a valent or valent impurity, such as diborane or phosphin, is to be introduced, it may be added to the system in the same manner.

これらの反応性気体は2.45GHzのマイクロ波に
よる電磁エネルギにより0.1〜5Kwのエネルギを
加えられ、励起室にて活性化、分解または反応さ
せられる。さらにこの反応性気体は反応炉1にて
加熱炉9により150〜450℃に加熱させ、さらに
13.56MHzの高周波エネルギ2により反応、重合
され、C−C結合を多数形成した炭素を生成す
る。この際、加える電磁エネルギが小さい場合は
アモルフアス構造の炭素が生成される。他方、こ
の電磁エネルギを強く加えた場合は5〜200Åの
大きさのダイヤモンド形状の微結晶性を有する炭
素を生成させ得る。この反応は電源13によりヒ
ータ11を加熱し、さらにその上の基板10を加
熱して行う。そしてこの基板の上面に被膜として
反応生成物の炭素被膜が形成される。反応後の不
要物は排気口12よりロータリーポンプを経て排
気される。反応室1は0.001〜10torr代表的には
0.1〜0.5torrに保持されており、マイクロ波3、
高周波2のエネルギにより反応室1内はプラズマ
状態が生成される。特に1GHz以上の周波数にあ
つては、C−H結合より水素を分離し、0.1〜
50MHzの周波数にあつてはC≡C結合、C=C結
合を分解し、C−C結合または−C−C−結
合を作り、炭素の不対結合手同志を互いに衝突さ
せて共有結合させ、安定なダイヤモンド構造を有
せしめた。
These reactive gases are activated, decomposed, or reacted in an excitation chamber by applying 0.1 to 5 Kw of electromagnetic energy using 2.45 GHz microwaves. Furthermore, this reactive gas is heated to 150 to 450°C in the heating furnace 9 in the reactor 1, and then
It is reacted and polymerized by high frequency energy 2 of 13.56 MHz to produce carbon having many C--C bonds. At this time, if the applied electromagnetic energy is small, carbon with an amorphous structure is produced. On the other hand, if this electromagnetic energy is strongly applied, diamond-shaped microcrystalline carbon with a size of 5 to 200 Å can be produced. This reaction is carried out by heating the heater 11 with the power supply 13 and further heating the substrate 10 thereon. Then, a carbon film of the reaction product is formed as a film on the upper surface of this substrate. Unwanted substances after the reaction are exhausted from the exhaust port 12 via a rotary pump. Reaction chamber 1 is typically 0.001 to 10 torr.
It is maintained at 0.1 to 0.5 torr, and microwave 3,
A plasma state is generated within the reaction chamber 1 by the energy of the high frequency wave 2 . Particularly at frequencies above 1GHz, hydrogen is separated from the C-H bond, and 0.1~
At a frequency of 50 MHz, C≡C bonds and C=C bonds are decomposed to create C-C bonds or -C-C- bonds, and the unpaired bonds of carbon collide with each other to form covalent bonds. It has a stable diamond structure.

かくしてガラス、金属、セラミツクスよりなる
被形成面を有する基板上に炭素特に炭素中に水素
を25モル%以下含有する炭素またP、IまたはN
型の導電型を有する炭素を形成させた。
Thus, carbon, especially carbon containing 25 mol% or less of hydrogen, P, I or N, is applied onto a substrate having a surface made of glass, metal or ceramics.
Carbon having a conductivity type of the type was formed.

実施例 2 第2図はフオトマスクを設けた場合の構造であ
る。すなわち第2図Aにおいては、ガラス特に石
英ガラス20上に選択的にエツチングして被膜2
9を設け、この上面に炭素被膜を0.1〜1μの厚さ
に実施例1の方法で形成した。この後リフトオフ
を行うことにより、選択的に被膜29及びその上
面の炭素被膜を除去し、結果として基板20上に
炭素被膜21層を残存させて設けた。これは超
LSI等の半導体用のマスクとしてきわめてすぐれ
たものであり、電子ビームまたは遠紫外光に対し
てマスク効果を有するとともに、耐摩耗性に優れ
ており、また半永久的に使用が可能である。
Embodiment 2 FIG. 2 shows a structure in which a photomask is provided. That is, in FIG. 2A, a coating 2 is selectively etched on glass, particularly quartz glass 20.
9 was provided, and a carbon film was formed on the upper surface thereof to a thickness of 0.1 to 1 μm by the method of Example 1. Thereafter, lift-off was performed to selectively remove the coating 29 and the carbon coating on its upper surface, and as a result, the carbon coating 21 layer was left on the substrate 20. This is super
It is an extremely excellent mask for semiconductors such as LSIs, has a masking effect against electron beams or far ultraviolet light, has excellent wear resistance, and can be used semi-permanently.

かかるフオトマスク用の炭素被膜の作製に際し
識別しやすくするため、若干の色調をつけること
は有効である。このためには炭素被膜の作成の際
同時に着色用不純物を添加したプラズマCVD方
法を用いることもできる。
When producing such a carbon film for a photomask, it is effective to give it a slight color tone to make it easier to identify. For this purpose, it is also possible to use a plasma CVD method in which coloring impurities are added at the same time as the carbon film is created.

炭素被膜の選択的な除去方法として、基板全面
に設けられた炭素に対し、酸化物雰囲気中にてレ
ーザ光を選択的にコンピユータ制御により行い、
不要の部分の炭素を酸化して炭酸ガスとして放出
して除去する。その結果、第2図(B)のごときマス
クを作ることができた。
As a method for selectively removing the carbon film, laser light is selectively applied to the carbon provided on the entire surface of the substrate in an oxide atmosphere under computer control.
Unnecessary carbon is oxidized and released as carbon dioxide gas to be removed. As a result, we were able to create a mask as shown in Figure 2 (B).

以上の説明より明らかな如く、本発明はガラ
ス、金属またはセラミツクの表面または内部に炭
素または炭素を主成分とした被膜をコーテイング
して設けたものである。この複合体は他の多くの
実施例にみられる如く、その応用は計り知れない
ものであり、特にこの炭素が450℃以下の低温で
形成され、その硬度また基板に対する密着性がき
わめて優れているのが特徴である。
As is clear from the above description, the present invention provides a film coated with carbon or a film mainly composed of carbon on the surface or inside of glass, metal, or ceramic. As seen in many other examples, the applications of this composite are immeasurable, especially since this carbon is formed at a low temperature of 450°C or less, and its hardness and adhesion to substrates are extremely excellent. It is characterized by

本発明におけるセラミツクはアルミナ、ジルコ
ニア、またはそれらに炭素またはランタン等の希
土類原素が添加された任意の材料を用いることが
できる。また金属にあつては、ステンレス、モリ
ブデン、タングステン等の少なくとも300〜450℃
の温度に耐えられる材料ならばすべてに応用可能
である。またガラスは石英のみならずソーダガラ
ス等に対しても被膜化が可能であり、その応用は
きわめて広い。
The ceramic used in the present invention may be alumina, zirconia, or any material to which a rare earth element such as carbon or lanthanum is added. For metals, stainless steel, molybdenum, tungsten, etc., at least 300 to 450℃.
It can be applied to any material that can withstand this temperature. Further, glass can be coated not only on quartz but also on soda glass, etc., and its applications are extremely wide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の炭素を被形成面上に作製する
製造装置の概要を示す。第2図は本発明の複合体
の実施例を示す。
FIG. 1 shows an outline of a manufacturing apparatus for manufacturing carbon of the present invention on a surface to be formed. FIG. 2 shows an example of a composite according to the invention.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に2.0eV以上の光学的エネルギバンド
巾を有するダイヤモンド構造を有する炭素を形成
する工程と、前記炭素に酸化性雰囲気中にてレー
ザ光を照射せしめて、不要物の前記ダイヤモンド
構造を有する炭素を酸化して炭素ガスとして放出
して除去する工程とを有することを特徴とする炭
素被膜を有する複合体の作成方法。
1. A step of forming carbon having a diamond structure having an optical energy band width of 2.0 eV or more on a substrate, and irradiating the carbon with laser light in an oxidizing atmosphere to form the diamond structure of the unnecessary material. 1. A method for producing a composite having a carbon film, comprising a step of oxidizing carbon to release and remove carbon as carbon gas.
JP27752186A 1981-09-17 1986-11-19 Production of composite body having carbon film Granted JPS62167883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27752186A JPS62167883A (en) 1981-09-17 1986-11-19 Production of composite body having carbon film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP56146930A JPS5848428A (en) 1981-09-17 1981-09-17 Compound material having carbon film and manufacture therefor
JP27752186A JPS62167883A (en) 1981-09-17 1986-11-19 Production of composite body having carbon film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56146930A Division JPS5848428A (en) 1981-09-17 1981-09-17 Compound material having carbon film and manufacture therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1247416A Division JPH02244045A (en) 1989-09-22 1989-09-22 Photomask

Publications (2)

Publication Number Publication Date
JPS62167883A JPS62167883A (en) 1987-07-24
JPH0237087B2 true JPH0237087B2 (en) 1990-08-22

Family

ID=26477630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27752186A Granted JPS62167883A (en) 1981-09-17 1986-11-19 Production of composite body having carbon film

Country Status (1)

Country Link
JP (1) JPS62167883A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244198A (en) * 1991-01-30 1992-09-01 Ozonshiya:Kk Washing method and washing machine using ozonic water
JPH04103881U (en) * 1990-09-26 1992-09-08 三星電子株式会社 Safety control device and method for ozone generator for washing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544775A (en) * 1994-12-22 1996-08-13 International Business Machines Corporation Laser machined slider

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130370A (en) * 1974-04-01 1975-10-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130370A (en) * 1974-04-01 1975-10-15

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103881U (en) * 1990-09-26 1992-09-08 三星電子株式会社 Safety control device and method for ozone generator for washing machine
JPH04244198A (en) * 1991-01-30 1992-09-01 Ozonshiya:Kk Washing method and washing machine using ozonic water

Also Published As

Publication number Publication date
JPS62167883A (en) 1987-07-24

Similar Documents

Publication Publication Date Title
US7033650B2 (en) Method of producing a nanotube layer on a substrate
KR101190136B1 (en) A method for forming a carbon nanotube and a plasma cvd apparatus for carrying out the method
EP0305903B1 (en) Method for synthesis of diamond and apparatus therefor
KR20010085509A (en) Process for controlled growth of carbon nanotubes
JPH04123257U (en) Bias ECR plasma CVD equipment
JPS5848428A (en) Compound material having carbon film and manufacture therefor
JP2006036593A (en) Method and apparatus for manufacturing monolayer carbon nanotube
JPH0237087B2 (en)
JPS62167886A (en) Composite body having carbon film
JP2542608B2 (en) Diamond semiconductor etching method
JPS62162366A (en) Composite having carbon coat
JPH02244045A (en) Photomask
JPH0366280B2 (en)
JPH0437121A (en) Manufacture of semiconductor device
JP2002523331A (en) Method for producing an improved boron coating on graphite and articles obtained therefrom
JPS62167884A (en) Composite body having carbon film
JPH0427691B2 (en)
JPH0518798B2 (en)
JPH0427690B2 (en)
JPH0361369A (en) Manufacture of diamond like carbon film
JP2759568B2 (en) Manufacturing method of optical functional element
JPH01157411A (en) Removing method for carbon
JPS5915983B2 (en) Formation method of boron film
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPS59177919A (en) Selective growth of thin film