JPH04274370A - Semiconductor device and manufacture thereof and semiconductor integrated circuit - Google Patents

Semiconductor device and manufacture thereof and semiconductor integrated circuit

Info

Publication number
JPH04274370A
JPH04274370A JP3034878A JP3487891A JPH04274370A JP H04274370 A JPH04274370 A JP H04274370A JP 3034878 A JP3034878 A JP 3034878A JP 3487891 A JP3487891 A JP 3487891A JP H04274370 A JPH04274370 A JP H04274370A
Authority
JP
Japan
Prior art keywords
gate electrode
semiconductor substrate
diffusion layer
concentration diffusion
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3034878A
Other languages
Japanese (ja)
Inventor
Masaharu Yamamoto
雅晴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP3034878A priority Critical patent/JPH04274370A/en
Publication of JPH04274370A publication Critical patent/JPH04274370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To simplify the control of size on manufacture without increasing manufacturing processes, and to prevent erroneous write at the time of read. CONSTITUTION:The gate electrode structure of two layers is formed. The high- concentration ion implantation 10 of another conductivity type different from a semiconductor substrate 1 is conducted at an incident angle, where the sidewalls of gate electrodes 6, 7 on the source side are shaped on write. The low-concentration ion implatation 11 of another conductivity type different from the semiconductor substrance 1 is performed at an incident angle, where the sidewalls of the gate electrodes 6, 7 on the drain side are shaped on write. Impurities 12, 13 implanted are diffused through heat treatment, and high- concentration diffusion layers 2, 4 and low-concentration diffusion layers 3, 5 are formed. A wiring electrode 15 on the drain side at the time of write and a wiring electrode 16 on the source side at the time of write are formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、浮遊ゲート電極を有
する不揮発性メモリトランジスタ等の半導体装置および
その製造方法と半導体集積回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device such as a nonvolatile memory transistor having a floating gate electrode, a method for manufacturing the same, and a semiconductor integrated circuit.

【0002】0002

【従来の技術】近年、集積回路装置の微細化に伴い、不
揮発性記憶装置の大容量化・高速化が進んでいる。不揮
発性記憶装置を構成する不揮発性メモリトランジスタの
書き込み速度が高速化されてくると、不揮発性メモリト
ランジスタは、その分だけ書き込み易くはなるが、逆に
読み出し時の誤書き込みが生じ易くなる。また、大容量
化によっても読み出し時の誤書き込みの発生確率が高く
なる。
2. Description of the Related Art In recent years, with the miniaturization of integrated circuit devices, the capacity and speed of nonvolatile memory devices have been increasing. As the writing speed of the nonvolatile memory transistors constituting the nonvolatile memory device increases, it becomes easier to write to the nonvolatile memory transistors, but on the other hand, writing errors during reading become more likely to occur. Furthermore, as the capacity increases, the probability of erroneous writing during reading also increases.

【0003】読み出し時の誤書き込みの防止対策として
、書き込み時のドレイン構造と読み出し時のドレイン構
造とを異ならせて、読み出し時にホットキャリアの発生
を少なくする方法がある。図4は読み出し時の誤書き込
みの防止対策を施した従来の半導体装置の断面図である
。この半導体装置は浮遊ゲート電極を有する紫外線消去
型の電気的書込可能な不揮発性メモリ(EPROM)で
ある。図4において、1は半導体基板(または半導体基
板中に形成されたウエル拡散層)、22は書き込み時の
ドレイン側の高濃度拡散層、24は書き込み時のソース
側の高濃度拡散層、25は書き込み時のソース側の低濃
度拡散層、6は浮遊ゲート電極、7は制御用ゲート電極
、8は第1のゲート絶縁膜、9は第2のゲート絶縁膜で
ある。
As a measure to prevent erroneous writing during reading, there is a method of reducing the generation of hot carriers during reading by making the drain structure during writing different from the drain structure during reading. FIG. 4 is a cross-sectional view of a conventional semiconductor device in which measures are taken to prevent erroneous writing during reading. This semiconductor device is an ultraviolet erasable electrically programmable nonvolatile memory (EPROM) having a floating gate electrode. In FIG. 4, 1 is a semiconductor substrate (or a well diffusion layer formed in the semiconductor substrate), 22 is a high concentration diffusion layer on the drain side during writing, 24 is a high concentration diffusion layer on the source side during writing, and 25 is a high concentration diffusion layer on the source side during writing. A low concentration diffusion layer on the source side during writing, 6 a floating gate electrode, 7 a control gate electrode, 8 a first gate insulating film, and 9 a second gate insulating film.

【0004】書き込み時には、電界強度の強くなるドレ
イン側の高濃度拡散層22に高電圧を印加することによ
り、ホットキャリアを発生させ浮遊ゲート電極6に電子
を注入する。読み出し時には、書き込み時のソース側の
高濃度拡散層24をドレインとする。このとき、読み出
し時の電圧は、書き込み時のソース側の低濃度拡散層2
5があることによって、電界強度が緩和されホットキャ
リアの発生が抑制されて、読み出し時の誤書き込みを少
なくできる。
During writing, hot carriers are generated and electrons are injected into the floating gate electrode 6 by applying a high voltage to the heavily doped diffusion layer 22 on the drain side where the electric field strength is strong. During reading, the high concentration diffusion layer 24 on the source side during writing is used as a drain. At this time, the voltage at the time of reading is
5, the electric field strength is relaxed, the generation of hot carriers is suppressed, and erroneous writing during reading can be reduced.

【0005】書き込み時のソース側の低濃度拡散層25
は、ゲート電極6,7と高濃度拡散層24との間のオフ
セット領域に形成された、いわゆるLDD (Ligh
tly DopedDrain)領域である。
Low concentration diffusion layer 25 on the source side during writing
The so-called LDD (Light
tly DopedDrain) area.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、読み出
し時の誤書き込みを防止するために設ける書き込み時の
ソース側の低濃度拡散層25の形成は困難である。一般
的なLDD構造の形成方法は、低濃度拡散層を形成した
後、ゲート電極の側壁に酸化膜などのスペーサを形成し
、それをマスクにしてソース・ドレインの高濃度拡散層
を自己整合的に形成するものである。しかし、図4に示
すように、ゲート電極6,7の片側のみに低濃度拡散層
25を形成するには、ゲート電極の側壁に設けた一方の
スペーサを除去しなくてはならないため、マスク工程と
エッチング工程が追加され、製造工程が増加する。また
、書き込み時のソース側の高濃度拡散層24をマスクを
使用して形成する方法もあるが、この場合は自己整合的
に形成できないので微細化には不利である。すなわち、
ソース側の低濃度拡散層25のゲートエッジからソース
側の高濃度拡散層24までの長さ(オフセット長)の制
御が難しくなる。
However, it is difficult to form the low concentration diffusion layer 25 on the source side during writing, which is provided to prevent erroneous writing during reading. The general method for forming an LDD structure is to form a low concentration diffusion layer, then form a spacer such as an oxide film on the sidewall of the gate electrode, and use this as a mask to form the high concentration diffusion layer of the source and drain in a self-aligned manner. It is to be formed. However, as shown in FIG. 4, in order to form the low concentration diffusion layer 25 only on one side of the gate electrodes 6 and 7, one spacer provided on the side wall of the gate electrode must be removed, which requires a mask process. This adds an etching process and increases the number of manufacturing steps. There is also a method of forming the high concentration diffusion layer 24 on the source side during writing using a mask, but in this case it is disadvantageous for miniaturization because it cannot be formed in a self-aligned manner. That is,
It becomes difficult to control the length (offset length) from the gate edge of the low concentration diffusion layer 25 on the source side to the high concentration diffusion layer 24 on the source side.

【0007】この発明の目的は、製造工程を増やすこと
なく、製造上の寸法制御が簡単にでき、読み出し時の誤
書き込みを防止できる半導体装置およびその製造方法と
半導体集積回路を提供することである。
An object of the present invention is to provide a semiconductor device, a method for manufacturing the same, and a semiconductor integrated circuit that can easily control dimensions during manufacturing without increasing the number of manufacturing steps and can prevent erroneous writing during reading. .

【0008】[0008]

【課題を解決するための手段】請求項1記載の半導体装
置は、一導電型の半導体基板と、半導体基板上に形成さ
れたゲート酸化膜と、ゲート酸化膜上に形成されたゲー
ト電極と、ゲート電極の第1の端部より離れて半導体基
板に形成された第1の低濃度拡散層と、第1の端部に近
づけて半導体基板に形成された第1の高濃度拡散層と、
ゲート電極の第2の端部に近づけて半導体基板に形成さ
れた第2の低濃度拡散層と、第2の端部より離れて半導
体基板に形成された第2の高濃度拡散層とを備えている
Means for Solving the Problems A semiconductor device according to claim 1 includes: a semiconductor substrate of one conductivity type; a gate oxide film formed on the semiconductor substrate; and a gate electrode formed on the gate oxide film. a first low concentration diffusion layer formed in the semiconductor substrate away from the first end of the gate electrode; a first high concentration diffusion layer formed in the semiconductor substrate close to the first end;
A second low concentration diffusion layer formed in the semiconductor substrate close to the second end of the gate electrode, and a second high concentration diffusion layer formed in the semiconductor substrate away from the second end. ing.

【0009】請求項2記載の半導体装置は、請求項1記
載の半導体装置において、第1の高濃度拡散層または第
2の低濃度拡散層のゲート電極側の端部が、それぞれゲ
ート電極の第1の端部または第2の端部より内側にある
ことを特徴とする。請求項3記載の半導体装置の製造方
法は、一導電型の半導体基板上に第1のゲート絶縁膜を
形成する工程と、第1のゲート絶縁膜上に第1のゲート
電極を形成する工程と、第1のゲート電極上に第2のゲ
ート絶縁膜を形成する工程と、第2のゲート絶縁膜上に
第2のゲート電極を形成する工程と、書き込み時のドレ
イン方向から半導体基板と逆導電型の高濃度の第1のイ
オン注入を斜めより行う工程と、ドレイン方向と逆方向
の書き込み時のソース方向から第1のイオン注入と同じ
導電型の第2のイオン注入を斜めより行う工程とを含み
、第1および第2のイオン注入が第1のゲート絶縁膜,
第1のゲート電極,第2のゲート絶縁膜および第2のゲ
ート電極をマスクにイオン注入を行うことを特徴とする
A semiconductor device according to a second aspect of the present invention is a semiconductor device according to a first aspect, in which an end portion of the first high concentration diffusion layer or the second low concentration diffusion layer on the gate electrode side is located at the end portion of the first high concentration diffusion layer or the second low concentration diffusion layer. It is characterized by being located inside the first end or the second end. A method for manufacturing a semiconductor device according to claim 3 includes the steps of forming a first gate insulating film on a semiconductor substrate of one conductivity type, and forming a first gate electrode on the first gate insulating film. , a step of forming a second gate insulating film on the first gate electrode, a step of forming a second gate electrode on the second gate insulating film, and a step of forming a second gate electrode on the second gate insulating film, and a step of forming a second gate insulating film on the first gate electrode, and a step of forming a second gate electrode on the second gate insulating film, and a step of forming a second gate insulating film on the first gate electrode, and a step of forming a second gate electrode on the second gate insulating film. A step of performing diagonal high-concentration first ion implantation into the mold, and a step of performing diagonal second ion implantation of the same conductivity type as the first ion implantation from the source direction during writing in the opposite direction to the drain direction. the first and second ion implantations are performed on the first gate insulating film,
The method is characterized in that ion implantation is performed using the first gate electrode, the second gate insulating film, and the second gate electrode as masks.

【0010】請求項4記載の半導体集積回路は、X軸方
向に延びた第1のワード線と、第1のワード線と垂直に
交差する第1のビット線に接続された複数個の第1の不
揮発性記憶素子と、X軸方向に延びた第2のビット線と
、第2のビット線と垂直に交差する第2のワード線に接
続された複数個の第2の不揮発性記憶素子と、第1,第
2の不揮発性記憶素子が同時に形成された半導体基板と
を備え、第1,第2の不揮発性記憶素子の拡散層が、半
導体基板平面に垂直な第1の面に対して第1の所定角度
傾けた第1のイオン注入と、第1の面に第1のイオン注
入と対称で第2の所定角度傾けた第2のイオン注入によ
って形成されていることを特徴とする。
A semiconductor integrated circuit according to a fourth aspect of the present invention provides a first word line extending in the X-axis direction and a plurality of first bit lines connected to a first bit line perpendicularly intersecting the first word line. a plurality of second nonvolatile memory elements connected to a second bit line extending in the X-axis direction and a second word line perpendicularly intersecting the second bit line; , a semiconductor substrate on which first and second non-volatile memory elements are simultaneously formed, and the diffusion layers of the first and second non-volatile memory elements are aligned with respect to a first surface perpendicular to the plane of the semiconductor substrate. It is characterized in that it is formed by first ion implantation tilted at a first predetermined angle, and second ion implantation tilted at a second predetermined angle into the first surface in symmetry with the first ion implantation.

【0011】請求項5記載の半導体集積回路は、請求項
4記載の半導体集積回路において、第1の面が第1のワ
ード線または第2のビット線と平行であることを特徴と
する。
[0011] The semiconductor integrated circuit according to claim 5 is the semiconductor integrated circuit according to claim 4, characterized in that the first surface is parallel to the first word line or the second bit line.

【0012】0012

【作用】この発明の構成によれば、ゲート電極の第1の
端部より離れて半導体基板に形成された第1の低濃度拡
散層と、第1の端部に近づけて半導体基板に形成された
第1の高濃度拡散層と、ゲート電極の第2の端部に近づ
けて半導体基板に形成された第2の低濃度拡散層と、第
2の端部より離れて半導体基板に形成された第2の高濃
度拡散層とを備えたことにより、書き込み時にドレイン
側のゲートエッジの近傍には高濃度拡散層を有し、その
ゲートエッジから離れた場所に低濃度拡散層を有するた
め、ゲートエッジの近傍では不純物濃度勾配が急峻にな
り電界強度が強くなり、書き込み時に必要なホットキャ
リアが発生しやすくなる。また、書き込み時にソース側
(読み出し時にドレイン側)のゲートエッジの近傍には
低濃度拡散層を有し、そのゲートエッジから離れた場所
に高濃度拡散層を有するため、ゲートエッジの近傍では
不純物濃度勾配が緩やかになり電界強度も弱まり、読み
出し時に必要な電圧を印加してもホットキャリアの発生
が少なくなり誤書き込みを防止できる。
[Operation] According to the structure of the present invention, the first low concentration diffusion layer is formed in the semiconductor substrate away from the first end of the gate electrode, and the first low concentration diffusion layer is formed in the semiconductor substrate close to the first end. a first high concentration diffusion layer formed in the semiconductor substrate close to the second end of the gate electrode; a second low concentration diffusion layer formed in the semiconductor substrate away from the second end; By providing a second high concentration diffusion layer, during writing, the gate edge has a high concentration diffusion layer near the gate edge on the drain side, and a low concentration diffusion layer at a location away from the gate edge. Near the edge, the impurity concentration gradient becomes steeper, the electric field strength becomes stronger, and hot carriers required during writing are more likely to be generated. In addition, there is a low concentration diffusion layer near the gate edge on the source side during writing (drain side during reading), and a high concentration diffusion layer at a location away from the gate edge, so the impurity concentration near the gate edge is The gradient becomes gentler, the electric field strength becomes weaker, and even if the necessary voltage is applied during reading, fewer hot carriers are generated, and erroneous writing can be prevented.

【0013】[0013]

【実施例】この発明の一実施例を図面に基づいて説明す
る。図1はこの発明の一実施例の半導体装置の製造方法
を示す工程順断面図である。一導電型の半導体基板1表
面に、図示しないが、第1のゲート絶縁膜材料,浮遊ゲ
ート電極材料,第2のゲート絶縁膜材料および制御用ゲ
ート電極材料を順次形成した後、レジストをマスクとし
て用いて、制御用ゲート電極材料,第2のゲート絶縁膜
材料,浮遊ゲート電極材料,第1のゲート絶縁膜材料の
順にエッチングを行い、第1のゲート絶縁膜8,浮遊ゲ
ート電極(第1のゲート電極)6,第2のゲート絶縁膜
9および制御用ゲート電極(第2のゲート電極)7から
なる不揮発性メモリトランジスタの2層のゲート電極構
造を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a step-by-step sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention. Although not shown, a first gate insulating film material, a floating gate electrode material, a second gate insulating film material, and a control gate electrode material are sequentially formed on the surface of a semiconductor substrate 1 of one conductivity type, and then a resist is used as a mask. The control gate electrode material, the second gate insulating film material, the floating gate electrode material, and the first gate insulating film material are etched in this order. A two-layer gate electrode structure of a nonvolatile memory transistor consisting of a gate electrode (gate electrode) 6, a second gate insulating film 9, and a control gate electrode (second gate electrode) 7 is formed.

【0014】つぎに、図1(a) に示すように、書き
込み時にソース側のゲート電極6,7の側壁(一方の側
壁)が影になる入射角度で半導体基板1とは異なる他導
電型の高濃度イオン注入10を行う。この高濃度イオン
注入10の入射角度は、基板法線に対して7度から30
度であるが、後で形成する低濃度拡散層3,5(図1(
c))の拡散深さが浅い場合には20度から30度にす
る。12は注入された不純物を示す。
Next, as shown in FIG. 1(a), at an incident angle at which the side walls (one side wall) of the gate electrodes 6 and 7 on the source side are in the shadow during writing, a conductivity type different from that of the semiconductor substrate 1 is detected. High concentration ion implantation 10 is performed. The incidence angle of this high concentration ion implantation 10 is from 7 degrees to 30 degrees with respect to the normal to the substrate.
However, the low concentration diffusion layers 3 and 5 to be formed later (Fig. 1(
c) If the diffusion depth in (c)) is shallow, the angle should be 20 to 30 degrees. 12 indicates the implanted impurity.

【0015】つぎに、図1(b) に示すように、書き
込み時にドレイン側のゲート電極6,7の側壁(他方の
側壁)が影になる入射角度で半導体基板1とは異なる他
導電型の低濃度イオン注入11を行う。この低濃度イオ
ン注入11の入射角度は、基板法線に対して20度から
30度である。13は注入された不純物を示す。その後
、酸化,アニール工程等を行い、層間絶縁膜14を形成
し、熱処理をして注入された不純物12,13を拡散さ
せ、高濃度拡散層2,4と低濃度拡散層3,5を形成す
る。この後、書き込み時のドレイン側の配線電極15お
よび書き込み時のソース側の配線電極16を形成する(
図1(c) )。
Next, as shown in FIG. 1(b), at an incident angle at which the sidewalls (the other sidewalls) of the gate electrodes 6 and 7 on the drain side are in the shadow during writing, a conductivity type different from that of the semiconductor substrate 1 is detected. Low concentration ion implantation 11 is performed. The incidence angle of this low concentration ion implantation 11 is 20 to 30 degrees with respect to the normal to the substrate. 13 indicates the implanted impurity. After that, an oxidation, annealing process, etc. are performed to form an interlayer insulating film 14, and a heat treatment is performed to diffuse the implanted impurities 12 and 13, forming high concentration diffusion layers 2 and 4 and low concentration diffusion layers 3 and 5. do. After this, a wiring electrode 15 on the drain side for writing and a wiring electrode 16 on the source side for writing are formed (
Figure 1(c)).

【0016】以上のように形成される半導体装置の動作
を図2を参照しながら説明する。書き込み時には、書き
込み時にドレイン側となるゲートエッジに高濃度拡散層
2があるため、ゲートエッジ部で電界強度が強くなり、
ホットキャリアを発生させ浮遊ゲート電極6に電子を注
入する。読み出し時には、読み出し時にドレイン側とな
るゲートエッジに低濃度拡散層5があるため、ゲートエ
ッジ部で電界強度が緩和され、ホットキャリアの発生が
抑制されて、読み出し時の誤書き込みを防止できる。
The operation of the semiconductor device formed as described above will be explained with reference to FIG. During writing, since there is a high concentration diffusion layer 2 at the gate edge which is on the drain side during writing, the electric field strength becomes stronger at the gate edge.
Hot carriers are generated and electrons are injected into the floating gate electrode 6. During reading, since the low concentration diffusion layer 5 is present at the gate edge on the drain side during reading, the electric field strength is relaxed at the gate edge, suppressing the generation of hot carriers, and preventing erroneous writing during reading.

【0017】なお、図1で説明したイオン注入10,1
1の入射角度の下限は、高濃度拡散層2,4と低濃度拡
散層3,5のずれる距離、いわゆるオフセット長L1,
L2(図2)により決定される。オフセット長L1は、
書き込み時のドレイン側における高濃度拡散層2と低濃
度拡散層3とのずれの距離であり、オフセット長L2は
書き込み時のソース側における高濃度拡散層4と低濃度
拡散層5とのずれの距離である。このオフセット長L1
,L2は、制御用ゲート電極7の基板表面からの高さと
イオン注入10,11の入射角度によって自己整合的に
決まり、制御用ゲート電極7の基板表面からの高さが約
0.5〜0.7μm,高濃度拡散層2,4の拡散深さが
約0.25μm,低濃度拡散層3,5の拡散深さが約0
.5μmの場合には、L1=0.05〜0.27μm,
L2=0.25〜0.55μmとなる。
It should be noted that the ion implantation 10,1 explained in FIG.
The lower limit of the incident angle of 1 is the offset distance between the high concentration diffusion layers 2, 4 and the low concentration diffusion layers 3, 5, the so-called offset length L1,
Determined by L2 (FIG. 2). The offset length L1 is
The offset length L2 is the offset distance between the high concentration diffusion layer 2 and the low concentration diffusion layer 3 on the drain side during writing, and the offset length L2 is the offset distance between the high concentration diffusion layer 4 and the low concentration diffusion layer 5 on the source side during writing. It is distance. This offset length L1
, L2 are determined in a self-aligned manner by the height of the control gate electrode 7 from the substrate surface and the incident angle of the ion implantations 10 and 11, and the height of the control gate electrode 7 from the substrate surface is approximately 0.5 to 0. .7 μm, the diffusion depth of the high concentration diffusion layers 2 and 4 is approximately 0.25 μm, and the diffusion depth of the low concentration diffusion layers 3 and 5 is approximately 0.
.. In the case of 5 μm, L1=0.05 to 0.27 μm,
L2=0.25 to 0.55 μm.

【0018】また、イオン注入10,11の入射角度の
上限は、素子分離用厚膜(図示せず)の端部における傾
斜角度に依存する。入射角度が大きすぎると素子分離用
厚膜(図示せず)による影が生じ、その影となる部分に
は注入が行われないため正常な拡散層が形成されなくな
る。以上のようにこの実施例では、製造工程を増やすこ
となく、制御用ゲート電極7の基板表面からの高さとイ
オン注入10,11の入射角度によってオフセット長L
1,L2は自己整合的に決まり製造上の寸法制御性が高
まる。
Further, the upper limit of the incident angle of the ion implantations 10 and 11 depends on the inclination angle at the end of the thick film for element isolation (not shown). If the incident angle is too large, a shadow will be created by a thick film for element isolation (not shown), and since no injection will be performed in the shadowed portion, a normal diffusion layer will not be formed. As described above, in this embodiment, the offset length L is determined by the height of the control gate electrode 7 from the substrate surface and the incident angle of the ion implantations 10 and 11 without increasing the number of manufacturing steps.
1 and L2 are determined in a self-aligning manner, improving dimensional controllability in manufacturing.

【0019】なお、高濃度イオン注入10と低濃度イオ
ン注入11の順序はどちらが先になってもよい。さらに
、この発明による半導体装置の製造方法を適用した半導
体集積回路について説明する。図3(a) ,(b) 
は同一の集積回路装置上に配列された2つのメモリセル
アレイを示し、図3(a) は第1群のメモリセルアレ
イの回路図、図3(b) は第2群のメモリセルアレイ
の回路図である。
It should be noted that the order of the high concentration ion implantation 10 and the low concentration ion implantation 11 may be either performed first. Furthermore, a semiconductor integrated circuit to which the method of manufacturing a semiconductor device according to the present invention is applied will be described. Figure 3(a),(b)
shows two memory cell arrays arranged on the same integrated circuit device, FIG. 3(a) is a circuit diagram of the first group of memory cell arrays, and FIG. 3(b) is a circuit diagram of the second group of memory cell arrays. be.

【0020】図3(a) の第1群のメモリセルアレイ
は、この発明による半導体装置の製造方法を適用し、ワ
ードラインW1をX方向に配列したものであり、図3(
b) の第2群のメモリセルアレイは、この発明による
半導体装置の製造方法を適用せず、第1群のメモリセル
アレイに対して配列方向を90度回転させワードライン
W2をY方向に配列したものである。なお、B1,B2
はビットライン(またはソースライン)である。
The first group of memory cell arrays shown in FIG. 3(a) are formed by applying the semiconductor device manufacturing method according to the present invention and having word lines W1 arranged in the X direction.
In the second group of memory cell arrays in b), the method of manufacturing a semiconductor device according to the present invention is not applied, but the arrangement direction is rotated by 90 degrees with respect to the first group of memory cell arrays, and word lines W2 are arranged in the Y direction. It is. In addition, B1, B2
is the bit line (or source line).

【0021】これによれば、同一の集積回路装置上に用
途の異なる2種類のメモリセルの同時形成が可能となり
、第1群のメモリセルアレイは高速,大容量で読み出し
回数の多い用途に向いており、第2群のメモリセルアレ
イは低速,小容量で読み出し回数の少ない用途に向いて
いる。
According to this, it is possible to simultaneously form two types of memory cells for different purposes on the same integrated circuit device, and the first group of memory cell arrays is suitable for high speed, large capacity, and high readout applications. Therefore, the second group of memory cell arrays is suitable for low-speed, small-capacity, and low-number of read applications.

【0022】[0022]

【発明の効果】この発明によれば、書き込み時にソース
側(読み出し時にドレイン側)のゲートエッジの近傍に
は低濃度拡散層を有し、そのゲートエッジから離れた場
所に高濃度拡散層を有するため、ゲートエッジの近傍で
は不純物濃度勾配が緩やかになり電界強度も弱まり、読
み出し時に必要な電圧を印加してもホットキャリアの発
生が少なくなり誤書き込みを防止できる。
According to the present invention, a low concentration diffusion layer is provided near the gate edge on the source side during writing (drain side during reading), and a high concentration diffusion layer is provided at a location away from the gate edge. Therefore, in the vicinity of the gate edge, the impurity concentration gradient becomes gentle and the electric field strength becomes weaker, and even if the necessary voltage is applied during reading, fewer hot carriers are generated, and erroneous writing can be prevented.

【0023】また、高濃度拡散層と低濃度拡散層のずれ
る距離、いわゆるオフセット長は、半導体基板からの多
層ゲート電極構造の高さとイオン注入の入射角度によっ
て自己整合的に決まるので、製造上の寸法制御性が高ま
る。このように、製造工程を増やすことなく、製造上の
寸法制御が簡単にでき、読み出し時の誤書き込みを防止
できる半導体装置を実現することができる。
[0023] Furthermore, the distance between the high-concentration diffusion layer and the low-concentration diffusion layer, the so-called offset length, is determined in a self-aligned manner by the height of the multilayer gate electrode structure from the semiconductor substrate and the incident angle of ion implantation. Improves dimensional control. In this way, it is possible to realize a semiconductor device that can easily control dimensions during manufacturing and prevent erroneous writing during reading without increasing the number of manufacturing steps.

【0024】さらに、同一の集積回路装置内でメモリセ
ルの配列方向を90度回転させたメモリセルを用意する
ことにより、用途の異なる2種類のメモリセルの同時形
成が可能となる。
Furthermore, by preparing memory cells in which the arrangement direction of the memory cells is rotated by 90 degrees within the same integrated circuit device, it is possible to simultaneously form two types of memory cells for different purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例の半導体装置の製造方法を
示す工程順断面図である。
FIG. 1 is a step-by-step sectional view showing a method of manufacturing a semiconductor device according to an embodiment of the present invention.

【図2】同実施例における半導体装置の動作を説明する
ための図である。
FIG. 2 is a diagram for explaining the operation of the semiconductor device in the same embodiment.

【図3】この発明による半導体装置の製造方法を適用し
た半導体集積回路を示す図である。
FIG. 3 is a diagram showing a semiconductor integrated circuit to which the method of manufacturing a semiconductor device according to the present invention is applied.

【図4】従来の半導体装置の断面図である。FIG. 4 is a cross-sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1    半導体基板 2,4    高濃度拡散層 3,5    低濃度拡散層 6    浮遊ゲート電極(第1のゲート電極)7  
  制御用ゲート電極(第2のゲート電極)8    
第1のゲート絶縁膜 9    第2のゲート絶縁膜 10    高濃度イオン注入 11    低濃度イオン注入
1 Semiconductor substrate 2, 4 High concentration diffusion layer 3, 5 Low concentration diffusion layer 6 Floating gate electrode (first gate electrode) 7
Control gate electrode (second gate electrode) 8
First gate insulating film 9 Second gate insulating film 10 High concentration ion implantation 11 Low concentration ion implantation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  一導電型の半導体基板と、前記半導体
基板上に形成されたゲート酸化膜と、前記ゲート酸化膜
上に形成されたゲート電極と、前記ゲート電極の第1の
端部より離れて前記半導体基板に形成された第1の低濃
度拡散層と、前記第1の端部に近づけて前記半導体基板
に形成された第1の高濃度拡散層と、前記ゲート電極の
第2の端部に近づけて前記半導体基板に形成された第2
の低濃度拡散層と、前記第2の端部より離れて前記半導
体基板に形成された第2の高濃度拡散層とを備えた半導
体装置。
1. A semiconductor substrate of one conductivity type, a gate oxide film formed on the semiconductor substrate, a gate electrode formed on the gate oxide film, and a semiconductor substrate that is separated from a first end of the gate electrode. a first low concentration diffusion layer formed on the semiconductor substrate near the first end; a first high concentration diffusion layer formed on the semiconductor substrate close to the first end; and a second end of the gate electrode. a second portion formed on the semiconductor substrate near the portion;
A semiconductor device comprising: a low concentration diffusion layer; and a second high concentration diffusion layer formed in the semiconductor substrate apart from the second end.
【請求項2】  第1の高濃度拡散層または第2の低濃
度拡散層のゲート電極側の端部が、それぞれゲート電極
の第1の端部または第2の端部より内側にあることを特
徴とする請求項1記載の半導体装置。
2. An end of the first high concentration diffusion layer or the second low concentration diffusion layer on the gate electrode side is located inside the first end or the second end of the gate electrode, respectively. The semiconductor device according to claim 1, characterized in that:
【請求項3】  一導電型の半導体基板上に第1のゲー
ト絶縁膜を形成する工程と、前記第1のゲート絶縁膜上
に第1のゲート電極を形成する工程と、前記第1のゲー
ト電極上に第2のゲート絶縁膜を形成する工程と、前記
第2のゲート絶縁膜上に第2のゲート電極を形成する工
程と、書き込み時のドレイン方向から前記半導体基板と
逆導電型の高濃度の第1のイオン注入を斜めより行う工
程と、前記ドレイン方向と逆方向の書き込み時のソース
方向から前記第1のイオン注入と同じ導電型の第2のイ
オン注入を斜めより行う工程とを含み、前記第1および
第2のイオン注入が前記第1のゲート絶縁膜,第1のゲ
ート電極,第2のゲート絶縁膜および第2のゲート電極
をマスクにイオン注入を行うことを特徴とする半導体装
置の製造方法。
3. A step of forming a first gate insulating film on a semiconductor substrate of one conductivity type, a step of forming a first gate electrode on the first gate insulating film, and a step of forming the first gate insulating film on the semiconductor substrate of one conductivity type. a step of forming a second gate insulating film on the electrode, a step of forming a second gate electrode on the second gate insulating film, and a step of forming a second gate electrode on the second gate insulating film; A step of performing a first ion implantation of a concentration obliquely, and a step of performing a second ion implantation of the same conductivity type as the first ion implantation obliquely from a source direction during writing in a direction opposite to the drain direction. The first and second ion implantations are performed using the first gate insulating film, the first gate electrode, the second gate insulating film, and the second gate electrode as masks. A method for manufacturing a semiconductor device.
【請求項4】  X軸方向に延びた第1のワード線と、
前記第1のワード線と垂直に交差する第1のビット線に
接続された複数個の第1の不揮発性記憶素子と、X軸方
向に延びた第2のビット線と、前記第2のビット線と垂
直に交差する第2のワード線に接続された複数個の第2
の不揮発性記憶素子と、前記第1,第2の不揮発性記憶
素子が同時に形成された半導体基板とを備え、前記第1
,第2の不揮発性記憶素子の拡散層が、前記半導体基板
平面に垂直な第1の面に対して第1の所定角度傾けた第
1のイオン注入と、前記第1の面に前記第1のイオン注
入と対称で第2の所定角度傾けた第2のイオン注入によ
って形成されていることを特徴とする半導体集積回路。
4. A first word line extending in the X-axis direction;
a plurality of first nonvolatile memory elements connected to a first bit line perpendicularly intersecting the first word line; a second bit line extending in the X-axis direction; and the second bit line. a plurality of second word lines connected to a second word line perpendicularly intersecting the line;
and a semiconductor substrate on which the first and second nonvolatile memory elements are formed simultaneously,
, the diffusion layer of the second non-volatile memory element is implanted with a first ion implanted at a first predetermined angle with respect to the first surface perpendicular to the plane of the semiconductor substrate; 1. A semiconductor integrated circuit characterized in that the semiconductor integrated circuit is formed by a second ion implantation that is symmetrical to the ion implantation and tilted at a second predetermined angle.
【請求項5】  第1の面が第1のワード線または第2
のビット線と平行であることを特徴とする請求項4記載
の半導体集積回路。
5. The first surface is the first word line or the second word line.
5. The semiconductor integrated circuit according to claim 4, wherein the semiconductor integrated circuit is parallel to the bit line.
JP3034878A 1991-03-01 1991-03-01 Semiconductor device and manufacture thereof and semiconductor integrated circuit Pending JPH04274370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3034878A JPH04274370A (en) 1991-03-01 1991-03-01 Semiconductor device and manufacture thereof and semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3034878A JPH04274370A (en) 1991-03-01 1991-03-01 Semiconductor device and manufacture thereof and semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH04274370A true JPH04274370A (en) 1992-09-30

Family

ID=12426403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3034878A Pending JPH04274370A (en) 1991-03-01 1991-03-01 Semiconductor device and manufacture thereof and semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH04274370A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232413A (en) * 1992-12-31 1994-08-19 Hyundai Electron Ind Co Ltd Flash eeprom and manufacture thereof
JPH08330457A (en) * 1995-06-02 1996-12-13 Hyundai Electron Ind Co Ltd Formation of junction of flash eeprom cell
US6312997B1 (en) * 1998-08-12 2001-11-06 Micron Technology, Inc. Low voltage high performance semiconductor devices and methods
JP2004274031A (en) * 2003-03-11 2004-09-30 Hynix Semiconductor Inc Method of manufacturing semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232413A (en) * 1992-12-31 1994-08-19 Hyundai Electron Ind Co Ltd Flash eeprom and manufacture thereof
JPH08330457A (en) * 1995-06-02 1996-12-13 Hyundai Electron Ind Co Ltd Formation of junction of flash eeprom cell
US6312997B1 (en) * 1998-08-12 2001-11-06 Micron Technology, Inc. Low voltage high performance semiconductor devices and methods
US6492693B2 (en) 1998-08-12 2002-12-10 Micron Technology, Inc. Low voltage high performance semiconductor devices and methods
US6747326B2 (en) 1998-08-12 2004-06-08 Micron Technology, Inc. Low voltage high performance semiconductor device having punch through prevention implants
US6946353B2 (en) 1998-08-12 2005-09-20 Micron Technology, Inc. Low voltage high performance semiconductor devices and methods
JP2004274031A (en) * 2003-03-11 2004-09-30 Hynix Semiconductor Inc Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5962891A (en) Nonvolatile semiconductor memory device
KR100829034B1 (en) Non-volatile semiconductor memory device and method of fabricating thereof
JP2003060096A (en) Nonvolatile memory device and method of manufacturing the same
KR19980053143A (en) Semiconductor memory device and manufacturing method thereof
US7671406B2 (en) Semiconductor device and method of fabricating the same
US6521941B2 (en) Non-volatile memory device and fabrication method thereof
KR100638426B1 (en) Flash memory cell and method for manufacturing the same
JPH05121701A (en) Manufacture of semiconductor device of nand structure
JPH04274370A (en) Semiconductor device and manufacture thereof and semiconductor integrated circuit
KR100555485B1 (en) Method for fabricating flash memory device
US6737344B2 (en) Method for manufacturing nonvolatile semiconductor memory with narrow variation in threshold voltages of memory cells
KR100529605B1 (en) Fabrication method of semiconductor device
JPH08153860A (en) Semiconductor storage device and manufacture thereof
KR20050069597A (en) Flash memory cell and method for manufacturing the same
US20240237335A9 (en) Flash memory and manufacturing method thereof
US7316956B2 (en) Method for fabricating semiconductor device and wire with silicide
KR100262002B1 (en) Method of fabricating a flash memory
KR100884472B1 (en) Manufacturing method of flash memory
KR100649320B1 (en) Flash memory cell and method for manufacturing the same
KR100734075B1 (en) Flash memory cell and method of making the same
KR100444841B1 (en) Flash memory cell fabrication method for forming smoothly floating gate on source/drain region
KR100661230B1 (en) Flash memory cell and method for manufacturing the same
JPH01298770A (en) Semiconductor device and manufacture thereof
JP4040138B2 (en) Method for manufacturing nonvolatile semiconductor memory device
KR100798267B1 (en) Flash memory device and method for manufacturing the same