JPH04273440A - Production of semiconductor device - Google Patents

Production of semiconductor device

Info

Publication number
JPH04273440A
JPH04273440A JP3459691A JP3459691A JPH04273440A JP H04273440 A JPH04273440 A JP H04273440A JP 3459691 A JP3459691 A JP 3459691A JP 3459691 A JP3459691 A JP 3459691A JP H04273440 A JPH04273440 A JP H04273440A
Authority
JP
Japan
Prior art keywords
oxide film
film
silicon substrate
silicon nitride
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3459691A
Other languages
Japanese (ja)
Inventor
Yasuo Onoda
小野田 康男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3459691A priority Critical patent/JPH04273440A/en
Publication of JPH04273440A publication Critical patent/JPH04273440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To form a gate oxide film which has uniform thickness by preventing white ribbon when forming the gate oxide film at the process of separating elements of a silicon substrate. CONSTITUTION:A thermal oxide film 2 is formed on a silicon substrate 1 and a silicon nitride film 3 is accumulated on the thermal oxide film 2 by CVD method. The silicon nitride film 3 is left in an activating area removing other parts by photoetching, then, dry oxygen or ozone is used as oxide pieces when forming a field oxide film 4 at the process of thermal oxidation. Thus, at the process of forming a gate oxide film, uniform film thickness is maintained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体装置の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device.

【0002】0002

【従来の技術】一般に半導体集積回路の素子分離領域の
形成工程においては、図2に示すような方法で段階的に
行われている。すなわち、図2(a) においてシリコ
ン基板1上に熱酸化膜2を形成し、ついで図2(b) 
において熱酸化膜2の上にCVD法によりシリコン窒化
膜(Si3N4 膜)3を堆積し、さらに図2(c) 
において写真食刻(フォトエッチング)により活性化領
域にシリコン窒化膜3を残して他の部分を除去し、最後
に図2(d) において酸化種として水蒸気を用いて下
記式(数1)に従って熱酸化処理を行って厚さ1μm 
程度のフィールド酸化膜(SiO2)4を形成する。
2. Description of the Related Art Generally, the process of forming element isolation regions of semiconductor integrated circuits is performed in stages as shown in FIG. That is, in FIG. 2(a), a thermal oxide film 2 is formed on a silicon substrate 1, and then as shown in FIG. 2(b).
A silicon nitride film (Si3N4 film) 3 is deposited on the thermal oxide film 2 by the CVD method, and then as shown in FIG. 2(c).
In step 1, the silicon nitride film 3 is left in the activated region and other parts are removed by photo-etching, and finally, in FIG. After oxidation treatment, the thickness is 1 μm.
A field oxide film (SiO2) 4 of about 100 mL is formed.

【0003】     Si+2H2O →SiO2+2H2    
                        …
………(数1)
[0003] Si+2H2O →SiO2+2H2

......(Number 1)

【0004】0004

【発明が解決しようとする課題】しかしながら、水蒸気
は高温で(数2)の反応式のように窒化膜と反応し、こ
れによって発生した4NH3 は、(数3)のようにシ
リコン基板1と反応して図3に示すような窒化物5が発
生すると報告されている(たとえば、E.Kooi,‘
Formation of Silicon Nitr
ide at a Si−SiO2 Interfac
e during Local Oxidation 
ofSicon and during Heat−T
reatment of Oxidized Sico
n in NH3 Gas’,J.Electroch
em.Soc.(1976)Vol.123,No.7
,p1117−1120 参照) 。
[Problem to be Solved by the Invention] However, water vapor reacts with the nitride film at high temperatures as shown in equation (2), and the 4NH3 generated thereby reacts with the silicon substrate 1 as shown in equation (3). It has been reported that nitrides 5 as shown in FIG. 3 are generated (for example, E. Kooi, '
Formation of Silicon Nitr
ide at a Si-SiO2 Interface
e during Local Oxidation
ofSicon and during Heat-T
Reament of Oxidized Sico
n in NH3 Gas', J. Electroch
em. Soc. (1976) Vol. 123, No. 7
, p. 1117-1120).

【0005】     Si3N4 +6H2O →3SiO2+4N
H3                     ……
……(数2)    4NH3 +3Si  →Si3
N4 +6H2                  
    …………(数3)このようにいわゆるホワイト
リボンと称するSi3N4 が生成して、後の工程で形
成されるゲート酸化膜が均一に成長することが妨げられ
、絶縁耐圧を低下させるという問題があった。なお、酸
化種として水蒸気の代わりにウェット酸素(O2+H2
O)を用いる例も知られているが、これに含まれる水分
(H2O)によってやはり上記の(数2),(数3)の
反応が行われてSi3N4 が生成するという欠点があ
る。本発明は上記のような課題を解決した半導体装置の
製造方法を提供することを目的とする。
[0005] Si3N4 +6H2O →3SiO2+4N
H3...
...(Math. 2) 4NH3 +3Si →Si3
N4 +6H2
......(Equation 3) In this way, the so-called white ribbon of Si3N4 is generated, which prevents the uniform growth of the gate oxide film to be formed in a later process, resulting in a problem of lowering the dielectric breakdown voltage. there were. Note that wet oxygen (O2+H2) is used instead of water vapor as the oxidizing species.
Examples using O) are also known, but they have the disadvantage that the water (H2O) contained therein causes the reactions (Equation 2) and (Equation 3) described above to occur, resulting in the production of Si3N4. An object of the present invention is to provide a method for manufacturing a semiconductor device that solves the above-mentioned problems.

【0006】[0006]

【課題を解決するための手段】本発明は、シリコン窒化
膜の耐酸化性マスクを用いてシリコン基板上を選択的に
酸化させる素子分離形成の工程の際に、ドライ酸素また
はオゾンを酸化種に用いることを特徴とする半導体装置
の製造方法である。
[Means for Solving the Problems] The present invention uses dry oxygen or ozone as an oxidizing species during an element isolation formation process that selectively oxidizes a silicon substrate using an oxidation-resistant mask made of a silicon nitride film. This is a method of manufacturing a semiconductor device characterized by using the present invention.

【0007】[0007]

【作  用】本発明者が上記課題について鋭意研究実験
を重ねた結果、ドライ酸素あるいはオゾンを酸化種とし
て用いればよいことを見出し、本発明を完成させるに至
った。図1は酸化種として1atm.のドライ酸素を用
いて、熱酸化処理時の温度を変化させたときの酸化時間
(min)と膜厚(μm)の関係を調査したものである
。これらから明らかなように、膜厚は熱酸化温度と酸化
時間の関数として明確に表すことができ、たとえば10
50℃の温度で酸化した場合は酸化時間が約1100m
in で400 nmの膜厚が得られることがわかる。 なお、オゾンについても同様の作用を有しており、ドラ
イ酸素に比して酸素原子が多くエネルギー的に不安定で
あるため、その反応速度が速くなる傾向である。
[Function] As a result of intensive research and experiments regarding the above-mentioned problem, the present inventor found that dry oxygen or ozone can be used as the oxidizing species, and has completed the present invention. Figure 1 shows 1 atm. This study investigated the relationship between oxidation time (min) and film thickness (μm) when the temperature during thermal oxidation treatment was changed using dry oxygen. As is clear from these, the film thickness can be clearly expressed as a function of thermal oxidation temperature and oxidation time, for example, 10
When oxidized at a temperature of 50°C, the oxidation time is approximately 1100 m.
It can be seen that a film thickness of 400 nm can be obtained with in. Note that ozone has a similar effect, and since it has more oxygen atoms than dry oxygen and is energetically unstable, its reaction rate tends to be faster.

【0008】このように本発明によれば、シリコン基板
を選択酸化する際に酸化種としてドライ酸素またはオゾ
ンを用いるようにしたので、選択酸化中に窒化物の生成
がなく、したがって膜厚が均一なゲート酸化膜を形成す
ることが可能となる。
As described above, according to the present invention, dry oxygen or ozone is used as an oxidizing species when selectively oxidizing a silicon substrate, so nitrides are not generated during selective oxidation, and therefore the film thickness is uniform. This makes it possible to form a gate oxide film.

【0009】[0009]

【実施例】以下に、本発明の実施例について説明する。 前出した図2(a) の工程でシリコン基板1上に95
0 ℃ウェット酸化で膜厚が350 Å程度の熱酸化膜
2を形成した後、図2(b) の工程において熱酸化膜
2の上に760 ℃, 0.4Torr の減圧CVD
法によりシリコン窒化膜(Si3N4 膜)3を堆積さ
せ、さらに図2(c) においてフォトエッチングによ
り活性化領域にシリコン窒化膜3を残して他の部分を除
去した。その後図2(d) において酸化種としてドラ
イ酸素を用いてドライ酸化1050℃で熱酸化を行った
。その結果、その後のゲート酸化膜形成の際にホワイト
リボンの生成を防止することができた。
[Examples] Examples of the present invention will be described below. 95 on the silicon substrate 1 in the process shown in FIG. 2(a) mentioned above.
After forming a thermal oxide film 2 with a thickness of about 350 Å by wet oxidation at 0°C, low pressure CVD at 760°C and 0.4 Torr is performed on the thermal oxide film 2 in the step shown in FIG. 2(b).
A silicon nitride film (Si3N4 film) 3 was deposited by a method, and then, as shown in FIG. 2C, the silicon nitride film 3 was left in the active region and other parts were removed by photoetching. Thereafter, in FIG. 2(d), thermal oxidation was performed at 1050° C. using dry oxygen as the oxidizing species. As a result, it was possible to prevent the formation of white ribbons during the subsequent formation of the gate oxide film.

【0010】0010

【発明の効果】以上説明したように本発明によれば、フ
ィールド酸化の際の酸化種にドライ酸素またはオゾンを
用いるようにしたので、その後のゲート酸化膜形成の際
の膜厚を均一にすることが可能となり、半導体装置の品
質および歩留りの向上に寄与する。
As explained above, according to the present invention, dry oxygen or ozone is used as the oxidizing species during field oxidation, so that the thickness of the subsequent gate oxide film can be made uniform. This makes it possible to improve the quality and yield of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明法における酸化時間と膜厚との関係を示
す特性図である。
FIG. 1 is a characteristic diagram showing the relationship between oxidation time and film thickness in the method of the present invention.

【図2】従来の半導体集積回路の素子分離領域形成を示
す工程図である。
FIG. 2 is a process diagram showing the formation of an element isolation region of a conventional semiconductor integrated circuit.

【図3】窒化物の介在状況の説明図である。FIG. 3 is an explanatory diagram of the presence of nitrides.

【符号の説明】[Explanation of symbols]

1  シリコン基板 2  熱酸化膜 3  シリコン窒化膜 4  フィールド酸化膜 5  窒化物 1 Silicon substrate 2 Thermal oxide film 3 Silicon nitride film 4 Field oxide film 5 Nitride

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】    シリコン窒化膜の耐酸化性マスク
を用いてシリコン基板上を選択的に酸化させる素子分離
形成の工程の際に、ドライ酸素またはオゾンを酸化種に
用いることを特徴とする半導体装置の製造方法。
1. A semiconductor device characterized in that dry oxygen or ozone is used as an oxidizing species during an element isolation formation process in which a silicon substrate is selectively oxidized using an oxidation-resistant mask of a silicon nitride film. manufacturing method.
JP3459691A 1991-02-28 1991-02-28 Production of semiconductor device Pending JPH04273440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3459691A JPH04273440A (en) 1991-02-28 1991-02-28 Production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3459691A JPH04273440A (en) 1991-02-28 1991-02-28 Production of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04273440A true JPH04273440A (en) 1992-09-29

Family

ID=12418720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3459691A Pending JPH04273440A (en) 1991-02-28 1991-02-28 Production of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04273440A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162448A (en) * 1994-12-06 1996-06-21 Handotai Process Kenkyusho:Kk Film forming method
US5672539A (en) * 1994-01-14 1997-09-30 Micron Technology, Inc. Method for forming an improved field isolation structure using ozone enhanced oxidation and tapering
CN107991914A (en) * 2016-10-27 2018-05-04 沈阳芯源微电子设备有限公司 A kind of SCM Based switch suck back valve numerical control system and its control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672539A (en) * 1994-01-14 1997-09-30 Micron Technology, Inc. Method for forming an improved field isolation structure using ozone enhanced oxidation and tapering
US6072226A (en) * 1994-01-14 2000-06-06 Micron Technology, Inc. Field isolation structure formed using ozone oxidation and tapering
JPH08162448A (en) * 1994-12-06 1996-06-21 Handotai Process Kenkyusho:Kk Film forming method
CN107991914A (en) * 2016-10-27 2018-05-04 沈阳芯源微电子设备有限公司 A kind of SCM Based switch suck back valve numerical control system and its control method

Similar Documents

Publication Publication Date Title
US6432779B1 (en) Selective removal of a metal oxide dielectric
US6300202B1 (en) Selective removal of a metal oxide dielectric
US4363868A (en) Process of producing semiconductor devices by forming a silicon oxynitride layer by a plasma CVD technique which is employed in a selective oxidation process
US5369052A (en) Method of forming dual field oxide isolation
JP2903884B2 (en) Semiconductor device manufacturing method
JP3950189B2 (en) Element isolation method
JPH04273440A (en) Production of semiconductor device
JPS6234152B2 (en)
KR100339873B1 (en) Semiconductor device having an improved wiring structure and manufacturing method thereof
JPH05121655A (en) Manufacture of semiconductor device
US5977608A (en) Modified poly-buffered isolation
JPS62293728A (en) Manufacture of semiconductor device
JPH05251439A (en) Forming method for insulating film of semiconductor device
JPH03155128A (en) Manufacture of semiconductor device
KR20030058231A (en) Deposition method of silicon nitride in semiconductor production
JPH0845838A (en) Production process of soi structure
JPH03153045A (en) Manufacture of semiconductor device
KR960008904B1 (en) Forming method of silicon oxide film on the semiconductor substrate
JPS62293727A (en) Manufacture of semiconductor device
JPH08222739A (en) Method of manufacturing semiconductor device
KR20020041608A (en) Method for manufacturing gate in semiconductor device
JPS6390150A (en) Manufacture of semiconductor device
JPH08306677A (en) Formation of element isolation film
JPS59161829A (en) Formation of semiconductor surface insulating film
JPH08107205A (en) Manufacture of sacrificial oxide film