JPH05251439A - Forming method for insulating film of semiconductor device - Google Patents

Forming method for insulating film of semiconductor device

Info

Publication number
JPH05251439A
JPH05251439A JP3272969A JP27296991A JPH05251439A JP H05251439 A JPH05251439 A JP H05251439A JP 3272969 A JP3272969 A JP 3272969A JP 27296991 A JP27296991 A JP 27296991A JP H05251439 A JPH05251439 A JP H05251439A
Authority
JP
Japan
Prior art keywords
film
forming
silicon
gas
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3272969A
Other languages
Japanese (ja)
Other versions
JP3040556B2 (en
Inventor
Hisashi Fukuda
永 福田
Makoto Yasuda
安田  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17521319&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05251439(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3272969A priority Critical patent/JP3040556B2/en
Publication of JPH05251439A publication Critical patent/JPH05251439A/en
Application granted granted Critical
Publication of JP3040556B2 publication Critical patent/JP3040556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To reduce hydrogen atoms in a film by forming a silicon nitride film, then continuously heat treating it in an N2O atmosphere, diffusing oxygen and nitrogen contained in the N2O gas into an Si3N4 film, newly forming a silicon oxide film, and discharging hydrogen atoms mixed in the Si2N4 film by the treating. CONSTITUTION:A method for forming an insulating film of a semiconductor device comprises the steps of heat treating in an NH3 atmosphere of reactive gas containing nitrogen, forming a silicon nitride film 21 on a silicon substrate 20, then heat treating it in an N2O gas atmosphere of oxidative gas containing nitrogen, and forming a silicon oxide film 22 containing nitrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の絶縁膜形
成方法に係り、特に膜厚の薄い絶縁膜であって品質の優
れた絶縁膜を形成する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an insulating film for a semiconductor device, and more particularly to a method for forming an insulating film having a small film thickness and excellent quality.

【0002】[0002]

【従来の技術】最先端技術により形成されるシリコン集
積回路では膜厚が極めて薄い酸化膜がゲート絶縁膜とし
て用いられる。とりわけ、1.0μm以下のゲート長を
有するサブミクロンMOSデバイスでは、膜厚が例えば
100Å以下となる酸化膜が用いられ、このように膜厚
を薄くすることで利得の向上が図られている。
2. Description of the Related Art In a silicon integrated circuit formed by the latest technology, an oxide film having an extremely thin film thickness is used as a gate insulating film. Especially, in a submicron MOS device having a gate length of 1.0 μm or less, an oxide film having a film thickness of, for example, 100 Å or less is used, and the gain is improved by reducing the film thickness.

【0003】従来の酸化膜の形成方法の一例としては、
例えば、「VLSI製造技術」,徳山 巍,橋本 哲一
編著,日経BP社,1989,p.65〜84に開示さ
れるものがあった。この文献に開示されている方法で
は、まず、電気炉によって800〜1200℃に加熱し
た石英管内に、清浄化した基板が配置される。その後、
酸化膜形成のための酸化性ガスとして、例えば乾燥した
酸素ガス、或いは酸素及び水素の混合ガス等が用いられ
る。酸化性ガスの導入された石英管内に基板を、形成し
ようとする酸化膜の膜厚に見合った時間、一定温度で放
置しておくことによって、基板表面に均一な膜厚の酸化
膜が形成される。
As an example of a conventional method for forming an oxide film,
For example, “VLSI Manufacturing Technology”, edited by Shiba Tokuyama, Tetsuichi Hashimoto, Nikkei BP, 1989, p. 65-84. In the method disclosed in this document, first, a cleaned substrate is placed in a quartz tube heated to 800 to 1200 ° C. by an electric furnace. afterwards,
As the oxidizing gas for forming the oxide film, for example, a dry oxygen gas or a mixed gas of oxygen and hydrogen is used. By leaving the substrate in a quartz tube containing an oxidizing gas at a constant temperature for a time corresponding to the thickness of the oxide film to be formed, an oxide film of uniform thickness is formed on the substrate surface. It

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の絶縁膜形成方法では、膜厚が例えば100Å以
下の薄い酸化膜を形成する場合、膜厚制御が困難であっ
た。そのため、従来の絶縁膜形成方法で上述のような薄
い酸化膜を形成する場合は、石英管の加熱温度を900
℃以下にする方法(以下、これを低温酸化法という)、
或いは、窒素で酸素を稀釈して酸化速度の低下を図る方
法(以下、これを稀釈酸化法という)をとらざるを得な
い。
However, in the above-described conventional insulating film forming method, it is difficult to control the film thickness when forming a thin oxide film having a film thickness of 100 Å or less, for example. Therefore, when the thin oxide film as described above is formed by the conventional insulating film forming method, the heating temperature of the quartz tube is set to 900.
A method of lowering the temperature below ℃ (hereinafter referred to as a low temperature oxidation method),
Alternatively, there is no choice but to adopt a method of diluting oxygen with nitrogen to reduce the oxidation rate (hereinafter, this is referred to as a dilute oxidation method).

【0005】しかし、低温酸化法では、シリコン酸化膜
/シリコン(基板)界面で数十Åオーダーで、シリコン
の突起や界面のうねりが発生し、絶縁耐圧が低下してし
まうという問題があった。また、稀釈酸化法では、一般
に1000℃以上の高温で長時間熱処理を行なうため、
不純物の再分布が生じてしまう問題があった。また、低
温酸化法及び稀釈酸化法のいずれの方法でも、得られる
酸化膜は緻密でなくシリコン酸化膜/シリコン界面及び
酸化膜中に、例えばシリコン原子の不対結合や或いは歪
んだSi−O−Si結合が多く存在するものであり、こ
のためそもそもトラップ密度が増加する傾向があった。
However, the low temperature oxidation method has a problem in that silicon projections and undulations of the interface occur on the order of several tens of liters at the silicon oxide film / silicon (substrate) interface, and the withstand voltage decreases. Further, in the dilute oxidation method, since heat treatment is generally performed at a high temperature of 1000 ° C. or higher for a long time,
There is a problem that redistribution of impurities occurs. In both of the low temperature oxidation method and the diluted oxidation method, the obtained oxide film is not dense, and the silicon oxide film / silicon interface and the oxide film have, for example, unpaired bonds of silicon atoms or distorted Si-O-. Since there are many Si bonds, the trap density tends to increase in the first place.

【0006】従って、このような酸化膜をMOS型電界
効果トランジスタのゲート絶縁膜として使用した場合、
上記の原因に起因する種々の問題が生じる。例えば、ゲ
ート長1μm以下の微細なMOS型電界効果トランジス
タの場合では、チャネル領域で発生したホットエレクト
ロンが酸化膜中に侵入した場合、電子はこのようなシリ
コン原子の不対結合や歪んだSi−O結合にトラップさ
れ、そのためMOS型トランジスタにおける閾値電圧の
変動や、伝達コンダクタンスの低下を引き起こすという
問題が生じる。
Therefore, when such an oxide film is used as a gate insulating film of a MOS field effect transistor,
Various problems arise due to the above causes. For example, in the case of a fine MOS type field effect transistor with a gate length of 1 μm or less, when hot electrons generated in the channel region penetrate into the oxide film, electrons are unpaired with such silicon atoms or distorted Si- There is a problem that it is trapped by O-coupling, which causes fluctuations in the threshold voltage of the MOS transistor and a decrease in transfer conductance.

【0007】また、このような酸化膜を用いてMOS構
造を構成し、これの耐圧試験を行なうと、シリコン原子
の不対結合や歪んだSi−O−Si結合等のような結合
が切れることにより、新たなトラップが当該酸化膜中に
発生し絶縁破壊の原因になる。本発明は、上記問題点を
除去し、膜質の優れた絶縁膜を形成することができる半
導体装置の絶縁膜形成方法を提供することを目的とす
る。
Further, when a MOS structure is constructed by using such an oxide film and a withstand voltage test is performed on the MOS structure, bonds such as unpaired bonds of silicon atoms and distorted Si--O--Si bonds are broken. As a result, a new trap is generated in the oxide film and causes a dielectric breakdown. An object of the present invention is to provide a method for forming an insulating film of a semiconductor device, which can eliminate the above problems and form an insulating film having excellent film quality.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、半導体装置の絶縁膜形成方法において、
窒素を含有する反応性ガス雰囲気中で加熱処理を行い、
シリコン基板上にシリコン窒化膜を形成し、連続して、
窒素を含有する酸化性ガス雰囲気中で加熱処理を行い、
窒素を含有するシリコン酸化膜を形成するようにしたも
のである。
In order to achieve the above object, the present invention provides a method for forming an insulating film of a semiconductor device,
Perform heat treatment in a reactive gas atmosphere containing nitrogen,
A silicon nitride film is formed on a silicon substrate and continuously formed,
Perform heat treatment in an oxidizing gas atmosphere containing nitrogen,
A silicon oxide film containing nitrogen is formed.

【0009】[0009]

【作用】本発明によれば、反応炉内で基板に対し絶縁膜
を形成するに当り、最初にアンモニア(NH3 )ガス乃
至は窒素(N2 )雰囲気中の加熱処理により、基板とな
るシリコンの表層を窒化し、その後、絶縁膜形成用のガ
スとして、窒素を含有する酸化性ガス雰囲気中の加熱処
理を行い、前記の窒化シリコン層を酸窒化し、薄い絶縁
膜を形成する。
According to the present invention, when the insulating film is formed on the substrate in the reaction furnace, the silicon to be the substrate is first subjected to heat treatment in an atmosphere of ammonia (NH 3 ) gas or nitrogen (N 2 ). The surface layer is nitrided, and then a heat treatment is performed in an oxidizing gas atmosphere containing nitrogen as a gas for forming an insulating film to oxynitride the silicon nitride layer to form a thin insulating film.

【0010】このように、シリコン窒化膜形成後、連続
してN2 O雰囲気中で加熱処理を行うようにしたので、
2 Oガスに含まれる酸素及び窒素がSi3 4 膜中に
侵入し、新たにシリコン酸化膜が形成される。更にはS
3 4 膜中に混入した水素原子はこの処理で吐き出さ
れて、膜中の水素原子を低減することができる。なお、
ここで言う基板とは、シリコン基板等のような基板その
ものである場合は勿論のこと、基板上にエピタキシャル
層が形成されたもの、基板やエピタキシャル層に素子が
作り込まれている中間体、絶縁膜が形成されるべき下地
を広く意味している。
As described above, after the silicon nitride film is formed, the heat treatment is continuously performed in the N 2 O atmosphere.
Oxygen and nitrogen contained in the N 2 O gas penetrate into the Si 3 N 4 film to form a new silicon oxide film. Furthermore, S
The hydrogen atoms mixed in the i 3 N 4 film are discharged by this treatment, and the hydrogen atoms in the film can be reduced. In addition,
The substrate referred to here is not only the substrate itself such as a silicon substrate, but also a substrate on which an epitaxial layer is formed, an intermediate body in which an element is formed on the substrate or the epitaxial layer, an insulating material. It broadly means the underlayer on which the film is to be formed.

【0011】[0011]

【実施例】以下、本発明の実施例について図面を参照し
ながら詳細に説明する。なお、図は、本発明を理解でき
る程度に各構成部分の寸法、形状及び配設位置を概略的
に示しているにすぎない。従って、各構成部分の寸法、
形状及び配設位置は図示例に限定されるものではない。
また、以下の説明では特定の材料及び特定の数値的条件
を挙げて説明するが、これら材料及び条件は単なる好適
例にすぎず、従って、本発明はこれら材料及び条件に限
定されるものではない。
Embodiments of the present invention will now be described in detail with reference to the drawings. It should be noted that the drawings only schematically show the dimensions, shapes, and positions of arrangement of the respective components to the extent that the present invention can be understood. Therefore, the dimensions of each component,
The shape and the arrangement position are not limited to the illustrated example.
Further, in the following description, specific materials and specific numerical conditions will be described, but these materials and conditions are merely preferable examples, and therefore, the present invention is not limited to these materials and conditions. ..

【0012】図1は本発明の実施例を示す半導体装置の
絶縁膜の形成工程断面図、図2は本発明の実施例を示す
反応炉の概略図である。図2において、12は石英管
(反応管)であり、閉塞された一端側にはガス導入管1
6が挿入あるいは接続される。一方、開放された石英管
12の他端側には扉15が設けられており、また、外周
面にガス排気管18が接続されている。更に、このよう
な石英管12の周囲には加熱ヒータ11が設けられてい
る。14は石英ボート、20は石英ボート上に垂直に立
てられたシリコン基板である。
FIG. 1 is a sectional view of a process for forming an insulating film of a semiconductor device showing an embodiment of the present invention, and FIG. 2 is a schematic view of a reaction furnace showing an embodiment of the present invention. In FIG. 2, reference numeral 12 is a quartz tube (reaction tube), and the gas introduction tube 1 is provided at one closed end.
6 is inserted or connected. On the other hand, a door 15 is provided on the other end side of the opened quartz tube 12, and a gas exhaust tube 18 is connected to the outer peripheral surface. Further, a heater 11 is provided around the quartz tube 12. Reference numeral 14 is a quartz boat, and 20 is a silicon substrate which stands vertically on the quartz boat.

【0013】このような反応炉を用いて本発明の実施例
について説明する。以下、本発明の半導体装置の絶縁膜
形成方法を、図1及び図2を参照しながら説明する。ま
ず、図1(a)に示すように、化学薬品および純水等を
用いて、シリコン基板20の前洗浄を行ない、予め自然
酸化膜を除去し、清浄なシリコン基板20の表面を露出
させる。
An embodiment of the present invention will be described using such a reaction furnace. Hereinafter, a method for forming an insulating film of a semiconductor device according to the present invention will be described with reference to FIGS. First, as shown in FIG. 1A, the silicon substrate 20 is pre-cleaned using chemicals and pure water to remove the natural oxide film in advance to expose the clean surface of the silicon substrate 20.

【0014】次に、シリコン基板20を石英ボート14
へ垂直に立てて、石英管12の入口扉15を開き、該石
英管12へ挿入する。ここで、シリコン基板20の熱ひ
ずみによる反りを防止するため、反応炉の温度は低温、
例えば400℃〜800℃としておく。シリコン基板2
0を搭載した石英ボート14が定位置に挿入されたなら
ば扉15を閉じる。
Next, the silicon substrate 20 is attached to the quartz boat 14.
Standing vertically, open the inlet door 15 of the quartz tube 12 and insert it into the quartz tube 12. Here, in order to prevent warpage due to thermal strain of the silicon substrate 20, the temperature of the reaction furnace is low,
For example, it is set to 400 ° C to 800 ° C. Silicon substrate 2
The door 15 is closed when the quartz boat 14 carrying 0 is inserted in place.

【0015】次に、ガス導入管16からアンモニア(N
3 )ガスを導入し、続いて反応炉の温度を徐々に例え
ば毎分5℃の割合で昇温し、約1000℃に保持する。
この状態で約5分間、シリコン基板20を石英管12に
放置することで、図1(b)に示すように、約10Åの
膜厚のシリコン窒化膜(Si3 4 )21がシリコン基
板20の表面に形成される。
Next, the ammonia (N
H 3 ) gas is introduced, and then the temperature of the reaction furnace is gradually raised, for example, at a rate of 5 ° C./min and maintained at about 1000 ° C.
By leaving the silicon substrate 20 in the quartz tube 12 for about 5 minutes in this state, as shown in FIG. 1B, the silicon nitride film (Si 3 N 4 ) 21 having a film thickness of about 10Å is formed on the silicon substrate 20. Formed on the surface of.

【0016】このSi3 4 膜21の形成においては、
NH3 ガス以外に、窒素(N2 )を用いても同様の効果
が得られる。次に、Si3 4 膜21の形成を終えた
後、ガス導入管16からのN2 ガスを直ちに一酸化二窒
素(N2 O)ガスに切り換え、同一温度で10〜20分
の加熱処理を行ない、図1(c)に示すように、連続し
てシリコン酸化膜22を形成する。
In forming the Si 3 N 4 film 21,
The same effect can be obtained by using nitrogen (N 2 ) other than NH 3 gas. Next, after the formation of the Si 3 N 4 film 21 is completed, the N 2 gas from the gas introducing pipe 16 is immediately switched to the dinitrogen monoxide (N 2 O) gas, and the heat treatment is performed at the same temperature for 10 to 20 minutes. Then, as shown in FIG. 1C, the silicon oxide film 22 is continuously formed.

【0017】この酸化膜22の形成を終えた後、ガス導
入管16からのN2 Oガスを直ちに不活性ガス、例えば
アルゴン(Ar)ガスに切り換え、かつ反応炉の温度を
毎分5〜10℃の割合で室温(約25℃)まで降温す
る。上記したように、シリコン基板上への酸化膜を形成
するにあたり、シリコン基板表面に予めNH3 ガス雰囲
気中での加熱処理により、シリコン窒化膜を形成する。
その結果、シリコン基板表層には10Å程度の極めて薄
いシリコン窒化膜が形成される。
After the formation of the oxide film 22, the N 2 O gas from the gas introducing pipe 16 is immediately switched to an inert gas, for example, an argon (Ar) gas, and the temperature of the reaction furnace is 5 to 10 minutes per minute. The temperature is lowered to room temperature (about 25 ° C) at a rate of ° C. As described above, in forming the oxide film on the silicon substrate, the silicon nitride film is formed on the surface of the silicon substrate by the heat treatment in the NH 3 gas atmosphere in advance.
As a result, an extremely thin silicon nitride film of about 10 Å is formed on the surface layer of the silicon substrate.

【0018】しかし、最初の表面の窒化工程において、
多量の窒素が導入されると同時にアンモニア(NH3
ガスに含まれる水素原子も多量に混入してしまう。そこ
で、本発明においては、所望の膜厚のシリコン酸化膜を
得るとともに、混入した水素を除去する目的で、シリコ
ン窒化膜を形成後、連続して一酸化二窒素(N2 O)ガ
ス雰囲気で加熱処理を行うようにしている。
However, in the first surface nitriding step,
At the same time when a large amount of nitrogen is introduced, ammonia (NH 3 )
A large amount of hydrogen atoms contained in the gas are also mixed. Therefore, in the present invention, in order to obtain a silicon oxide film having a desired film thickness and to remove mixed hydrogen, a silicon nitride film is formed, and then, continuously in a dinitrogen monoxide (N 2 O) gas atmosphere. Heat treatment is performed.

【0019】この結果、N2 Oガスに含まれる酸素及び
窒素がSi3 4 膜中に侵入し、新たにシリコン酸化膜
が形成される。更にはSi3 4 膜中に混入した水素原
子はこの処理で吐き出されて、膜中の水素原子を低減す
ることができるので、酸化膜の信頼性が著しく向上す
る。なお、上記した一酸化二窒素(N2 O)ガスに代え
て、NO2 ガスやNOガスを用いるようにしてもよい。
As a result, oxygen and nitrogen contained in the N 2 O gas penetrate into the Si 3 N 4 film to form a new silicon oxide film. Further, the hydrogen atoms mixed in the Si 3 N 4 film are discharged by this treatment, and the hydrogen atoms in the film can be reduced, so that the reliability of the oxide film is significantly improved. Note that NO 2 gas or NO gas may be used instead of the above-mentioned dinitrogen monoxide (N 2 O) gas.

【0020】また、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above-mentioned embodiments, but various modifications can be made within the scope of the present invention, and these modifications are not excluded from the scope of the present invention.

【0021】[0021]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、所望の膜厚のシリコン酸化膜を得ると共に、混
入した水素を除去するために、シリコン窒化膜を形成
後、連続して一酸化二窒素(N2 O)ガス雰囲気で加熱
処理を行うようにしたので、N2Oガスに含まれる酸素
及び窒素がSi3 4 膜中に侵入し、新たにシリコン酸
化膜が形成される。更には、Si3 4 膜中に混入した
水素原子はこの処理で吐き出されて、膜中の水素原子を
低減することができるので、酸化膜の信頼性が著しく向
上する。
As described above in detail, according to the present invention, a silicon oxide film having a desired film thickness is obtained, and a silicon nitride film is continuously formed after forming a silicon nitride film in order to remove hydrogen mixed therein. Since the heat treatment is performed in a dinitrogen monoxide (N 2 O) gas atmosphere, oxygen and nitrogen contained in the N 2 O gas penetrate into the Si 3 N 4 film to form a new silicon oxide film. To be done. Furthermore, the hydrogen atoms mixed in the Si 3 N 4 film are discharged by this treatment, and the hydrogen atoms in the film can be reduced, so that the reliability of the oxide film is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す半導体装置の絶縁膜の形
成工程断面図である。
FIG. 1 is a cross-sectional view of a process of forming an insulating film of a semiconductor device showing an embodiment of the present invention.

【図2】本発明の実施例を示す反応炉の概略図である。FIG. 2 is a schematic view of a reaction furnace showing an embodiment of the present invention.

【符号の説明】 11 加熱ヒータ 12 石英管 14 石英ボート 15 入口扉 16 ガス導入管 20 シリコン基板 21 シリコン窒化(Si3 4 )膜 22 シリコン酸化膜[Explanation of Codes] 11 Heater 12 Quartz Tube 14 Quartz Boat 15 Inlet Door 16 Gas Introducing Tube 20 Silicon Substrate 21 Silicon Nitride (Si 3 N 4 ) Film 22 Silicon Oxide Film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(a)窒素を含有する反応性ガス雰囲気中
で加熱処理を行い、シリコン基板上にシリコン窒化膜を
形成する工程と、 (b)連続して、窒素を含有する酸化性ガス雰囲気中で
加熱処理を行い、窒素を含有するシリコン酸化膜を形成
する工程を有することを特徴とする半導体装置の絶縁膜
形成方法。
1. A step of: (a) performing a heat treatment in a reactive gas atmosphere containing nitrogen to form a silicon nitride film on a silicon substrate; and (b) continuously providing an oxidizing gas containing nitrogen. A method for forming an insulating film of a semiconductor device, comprising the step of performing a heat treatment in an atmosphere to form a silicon oxide film containing nitrogen.
【請求項2】 請求項1記載の半導体装置の絶縁膜形成
方法において、前記窒素を含有する反応性ガスをアンモ
ニアとすることを特徴とする半導体装置の絶縁膜形成方
法。
2. The method for forming an insulating film of a semiconductor device according to claim 1, wherein the reactive gas containing nitrogen is ammonia.
【請求項3】 請求項1記載の半導体装置の絶縁膜形成
方法において、前記窒素を含有する酸化性ガスを一酸化
二窒素とすることを特徴とする半導体装置の絶縁膜形成
方法。
3. The method for forming an insulating film of a semiconductor device according to claim 1, wherein the oxidizing gas containing nitrogen is dinitrogen monoxide.
【請求項4】 請求項1記載の半導体装置の絶縁膜形成
方法において、前記シリコン窒化膜がSi3 4 構造で
あることを特徴とする半導体装置の絶縁膜形成方法。
4. The method for forming an insulating film of a semiconductor device according to claim 1, wherein the silicon nitride film has a Si 3 N 4 structure.
JP3272969A 1991-10-22 1991-10-22 Method for forming insulating film of semiconductor device Expired - Fee Related JP3040556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3272969A JP3040556B2 (en) 1991-10-22 1991-10-22 Method for forming insulating film of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3272969A JP3040556B2 (en) 1991-10-22 1991-10-22 Method for forming insulating film of semiconductor device

Publications (2)

Publication Number Publication Date
JPH05251439A true JPH05251439A (en) 1993-09-28
JP3040556B2 JP3040556B2 (en) 2000-05-15

Family

ID=17521319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3272969A Expired - Fee Related JP3040556B2 (en) 1991-10-22 1991-10-22 Method for forming insulating film of semiconductor device

Country Status (1)

Country Link
JP (1) JP3040556B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221092A (en) * 1994-02-09 1995-08-18 Fujitsu Ltd Manufacture of semiconductor device
JP2006339624A (en) * 2005-05-30 2006-12-14 Hynix Semiconductor Inc Method of manufacturing flash memory device
JP2007123825A (en) * 2005-09-29 2007-05-17 Toshiba Corp Method of manufacturing semiconductor device
WO2007139141A1 (en) * 2006-05-31 2007-12-06 Tokyo Electron Limited Method for forming insulating film and method for manufacturing semiconductor device
WO2008126255A1 (en) * 2007-03-30 2008-10-23 Fujitsu Microelectronics Limited Process for producing semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221092A (en) * 1994-02-09 1995-08-18 Fujitsu Ltd Manufacture of semiconductor device
JP2006339624A (en) * 2005-05-30 2006-12-14 Hynix Semiconductor Inc Method of manufacturing flash memory device
JP2007123825A (en) * 2005-09-29 2007-05-17 Toshiba Corp Method of manufacturing semiconductor device
WO2007139141A1 (en) * 2006-05-31 2007-12-06 Tokyo Electron Limited Method for forming insulating film and method for manufacturing semiconductor device
JPWO2007139141A1 (en) * 2006-05-31 2009-10-08 東京エレクトロン株式会社 Method for forming insulating film and method for manufacturing semiconductor device
US7960293B2 (en) 2006-05-31 2011-06-14 Tokyo Electron Limited Method for forming insulating film and method for manufacturing semiconductor device
WO2008126255A1 (en) * 2007-03-30 2008-10-23 Fujitsu Microelectronics Limited Process for producing semiconductor device

Also Published As

Publication number Publication date
JP3040556B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
JP3981426B2 (en) Method for forming gate insulating film
JP5105627B2 (en) Formation of silicon oxynitride gate dielectric using multiple annealing steps
US5891809A (en) Manufacturable dielectric formed using multiple oxidation and anneal steps
US20070169696A1 (en) Two-step post nitridation annealing for lower eot plasma nitrided gate dielectrics
JP2004087960A (en) Manufacturing method of semiconductor device
JP3899150B2 (en) Insulating film formation method
JP3593340B2 (en) Manufacturing method of integrated circuit device
JP3399413B2 (en) Oxynitride film and method for forming the same
US6372581B1 (en) Process for nitriding the gate oxide layer of a semiconductor device and device obtained
JP2005539367A (en) Semiconductor-based UV-enhanced oxynitridation
JPH05251439A (en) Forming method for insulating film of semiconductor device
US7160818B2 (en) Semiconductor device and method for fabricating same
JP2004266075A (en) Substrate processing method
JP3619795B2 (en) Manufacturing method of semiconductor device
JPH0574762A (en) Formation of insulating film
JP2007142024A (en) Method of manufacturing semiconductor device
JPH07335876A (en) Method of forming gate insulating film
JP3372030B2 (en) Method of forming thin film insulating film
JP3250996B2 (en) Silicon substrate having insulating film on surface and method and apparatus for manufacturing the same
JP2793441B2 (en) Insulating film formation method
JP3233280B2 (en) Method for manufacturing semiconductor device
JPH05218006A (en) Formation of insulating film
JP3041114B2 (en) Method for forming insulating film of oxynitride film layer
JP2880993B1 (en) Method of forming semiconductor oxide film
JPH04245636A (en) Insulating film forming method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees