JP2007142024A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2007142024A
JP2007142024A JP2005331460A JP2005331460A JP2007142024A JP 2007142024 A JP2007142024 A JP 2007142024A JP 2005331460 A JP2005331460 A JP 2005331460A JP 2005331460 A JP2005331460 A JP 2005331460A JP 2007142024 A JP2007142024 A JP 2007142024A
Authority
JP
Japan
Prior art keywords
region
oxygen concentration
nitride layer
oxidizing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005331460A
Other languages
Japanese (ja)
Inventor
Kazuto Ikeda
和人 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005331460A priority Critical patent/JP2007142024A/en
Publication of JP2007142024A publication Critical patent/JP2007142024A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a gate insulating film of high permittivity which is high in an average nitrogen concentration and low in the nitrogen concentration near the interface of a silicon substrate. <P>SOLUTION: A nitrated layer is formed on the silicon substrate (step S1), and, thereafter, oxidizing solution treatment is applied at first to form a low oxygen concentration interface oxidizing region between the nitrated layer and the silicon substrate (step S2), next, heat treatment in oxidizing gas atmosphere is effected to supply oxygen to the low oxygen concentration interface oxidizing region and to form a high oxygen concentration interface oxidizing region there (step S3). Oxidization employing oxidizing solution is effected prior to the heat treatment in the oxidizing gas atmosphere whereby the low oxygen concentration interface oxidizing region, formed by the oxidizing solution treatment, becomes so as to be easily oxidized upon heat treatment, and the high oxygen concentration interface oxidizing region is formed there. According to this method, forming of the gate insulating film, high in nitrogen concentration and permittivity as a whole, becomes possible while reducing the nitrogen concentration in between the nitrated film and the silicon substrate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体装置の製造方法に関し、特に窒素を含有するゲート絶縁膜を用いたMOS(Metal Oxide Semiconductor)型の半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a MOS (Metal Oxide Semiconductor) type semiconductor device using a gate insulating film containing nitrogen.

MOS電界効果型トランジスタ(MOS Field Effect Transistor,MOSFET)のゲート絶縁膜形成には、ゲートリーク電流を抑制しつつ容量的に薄いゲート絶縁膜を得るために、ゲート絶縁膜中に窒素(N)を含有させることによってその誘電率を増加させる手法がしばしば用いられる。   In forming a gate insulating film of a MOS field effect transistor (MOSFET), nitrogen (N) is used in the gate insulating film in order to obtain a gate insulating film that is capacitively thin while suppressing gate leakage current. A technique of increasing the dielectric constant by inclusion is often used.

例えば、従来、シリコン(Si)基板表面に形成した酸化シリコン(SiO,SiO2)膜を窒化する方法、酸化シリコン膜の表面領域を窒化するための方法等が提案されている。酸化シリコン膜の形成には、熱酸化等のドライ酸化法のほか、ウェット酸化法も用いられている(特許文献1,2参照)。 For example, conventionally, a method for nitriding a silicon oxide (SiO, SiO 2 ) film formed on the surface of a silicon (Si) substrate, a method for nitriding a surface region of a silicon oxide film, and the like have been proposed. For the formation of the silicon oxide film, a wet oxidation method is used in addition to a dry oxidation method such as thermal oxidation (see Patent Documents 1 and 2).

このほか、シリコン基板表面にまず窒化シリコン(SiN)膜を形成しておき、これを酸化性ガス雰囲気で熱処理し、窒化シリコン膜とシリコン基板の間の領域に酸化シリコン膜を形成する方法も提案されている(非特許文献1,2参照)。
特開2005−64052号公報 特開2005−191341号公報 「2002・シンポジウム・オン・VLSI・テクノロジー・ダイジェスト・オブ・テクニカル・ペーパーズ(2002 Symposium on VLSI Technology Digest of Technical Papers)」、p.202 「2004・シンポジウム・オン・VLSI・テクノロジー・ダイジェスト・オブ・テクニカル・ペーパーズ(2004 Symposium on VLSI Technology Digest of Technical Papers)」、p.172
In addition, a method is also proposed in which a silicon nitride (SiN) film is first formed on the surface of a silicon substrate, and this is heat-treated in an oxidizing gas atmosphere to form a silicon oxide film in a region between the silicon nitride film and the silicon substrate. (See Non-Patent Documents 1 and 2).
JP 2005-64052 A JP 2005-191341 A “2002 Symposium on VLSI Technology Digest of Technical Papers”, p. 202 “2004 Symposium on VLSI Technology Digest of Technical Papers”, p. 172

しかし、従来のゲート絶縁膜形成方法には、次に示すような問題点もあった。
まず、シリコン基板上に酸化シリコン膜を形成しそれを窒化する方法の場合、高誘電率化のためにゲート絶縁膜中の窒素濃度を増加させようとすれば、窒素が酸化シリコン膜を突き抜けてシリコン基板にまで達し、キャリアのトラップ領域の形成やキャリア移動度の低下等、界面特性の劣化によるMOSFETの性能劣化を引き起こす可能性が高くなってしまう。
However, the conventional gate insulating film forming method has the following problems.
First, in the method of forming a silicon oxide film on a silicon substrate and nitriding it, if nitrogen concentration in the gate insulating film is increased to increase the dielectric constant, nitrogen penetrates the silicon oxide film. The possibility of reaching the silicon substrate increases the performance deterioration of the MOSFET due to the deterioration of the interface characteristics such as the formation of a carrier trap region and the reduction of carrier mobility.

これを回避するためには、ゲート絶縁膜の窒素濃度をMOSFETの性能を劣化させる恐れの少ないレベルにまで制限しなければならなくなり、したがって、この方法では、ゲート絶縁膜の高誘電率化を充分に図ることが難しい。このような問題は、酸化シリコン膜の形成にドライ酸化法を用いるかウェット酸化法を用いるかを問わず、同様に発生し得る。   In order to avoid this, it is necessary to limit the nitrogen concentration of the gate insulating film to a level at which there is little risk of degrading the performance of the MOSFET. Therefore, this method sufficiently increases the dielectric constant of the gate insulating film. It is difficult to plan. Such a problem can occur in the same manner regardless of whether a dry oxidation method or a wet oxidation method is used to form the silicon oxide film.

ゲート絶縁膜に窒素を含有させたときの界面特性の劣化を抑制するためには、その平均窒素濃度を高めつつ、シリコン基板との界面における窒素濃度を低くすることが望まれる。従来、酸化シリコン膜の表面領域を窒化する試みもなされているが、そのような方法を用いた場合でも、導入する窒素量が増加すれば、やはり上記のような窒素の拡散が起こり、界面特性の劣化を充分に抑制することは難しい。   In order to suppress deterioration of the interface characteristics when nitrogen is contained in the gate insulating film, it is desired to reduce the nitrogen concentration at the interface with the silicon substrate while increasing the average nitrogen concentration. Conventionally, attempts have been made to nitride the surface region of a silicon oxide film. However, even when such a method is used, if the amount of nitrogen introduced increases, diffusion of nitrogen as described above occurs, and the interface characteristics are increased. It is difficult to sufficiently suppress the deterioration of the material.

また、シリコン基板上にまず窒化シリコン膜を形成してその後に酸化性ガス雰囲気の熱処理を行う方法を用いると、窒化シリコン膜とシリコン基板の間に酸化シリコン膜が形成可能であるため、上記の方法に比べると、平均窒素濃度が高くシリコン基板との界面における窒素濃度が低いゲート絶縁膜が得られる可能性は高くなると言える。   In addition, if a method of first forming a silicon nitride film over a silicon substrate and then performing heat treatment in an oxidizing gas atmosphere is used, a silicon oxide film can be formed between the silicon nitride film and the silicon substrate. Compared with the method, it can be said that the possibility of obtaining a gate insulating film having a high average nitrogen concentration and a low nitrogen concentration at the interface with the silicon substrate is increased.

しかし、この方法では窒化シリコン膜を透過する酸素(O)によって窒化シリコン膜とシリコン基板の間に酸化シリコン膜を形成するため、その領域に充分な酸素を供給することが難しい。窒化シリコン膜中の酸素の拡散速度を増加させようとして熱処理温度を上げると、窒化シリコン膜中の窒素がシリコン基板へ拡散してしまうため、その温度は制限される。結局、この方法では、窒化シリコン膜とシリコン基板の界面領域の酸素濃度を一定量以上には増加させることができず、その結果、ゲート絶縁膜とシリコン基板の界面に存在する窒素の量が比較的多く、MOSFETの性能を充分に向上させることが難しい。   However, in this method, since a silicon oxide film is formed between the silicon nitride film and the silicon substrate by oxygen (O) that passes through the silicon nitride film, it is difficult to supply sufficient oxygen to the region. If the heat treatment temperature is increased in order to increase the diffusion rate of oxygen in the silicon nitride film, nitrogen in the silicon nitride film diffuses into the silicon substrate, and thus the temperature is limited. After all, in this method, the oxygen concentration in the interface region between the silicon nitride film and the silicon substrate cannot be increased beyond a certain amount, and as a result, the amount of nitrogen present at the interface between the gate insulating film and the silicon substrate is compared. Therefore, it is difficult to sufficiently improve the performance of the MOSFET.

本発明はこのような点に鑑みてなされたものであり、高誘電率のゲート絶縁膜を備えた高性能の半導体装置の製造方法を提供することを目的とする。   The present invention has been made in view of these points, and an object of the present invention is to provide a method for manufacturing a high-performance semiconductor device provided with a high dielectric constant gate insulating film.

本発明では上記課題を解決するために、半導体装置の製造方法において、半導体基板上に窒化層を形成する工程と、酸化性溶液を用いて前記窒化層と前記半導体基板との間に酸化領域を形成する工程と、酸化性ガス雰囲気で熱処理を行い前記酸化領域の酸素濃度を増加させる工程と、を有することを特徴とする半導体装置の製造方法が提供される。   In the present invention, in order to solve the above problems, in a method for manufacturing a semiconductor device, a step of forming a nitride layer on a semiconductor substrate, and an oxidized region is formed between the nitride layer and the semiconductor substrate using an oxidizing solution. There is provided a method for manufacturing a semiconductor device, comprising a step of forming and a step of increasing the oxygen concentration in the oxidized region by performing a heat treatment in an oxidizing gas atmosphere.

このような半導体装置の製造方法によれば、半導体基板上に窒化層を形成した後、まず酸化性溶液を用いて窒化層と半導体基板との間に酸化領域を形成し、次に酸化性ガス雰囲気での熱処理を行いその酸化領域の酸素濃度を増加させる。酸化性ガス雰囲気での熱処理に先立ち酸化性溶液を用いた酸化を行うことにより、酸化性ガス雰囲気での熱処理の際に窒化層と半導体基板の間の領域が酸化されやすくなり、その領域の酸素濃度を効果的に増加させることが可能になる。   According to such a method for manufacturing a semiconductor device, after forming a nitride layer on a semiconductor substrate, an oxidation region is first formed between the nitride layer and the semiconductor substrate using an oxidizing solution, and then an oxidizing gas is formed. A heat treatment is performed in the atmosphere to increase the oxygen concentration in the oxidized region. By performing oxidation using an oxidizing solution prior to the heat treatment in the oxidizing gas atmosphere, the region between the nitride layer and the semiconductor substrate is easily oxidized during the heat treatment in the oxidizing gas atmosphere, and oxygen in the region is oxidized. The concentration can be increased effectively.

本発明では、半導体基板上に窒化層を形成した後、まず酸化性溶液を用いて窒化層と半導体基板の間に酸化領域を形成し、次に酸化性ガス雰囲気での熱処理を行いその酸化領域の酸素濃度を増加させるようにした。これにより、その酸化領域の酸素濃度を効果的に増加させることが可能になるので、平均窒素濃度は高いが半導体基板との界面においては窒素濃度が低く酸素濃度が高いゲート絶縁膜を形成することができる。このようなゲート絶縁膜を形成することにより、高誘電率化による実効ゲート絶縁膜厚の減少を図ると共に、デバイス性能およびその信頼性が共に高い、高性能のMOSFETが実現可能になる。   In the present invention, after a nitride layer is formed on a semiconductor substrate, an oxidized region is first formed between the nitride layer and the semiconductor substrate using an oxidizing solution, and then the oxidized region is subjected to heat treatment in an oxidizing gas atmosphere. The oxygen concentration was increased. As a result, the oxygen concentration in the oxidized region can be effectively increased, so that a gate insulating film having a high average nitrogen concentration but a low nitrogen concentration and a high oxygen concentration is formed at the interface with the semiconductor substrate. Can do. By forming such a gate insulating film, it is possible to reduce the effective gate insulating film thickness by increasing the dielectric constant, and to realize a high-performance MOSFET having both high device performance and high reliability.

以下、本発明の実施の形態を、図面を参照して詳細に説明する。
図1はゲート絶縁膜の形成フローを示す図である。また、図2から図4は各形成工程の説明図であって、図2は窒化シリコン膜形成工程の要部断面模式図、図3は第1の酸化工程の要部断面模式図、図4は第2の酸化工程の要部断面模式図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a flow of forming a gate insulating film. 2 to 4 are explanatory views of each forming process. FIG. 2 is a schematic cross-sectional view of the main part of the silicon nitride film forming process. FIG. 3 is a schematic cross-sectional view of the main part of the first oxidation process. These are the principal part cross-sectional schematic diagrams of a 2nd oxidation process.

ゲート絶縁膜形成に際しては、図1および図2に示すように、まずシリコン基板1上に窒化層2を形成する(ステップS1)。窒化層2は、窒化シリコンや酸窒化シリコン(SiON)により構成され、例えば、シリコン基板1を窒化性ガス雰囲気で熱処理したり、シリコン基板1に窒素を含むプラズマを照射したりすることによって形成することができる。   In forming the gate insulating film, as shown in FIGS. 1 and 2, first, a nitride layer 2 is formed on the silicon substrate 1 (step S1). The nitride layer 2 is made of silicon nitride or silicon oxynitride (SiON), and is formed, for example, by heat-treating the silicon substrate 1 in a nitriding gas atmosphere or irradiating the silicon substrate 1 with plasma containing nitrogen. be able to.

窒化層2の形成後は、図1に示したように、表面に窒化層2が形成されたシリコン基板1を酸化性溶液で処理し(ステップS2)、窒化層2とシリコン基板1の界面領域に酸素を供給してその領域を酸化する。この酸化性溶液処理の際、その領域に供給される酸素の量は、熱酸化等に比べると少なく、窒化層2とシリコン基板1の間には、図3に示すように、低酸素濃度の酸化領域(「低酸素濃度界面酸化領域」という。)3が形成されるようになる。   After the formation of the nitride layer 2, as shown in FIG. 1, the silicon substrate 1 having the nitride layer 2 formed on the surface is treated with an oxidizing solution (step S2), and the interface region between the nitride layer 2 and the silicon substrate 1 is processed. Oxygen is supplied to the region to oxidize the region. In this oxidizing solution treatment, the amount of oxygen supplied to the region is small compared to thermal oxidation or the like, and a low oxygen concentration is present between the nitride layer 2 and the silicon substrate 1 as shown in FIG. An oxidized region (referred to as “low oxygen concentration interface oxidized region”) 3 is formed.

そして、図1に示したように、このような低酸素濃度界面酸化領域3の形成後に、酸化性ガス雰囲気で熱処理を行う(ステップS3)。これにより、窒化層2とシリコン基板1の間に形成されている低酸素濃度界面酸化領域3に酸素を供給し、この低酸素濃度界面酸化領域3をさらに酸化する。その結果、図4に示すように、窒化層2とシリコン基板1の間には、低酸素濃度界面酸化領域3の酸素濃度を増加させた酸化領域(「高酸素濃度界面酸化領域」という。)4が形成されるようになる。なお、ここでは図示を省略するが、この酸化性ガス雰囲気での熱処理時には、その熱処理条件によっては窒化層2上にも酸化領域が形成される。   Then, as shown in FIG. 1, after the low oxygen concentration interface oxidation region 3 is formed, heat treatment is performed in an oxidizing gas atmosphere (step S3). As a result, oxygen is supplied to the low oxygen concentration interface oxidation region 3 formed between the nitride layer 2 and the silicon substrate 1, and the low oxygen concentration interface oxidation region 3 is further oxidized. As a result, as shown in FIG. 4, between the nitride layer 2 and the silicon substrate 1, an oxidized region in which the oxygen concentration of the low oxygen concentration interface oxidized region 3 is increased (referred to as “high oxygen concentration interface oxidized region”). 4 is formed. Although not shown here, an oxide region is also formed on the nitride layer 2 depending on the heat treatment conditions during the heat treatment in the oxidizing gas atmosphere.

このように、このゲート絶縁膜の形成方法では、シリコン基板1上に窒化層2を形成した後、まずその窒化層2とシリコン基板1の間に酸化性溶液処理によって低酸素濃度界面酸化領域3を形成し、次に酸化性ガス雰囲気で熱処理を行ってその低酸素濃度界面酸化領域3の酸素濃度を増加させ、高酸素濃度界面酸化領域4を形成する。   As described above, in this method of forming the gate insulating film, after forming the nitride layer 2 on the silicon substrate 1, first, the low oxygen concentration interface oxide region 3 is formed between the nitride layer 2 and the silicon substrate 1 by an oxidizing solution treatment. Then, heat treatment is performed in an oxidizing gas atmosphere to increase the oxygen concentration in the low oxygen concentration interface oxidation region 3 to form the high oxygen concentration interface oxidation region 4.

その際、低酸素濃度界面酸化領域3は、酸化性溶液処理を比較的低温で実施して形成することができ、その形成時には、窒化層2からシリコン基板1への窒素の熱拡散を抑制することができる。   At that time, the low oxygen concentration interfacial oxidation region 3 can be formed by performing an oxidizing solution treatment at a relatively low temperature, and suppresses thermal diffusion of nitrogen from the nitride layer 2 to the silicon substrate 1 during the formation. be able to.

この低酸素濃度界面酸化領域3は、酸化性溶液処理の際に窒化層2を介してシリコン基板1に供給された酸素を用いて形成されることから、その酸素濃度が熱酸化膜等に比べると低くなりやすい。しかし、このように窒化層2とシリコン基板1の間にあらかじめある程度の酸素が供給されていることで、その領域はその後の酸化性ガス雰囲気での熱処理の際には容易に酸化されるようになる。これは、酸化性溶液処理によってシリコン基板1に形成された低酸素濃度界面酸化領域3は、Si−Si結合やSi−O−Si結合が混在した状態になっており、窒化層2を透過した酸素によって新たなSi−O−Si結合が形成されやすいためである。   Since the low oxygen concentration interface oxidation region 3 is formed using oxygen supplied to the silicon substrate 1 through the nitride layer 2 during the oxidizing solution treatment, the oxygen concentration is compared with that of a thermal oxide film or the like. It tends to be low. However, since a certain amount of oxygen is supplied in advance between the nitride layer 2 and the silicon substrate 1 in this way, the region is easily oxidized during the subsequent heat treatment in an oxidizing gas atmosphere. Become. This is because the low oxygen concentration interfacial oxidation region 3 formed on the silicon substrate 1 by the oxidizing solution treatment is in a state in which Si—Si bonds and Si—O—Si bonds are mixed, and is transmitted through the nitride layer 2. This is because a new Si—O—Si bond is easily formed by oxygen.

さらに、窒化層2とシリコン基板1の間の領域にあらかじめある程度の酸素が供給されているため、その後の酸化性ガス雰囲気での熱処理では、同条件の熱処理のみで窒化層2とシリコン基板1の間に酸化シリコン膜を形成する場合に比べ、窒化層2とシリコン基板1の間にはより酸素濃度の高い酸化領域が形成されるようになる。換言すれば、酸化性溶液処理後の酸化性ガス雰囲気での熱処理では、窒化層2を透過する酸素の量が従来の熱酸化等に比べて少なくても、窒化層2とシリコン基板1の間に高酸素濃度の酸化領域を形成することが可能になる。   Furthermore, since a certain amount of oxygen is supplied in advance to the region between the nitride layer 2 and the silicon substrate 1, the subsequent heat treatment in the oxidizing gas atmosphere can be performed only by the heat treatment under the same conditions. Compared with the case where a silicon oxide film is formed therebetween, an oxidized region having a higher oxygen concentration is formed between the nitride layer 2 and the silicon substrate 1. In other words, in the heat treatment in the oxidizing gas atmosphere after the oxidizing solution treatment, even if the amount of oxygen that permeates the nitride layer 2 is small compared to the conventional thermal oxidation or the like, it is between the nitride layer 2 and the silicon substrate 1. In addition, it becomes possible to form an oxidized region having a high oxygen concentration.

低酸素濃度界面酸化領域3によって酸化性ガス雰囲気での熱処理時に窒化層2とシリコン基板1の間の領域が酸化されやすくなり、また、低酸素濃度界面酸化領域3によって酸化性ガス雰囲気での熱処理時に窒化層2を透過する酸素量が必ずしも多くなくてよいことから、酸化性溶液処理後であれば酸化性ガス雰囲気での熱処理の温度を低く設定することが可能になる。それにより、窒化層2からシリコン基板1への窒素の熱拡散を抑制することが可能になるため、窒化層2とシリコン基板1の間の領域におけるいっそうの低窒素濃度化を図ることができる。   The region between the nitride layer 2 and the silicon substrate 1 is easily oxidized during the heat treatment in the oxidizing gas atmosphere by the low oxygen concentration interface oxidation region 3, and the heat treatment in the oxidizing gas atmosphere is performed by the low oxygen concentration interface oxidation region 3. Since the amount of oxygen that permeates the nitride layer 2 does not always have to be large, the temperature of the heat treatment in the oxidizing gas atmosphere can be set low after the oxidizing solution treatment. Thereby, it is possible to suppress the thermal diffusion of nitrogen from the nitride layer 2 to the silicon substrate 1, so that the nitrogen concentration in the region between the nitride layer 2 and the silicon substrate 1 can be further reduced.

このようなゲート絶縁膜の形成方法によれば、窒化層2とシリコン基板1の間の領域の窒素濃度を低く抑えつつ、全体として窒素濃度が高く、高誘電率のゲート絶縁膜の形成が可能になる。このようなゲート絶縁膜をMOSFETに適用すれば、高誘電率化によって実効ゲート絶縁膜厚を低減することができる。また、界面窒素濃度の低減により、キャリア移動度の劣化等が抑制されて動作電流の増加が図られ、さらに、デバイスの長寿命化によって信頼性の向上が図られるようになる。したがって、高性能のMOSFETが形成可能になる。   According to such a method of forming a gate insulating film, it is possible to form a gate insulating film having a high nitrogen concentration and a high dielectric constant as a whole while keeping the nitrogen concentration in the region between the nitride layer 2 and the silicon substrate 1 low. become. If such a gate insulating film is applied to a MOSFET, the effective gate insulating film thickness can be reduced by increasing the dielectric constant. In addition, the reduction of the interface nitrogen concentration suppresses the deterioration of carrier mobility and the like, thereby increasing the operating current, and further improving the reliability by extending the life of the device. Therefore, a high-performance MOSFET can be formed.

以下、上記のゲート絶縁膜形成方法をMOSFETの形成に適用した場合について、具体的に説明する。
図5は素子分離領域およびチャネル不純物拡散領域形成工程の要部断面模式図である。
Hereinafter, a case where the above-described gate insulating film forming method is applied to formation of a MOSFET will be specifically described.
FIG. 5 is a schematic cross-sectional view of an essential part of the element isolation region and channel impurity diffusion region forming step.

MOSFETの形成に際しては、まず、図5に示すように、シリコン基板10にSTI(Shallow Trench Isolation)法等を用いて素子分離領域11を形成する。次いで、シリコン基板10に対し、MOSFETのチャネル領域となる部分に所定導電型の不純物を、例えばイオン注入後に活性化アニールを行って拡散させ、チャネル不純物拡散領域12を形成する。   In forming the MOSFET, first, as shown in FIG. 5, an element isolation region 11 is formed on the silicon substrate 10 by using an STI (Shallow Trench Isolation) method or the like. Next, an impurity having a predetermined conductivity type is diffused into the silicon substrate 10 in a portion that becomes a channel region of the MOSFET, for example, by performing activation annealing after ion implantation to form a channel impurity diffusion region 12.

図6は窒化層形成工程の要部断面模式図である。
チャネル不純物拡散領域12の形成後は、これに所定の窒化性ガス雰囲気での所定の熱処理を行い、チャネル不純物拡散領域12表面に窒化層13を形成する。なお、このとき窒化層13は、同時に素子分離領域11上にも形成される。
FIG. 6 is a schematic cross-sectional view of the relevant part in the nitride layer forming step.
After the channel impurity diffusion region 12 is formed, this is subjected to a predetermined heat treatment in a predetermined nitriding gas atmosphere to form a nitride layer 13 on the surface of the channel impurity diffusion region 12. At this time, the nitride layer 13 is also formed on the element isolation region 11 at the same time.

窒化層13は、例えば、圧力範囲約0.1Torr〜約760Torr(1Torr≒133Pa)、流量制御された窒化性ガス雰囲気中、温度約500℃〜約1000℃で約1秒間〜約600秒間の熱処理を行い、チャネル不純物拡散領域12表面の厚さが約0.3nm〜約2nmになるように形成する。その際、窒化性ガスには、アンモニア(NH3)ガス、一酸化窒素(NO)ガス、一酸化二窒素(N2O)ガス、二酸化窒素(NO2)ガス等、あるいはそのようなガスを2種以上含んだ混合ガス等、窒素を含むガスを広く利用することができる。 The nitride layer 13 is, for example, heat-treated at a temperature of about 500 ° C. to about 1000 ° C. for about 1 second to about 600 seconds in a pressure-controlled nitriding gas atmosphere at a pressure range of about 0.1 Torr to about 760 Torr (1 Torr≈133 Pa). To form a channel impurity diffusion region 12 having a surface thickness of about 0.3 nm to about 2 nm. At that time, the nitriding gas may be ammonia (NH 3 ) gas, nitrogen monoxide (NO) gas, dinitrogen monoxide (N 2 O) gas, nitrogen dioxide (NO 2 ) gas, or the like. A gas containing nitrogen such as a mixed gas containing two or more kinds can be widely used.

また、窒化層13の形成には、プラズマを用いることもできる。その場合、プラズマには、窒素プラズマ、アンモニアプラズマ、一酸化窒素プラズマ等、窒素を含むプラズマを広く利用することができる。プラズマの照射条件は、その方式によっても異なるが、例えば、電力約100W〜約2000W、ガス圧力約1mTorr〜1Torrの範囲内で、チャネル不純物拡散領域12表面に厚さ約0.3nm〜約2nmの窒化層13が形成されるような条件に設定する。   Plasma can also be used to form the nitride layer 13. In that case, plasma containing nitrogen, such as nitrogen plasma, ammonia plasma, or nitrogen monoxide plasma, can be widely used as the plasma. Although the plasma irradiation conditions vary depending on the method, for example, the power is about 100 W to about 2000 W, the gas pressure is about 1 mTorr to 1 Torr, and the surface of the channel impurity diffusion region 12 has a thickness of about 0.3 nm to about 2 nm. Conditions are set so that the nitride layer 13 is formed.

図7は低酸素濃度界面酸化領域形成工程の要部断面模式図である。
窒化層13の形成後は、基板を所定の酸化性溶液に所定の条件で浸漬し、窒化層13とシリコン基板10の間に比較的酸素濃度が低い低酸素濃度界面酸化領域14を形成する。
FIG. 7 is a schematic cross-sectional view of the relevant part in the low oxygen concentration interface oxidized region forming step.
After the formation of the nitride layer 13, the substrate is immersed in a predetermined oxidizing solution under predetermined conditions to form a low oxygen concentration interface oxide region 14 having a relatively low oxygen concentration between the nitride layer 13 and the silicon substrate 10.

酸化性溶液としては、例えば、アンモニア水溶液(アンモニア濃度約0.5%〜約5%)/過酸化水素(H22)水溶液(過酸化水素濃度約0.5%〜約5%)/水(H2O)の混合液を用いることができる。また、このほか、塩酸(HCl)水溶液/過酸化水素水溶液/水の混合液や、硫酸(H2SO4)水溶液/過酸化水素水溶液/水の混合液、硝酸(HNO3)水溶液/過酸化水素水溶液/水の混合液等も用いることができる。 Examples of the oxidizing solution include an aqueous ammonia solution (ammonia concentration of about 0.5% to about 5%) / hydrogen peroxide (H 2 O 2 ) aqueous solution (hydrogen peroxide concentration of about 0.5% to about 5%) / A mixture of water (H 2 O) can be used. In addition, hydrochloric acid (HCl) aqueous solution / hydrogen peroxide aqueous solution / water mixed solution, sulfuric acid (H 2 SO 4 ) aqueous solution / hydrogen peroxide aqueous solution / water mixed solution, nitric acid (HNO 3 ) aqueous solution / peroxide A hydrogen aqueous solution / water mixture or the like can also be used.

このような酸化性溶液に基板を浸漬する際は、例えば、シリコン基板10表面に厚さ約0.1nm〜約1nmの低酸素濃度界面酸化領域14が形成されるよう、用いる酸化性溶液の種類等に応じ、液温を室温〜約50℃の範囲で適当に設定し、浸漬時間を約30秒間〜約300秒間の範囲で適当に設定する。なお、このように浸漬は低温環境で行われるため、この低酸素濃度界面酸化領域14を形成する際に窒化層13に含まれる窒素が熱拡散することはほとんどない。   When the substrate is immersed in such an oxidizing solution, for example, the type of oxidizing solution used so that the low oxygen concentration interfacial oxidation region 14 having a thickness of about 0.1 nm to about 1 nm is formed on the surface of the silicon substrate 10. The liquid temperature is appropriately set in the range of room temperature to about 50 ° C., and the immersion time is appropriately set in the range of about 30 seconds to about 300 seconds. In addition, since the immersion is performed in a low temperature environment as described above, the nitrogen contained in the nitride layer 13 hardly diffuses when forming the low oxygen concentration interface oxidized region 14.

浸漬後は、酸化性溶液を水洗し、次いで、イソプロピルアルコール(IPA)を用い、温度約50℃〜約100℃の条件で基板を乾燥する。なお、この乾燥の際も、浸漬の際と同様、低温環境で乾燥が行われるため、窒化層13から窒素が熱拡散することはほとんどない。   After immersion, the oxidizing solution is washed with water, and then the substrate is dried using isopropyl alcohol (IPA) at a temperature of about 50 ° C. to about 100 ° C. In addition, since this drying is performed in a low-temperature environment as in the case of immersion, nitrogen hardly diffuses from the nitride layer 13.

図8は高酸素濃度界面酸化領域形成工程の要部断面模式図である。
乾燥後は、例えば、圧力範囲約0.1Torr〜約760Torr、流量制御された酸化性ガス雰囲気中、温度約700℃〜約1100℃で約1秒間〜約600秒間の熱処理を行う。これにより、窒化層13を介して低酸素濃度界面酸化領域14に酸素が供給されてその酸素濃度が増加し、そこに高酸素濃度界面酸化領域15が形成されるようになる。熱処理時の酸化性ガスには、一酸化窒素ガス、一酸化二窒素ガス、二酸化窒素ガス、酸素(O2)ガス等、あるいはそのようなガスを2種以上含んだ混合ガス等を用いることができる。
FIG. 8 is a schematic cross-sectional view of an essential part of the high oxygen concentration interface oxidized region forming step.
After drying, for example, heat treatment is performed at a temperature of about 700 ° C. to about 1100 ° C. for about 1 second to about 600 seconds in an oxidizing gas atmosphere with a pressure range of about 0.1 Torr to about 760 Torr. As a result, oxygen is supplied to the low oxygen concentration interface oxide region 14 through the nitride layer 13 to increase the oxygen concentration, and a high oxygen concentration interface oxide region 15 is formed there. As the oxidizing gas at the time of heat treatment, nitrogen monoxide gas, dinitrogen monoxide gas, nitrogen dioxide gas, oxygen (O 2 ) gas, etc., or a mixed gas containing two or more kinds of such gases may be used. it can.

この熱処理前、窒化層13とシリコン基板10の間には比較的酸化されやすい低酸素濃度界面酸化領域14が形成されている。この状態から所定の酸化性ガス雰囲気で所定の熱処理を行うと、前述のように、低酸素濃度界面酸化領域14は窒化層13を透過した酸素で容易に酸化される。また、低酸素濃度界面酸化領域14にはその酸化前からある程度の酸素が含まれているため、このような高酸素濃度界面酸化領域15を形成するために窒化層13を透過させる酸素量を必ずしも多くすることを要しない。したがって、窒化層13とシリコン基板10の間に高酸素濃度の酸化領域を形成するために熱処理温度を大幅に高める必要がなく、その結果、従来の熱酸化に比べて窒化層13からの窒素の熱拡散を大幅に抑制することが可能になる。   Prior to this heat treatment, a low oxygen concentration interface oxidized region 14 that is relatively easily oxidized is formed between the nitride layer 13 and the silicon substrate 10. When a predetermined heat treatment is performed from this state in a predetermined oxidizing gas atmosphere, the low oxygen concentration interface oxidized region 14 is easily oxidized with oxygen that has passed through the nitride layer 13 as described above. In addition, since the low oxygen concentration interface oxidation region 14 contains a certain amount of oxygen before the oxidation, the amount of oxygen transmitted through the nitride layer 13 is not necessarily limited to form such a high oxygen concentration interface oxidation region 15. You don't need to do much. Therefore, it is not necessary to significantly increase the heat treatment temperature in order to form an oxidized region having a high oxygen concentration between the nitride layer 13 and the silicon substrate 10, and as a result, the amount of nitrogen from the nitride layer 13 is less than that in the conventional thermal oxidation. It becomes possible to suppress thermal diffusion significantly.

高酸素濃度界面酸化領域15の酸素濃度は、シリコン、酸素、窒素の原子数比で46%以上になり、窒素濃度は、同じく原子数比で20%未満になる。高酸素濃度界面酸化領域15の窒素濃度をシリコン、酸素、窒素の原子数比で5%未満に抑えることも可能であり、その場合、酸素濃度は、同じく原子数比で61%以上になる。   The oxygen concentration in the high oxygen concentration interface oxidation region 15 is 46% or more in terms of the number ratio of silicon, oxygen, and nitrogen, and the nitrogen concentration is similarly less than 20% in terms of the number of atoms. It is also possible to suppress the nitrogen concentration in the high oxygen concentration interfacial oxidation region 15 to less than 5% in terms of the number ratio of silicon, oxygen, and nitrogen. In this case, the oxygen concentration is similarly 61% or more in terms of the number of atoms.

なお、この高酸素濃度界面酸化領域15の形成時に酸化性ガスとして一酸化ガス等の窒素を含むガスを用いた場合には、酸化と同時に窒化も起こり、窒素を含まない酸化性ガスを用いた場合に比べ、窒化層13や高酸素濃度界面酸化領域15の窒素濃度は高くなる。   When a gas containing nitrogen such as a monoxide gas is used as the oxidizing gas when forming the high oxygen concentration interface oxidation region 15, nitriding occurs simultaneously with the oxidation, and an oxidizing gas containing no nitrogen is used. Compared to the case, the nitrogen concentration of the nitride layer 13 and the high oxygen concentration interface oxide region 15 becomes higher.

また、この高酸素濃度界面酸化領域15の形成時には、その酸化性ガス雰囲気での熱処理によって、同時に窒化層13表面にも酸化領域16が形成される。ここでは図示を省略するが、ゲート絶縁膜の高誘電率化を図るため、高酸素濃度界面酸化領域15の形成後に、この窒化層13上の酸化領域16を窒化するようにしてもよい。窒化は、窒化性ガス雰囲気での熱処理や窒素を含むプラズマの照射によって行うことができる。   Further, when the high oxygen concentration interface oxidized region 15 is formed, an oxidized region 16 is simultaneously formed on the surface of the nitride layer 13 by the heat treatment in the oxidizing gas atmosphere. Although not shown here, the oxide region 16 on the nitride layer 13 may be nitrided after the high oxygen concentration interface oxidized region 15 is formed in order to increase the dielectric constant of the gate insulating film. Nitriding can be performed by heat treatment in a nitriding gas atmosphere or irradiation with plasma containing nitrogen.

窒化性ガス雰囲気中での熱処理の場合、例えば、圧力範囲約0.1Torr〜約760Torr、流量制御された窒化性ガス雰囲気中、温度約500℃〜約1000℃で約1秒間〜約600秒間の熱処理を行う。窒化性ガスには、アンモニアガス、一酸化窒素ガス、一酸化二窒素ガス、二酸化窒素ガス等、あるいはそのようなガスを2種以上含んだ混合ガス等、窒素を含むガスを用いることができる。   In the case of heat treatment in a nitriding gas atmosphere, for example, in a pressure range of about 0.1 Torr to about 760 Torr, a flow rate-controlled nitriding gas atmosphere at a temperature of about 500 ° C. to about 1000 ° C. for about 1 second to about 600 seconds. Heat treatment is performed. As the nitriding gas, a gas containing nitrogen such as ammonia gas, nitrogen monoxide gas, dinitrogen monoxide gas, nitrogen dioxide gas, or a mixed gas containing two or more of such gases can be used.

窒素を含むプラズマの照射によって窒化を行う場合には、窒素プラズマ、アンモニアプラズマ、一酸化窒素プラズマ等、窒素を含むプラズマを用い、例えば、電力約100W〜約2000W、ガス圧力約1mTorr〜1Torrの範囲内で、酸化領域16を選択的に窒化することができるような条件に設定する。   When nitriding is performed by irradiation with plasma containing nitrogen, plasma containing nitrogen, such as nitrogen plasma, ammonia plasma, or nitrogen monoxide plasma, is used. For example, the power is about 100 W to about 2000 W, and the gas pressure is about 1 mTorr to 1 Torr. The conditions are set so that the oxidized region 16 can be selectively nitrided.

ここまでの工程により、シリコン基板10のチャネル不純物拡散領域12上には、高酸素濃度界面酸化領域15、窒化層13、酸化領域16(または窒化領域)で構成されたゲート絶縁膜が形成されるようになる。   Through the steps so far, the gate insulating film composed of the high oxygen concentration interface oxide region 15, the nitride layer 13, and the oxide region 16 (or nitride region) is formed on the channel impurity diffusion region 12 of the silicon substrate 10. It becomes like this.

図9は多結晶シリコン堆積工程の要部断面模式図である。
ゲート絶縁膜の形成後は、ゲート電極となる多結晶シリコン17を全面に、例えば化学気相成長法を用いて堆積する。
FIG. 9 is a schematic cross-sectional view of the relevant part in the polycrystalline silicon deposition step.
After the formation of the gate insulating film, polycrystalline silicon 17 to be a gate electrode is deposited on the entire surface using, for example, chemical vapor deposition.

図10はゲート電極加工工程の要部断面模式図である。
多結晶シリコン17の形成後は、フォトレジスト18を用いたリソグラフィ技術と化学反応エッチング技術を用い、多結晶シリコン17を加工し、所定形状のゲート電極19を形成する。
FIG. 10 is a schematic sectional view showing an important part of a gate electrode processing step.
After the polycrystalline silicon 17 is formed, the polycrystalline silicon 17 is processed using a lithography technique using a photoresist 18 and a chemical reaction etching technique to form a gate electrode 19 having a predetermined shape.

図11はMOSFETの要部断面模式図である。
ゲート電極19の形成後は、まず、イオン注入法を用い、ゲート電極19をマスクにして所定導電型の不純物のイオン注入を行い、ソース・ドレイン・エクステンション領域20を形成する。次いで、ゲート電極19の側壁にサイドウォールスペーサ21を形成し、ゲート電極19とサイドウォールスペーサ21をマスクにして所定導電型の不純物のイオン注入を行い、ソース・ドレイン拡散領域22を形成する。最後に、ゲート電極19表面およびソース・ドレイン拡散領域22表面にシリサイド23、例えばコバルトシリサイドやニッケルシリサイドを形成し、MOSFETの基本構造を完成する。以降は常法に従い、層間絶縁膜や配線等の形成を行っていけばよい。
FIG. 11 is a schematic sectional view of an essential part of a MOSFET.
After the formation of the gate electrode 19, first, ion implantation of an impurity of a predetermined conductivity type is performed using the gate electrode 19 as a mask using the ion implantation method to form the source / drain / extension region 20. Next, sidewall spacers 21 are formed on the side walls of the gate electrode 19, and ions of a predetermined conductivity type are ion-implanted using the gate electrodes 19 and the sidewall spacers 21 as masks to form source / drain diffusion regions 22. Finally, silicide 23, for example, cobalt silicide or nickel silicide is formed on the surface of the gate electrode 19 and the surface of the source / drain diffusion region 22 to complete the basic structure of the MOSFET. Thereafter, an interlayer insulating film, wiring, etc. may be formed according to a conventional method.

以上説明したように、ここでは窒素を含有するゲート絶縁膜を形成するために、シリコン基板上に窒化層を形成した後、まず酸化性溶液処理を行って窒化層とシリコン基板との間に低酸素濃度界面酸化領域を形成し、次に酸化性ガス雰囲気での熱処理を行ってその低酸素濃度界面酸化領域に酸素を供給してそこに高酸素濃度界面酸化領域を形成するようにした。これにより、平均窒素濃度は高いがシリコン基板との界面においては窒素濃度が低く酸素濃度が高いゲート絶縁膜を形成することができる。したがって、このようなゲート絶縁膜をMOSFETに適用することにより、デバイス性能およびその信頼性を向上させることが可能になり、高性能のMOSFETが実現可能になる。   As described above, here, in order to form a gate insulating film containing nitrogen, after forming a nitride layer on the silicon substrate, first, an oxidizing solution treatment is performed to reduce the gap between the nitride layer and the silicon substrate. An oxygen concentration interface oxidation region was formed, and then heat treatment was performed in an oxidizing gas atmosphere to supply oxygen to the low oxygen concentration interface oxidation region, thereby forming a high oxygen concentration interface oxidation region. As a result, a gate insulating film having a high average nitrogen concentration but a low nitrogen concentration and a high oxygen concentration can be formed at the interface with the silicon substrate. Therefore, by applying such a gate insulating film to a MOSFET, it becomes possible to improve device performance and its reliability, and a high-performance MOSFET can be realized.

なお、上記の各層、各領域の形成条件は一例であって、上記条件に限定されるものではなく、形成するMOSFETの要求特性等に応じて変更することも可能である。
また、以上の説明では、シリコン基板を用いたMOS構造やMOSFETを例にして述べたが、シリコン基板のほか、薄い半導体層の部分を用いてトランジスタ構造を形成することのできるSOI(Silicon On Insulator)基板等の他の基板(半導体基板)を用いることも可能である。
The formation conditions of each layer and each region are examples, and are not limited to the above conditions, and can be changed according to the required characteristics of the MOSFET to be formed.
In the above description, a MOS structure or MOSFET using a silicon substrate has been described as an example. However, an SOI (Silicon On Insulator) that can form a transistor structure using a thin semiconductor layer portion in addition to a silicon substrate. It is also possible to use another substrate (semiconductor substrate) such as a substrate.

(付記1) 半導体装置の製造方法において、
半導体基板上に窒化層を形成する工程と、
酸化性溶液を用いて前記窒化層と前記半導体基板との間に酸化領域を形成する工程と、
酸化性ガス雰囲気で熱処理を行い前記酸化領域の酸素濃度を増加させる工程と、
を有することを特徴とする半導体装置の製造方法。
(Supplementary Note 1) In the method of manufacturing a semiconductor device,
Forming a nitride layer on the semiconductor substrate;
Forming an oxidized region between the nitride layer and the semiconductor substrate using an oxidizing solution;
Performing a heat treatment in an oxidizing gas atmosphere to increase the oxygen concentration in the oxidized region;
A method for manufacturing a semiconductor device, comprising:

(付記2) 前記窒化層は、窒化物または酸窒化物からなることを特徴とする付記1記載の半導体装置の製造方法。
(付記3) 前記半導体基板上に前記窒化層を形成する工程においては、
前記半導体基板を窒化性ガス雰囲気で熱処理することによって前記半導体基板上に前記窒化層を形成することを特徴とする付記1記載の半導体装置の製造方法。
(Additional remark 2) The said nitride layer consists of nitride or oxynitride, The manufacturing method of the semiconductor device of Additional remark 1 characterized by the above-mentioned.
(Supplementary Note 3) In the step of forming the nitride layer on the semiconductor substrate,
The method of manufacturing a semiconductor device according to claim 1, wherein the nitride layer is formed on the semiconductor substrate by heat-treating the semiconductor substrate in a nitriding gas atmosphere.

(付記4) 前記半導体基板上に前記窒化層を形成する工程においては、
前記半導体基板に窒素を含むプラズマを照射することによって前記半導体基板上に前記窒化層を形成することを特徴とする付記1記載の半導体装置の製造方法。
(Supplementary Note 4) In the step of forming the nitride layer on the semiconductor substrate,
2. The method of manufacturing a semiconductor device according to claim 1, wherein the nitride layer is formed on the semiconductor substrate by irradiating the semiconductor substrate with plasma containing nitrogen.

(付記5) 前記酸化性溶液を用いて前記窒化層と前記半導体基板との間に前記酸化領域を形成する工程においては、
前記酸化性溶液に、過酸化水素、塩酸、硫酸、硝酸のうちの1種または2種以上を含む溶液を用い、前記窒化層と前記半導体基板との間に前記酸化領域を形成することを特徴とする付記1記載の半導体装置の製造方法。
(Supplementary Note 5) In the step of forming the oxidized region between the nitride layer and the semiconductor substrate using the oxidizing solution,
A solution containing one or more of hydrogen peroxide, hydrochloric acid, sulfuric acid, and nitric acid is used as the oxidizing solution, and the oxidized region is formed between the nitride layer and the semiconductor substrate. The manufacturing method of the semiconductor device of Additional remark 1.

(付記6) 前記酸化性ガス雰囲気で熱処理を行い前記酸化領域の酸素濃度を増加させる工程においては、
前記酸化領域の酸素濃度を増加させることによって前記酸化領域と前記半導体基板の界面近傍の酸素濃度が窒素濃度より大きくなるよう、前記酸化性ガス雰囲気で熱処理を行うことを特徴とする付記1記載の半導体装置の製造方法。
(Appendix 6) In the step of increasing the oxygen concentration in the oxidized region by performing a heat treatment in the oxidizing gas atmosphere,
The heat treatment is performed in the oxidizing gas atmosphere so that the oxygen concentration in the vicinity of the interface between the oxidized region and the semiconductor substrate is higher than the nitrogen concentration by increasing the oxygen concentration in the oxidized region. A method for manufacturing a semiconductor device.

(付記7) 前記酸化性ガス雰囲気で熱処理を行い前記酸化領域の酸素濃度を増加させる工程においては、
前記酸化性ガスに、一酸化窒素、一酸化二窒素、二酸化窒素、酸素のうちの1種または2種以上を含むガスを用い、前記酸化性ガス雰囲気で熱処理を行い前記酸化領域の酸素濃度を増加させることを特徴とする付記1記載の半導体装置の製造方法。
(Appendix 7) In the step of increasing the oxygen concentration in the oxidized region by performing a heat treatment in the oxidizing gas atmosphere,
A gas containing one or more of nitrogen monoxide, dinitrogen monoxide, nitrogen dioxide, and oxygen is used as the oxidizing gas, and a heat treatment is performed in the oxidizing gas atmosphere to reduce the oxygen concentration in the oxidized region. The method of manufacturing a semiconductor device according to appendix 1, wherein the method is increased.

(付記8) 前記酸化性ガス雰囲気で熱処理を行い前記酸化領域の酸素濃度を増加させる工程においては、
前記酸化領域の酸素濃度を増加させると共に前記酸化領域および前記窒化層の窒素濃度を増加させることを特徴とする付記1記載の半導体装置の製造方法。
(Supplementary Note 8) In the step of increasing the oxygen concentration in the oxidized region by performing a heat treatment in the oxidizing gas atmosphere,
2. The method of manufacturing a semiconductor device according to claim 1, wherein the oxygen concentration in the oxidation region is increased and the nitrogen concentration in the oxidation region and the nitride layer is increased.

(付記9) 前記酸化性ガス雰囲気で熱処理を行い前記酸化領域の酸素濃度を増加させる工程後に、
前記酸化領域の酸素濃度を増加させる際に前記窒化層表面に同時に形成される他の酸化領域を窒化する工程を有することを特徴とする付記1記載の半導体装置の製造方法。
(Additional remark 9) After the process which heat-processes in the said oxidizing gas atmosphere and increases the oxygen concentration of the said oxidation area | region,
2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of nitriding another oxidized region formed simultaneously on the surface of the nitride layer when increasing the oxygen concentration of the oxidized region.

(付記10) 前記他の酸化領域を窒化する工程においては、
前記他の酸化領域を窒化性ガス雰囲気で熱処理することによって前記他の酸化領域を窒化することを特徴とする付記9記載の半導体装置の製造方法。
(Supplementary Note 10) In the step of nitriding the other oxidized region,
The method of manufacturing a semiconductor device according to appendix 9, wherein the other oxidized region is nitrided by heat-treating the other oxidized region in a nitriding gas atmosphere.

(付記11) 前記他の酸化領域を窒化する工程においては、
前記他の酸化領域に窒素を含むプラズマを照射することによって前記他の酸化領域を窒化することを特徴とする付記9記載の半導体装置の製造方法。
(Supplementary Note 11) In the step of nitriding the other oxidized region,
10. The method of manufacturing a semiconductor device according to appendix 9, wherein the other oxidized region is nitrided by irradiating the other oxidized region with plasma containing nitrogen.

ゲート絶縁膜の形成フローを示す図である。It is a figure which shows the formation flow of a gate insulating film. 窒化シリコン膜形成工程の要部断面模式図である。It is a principal part cross-sectional schematic diagram of a silicon nitride film formation process. 第1の酸化工程の要部断面模式図である。It is a principal part cross-sectional schematic diagram of a 1st oxidation process. 第2の酸化工程の要部断面模式図である。It is a principal part cross-sectional schematic diagram of a 2nd oxidation process. 素子分離領域およびチャネル不純物拡散領域形成工程の要部断面模式図である。It is a principal part cross-sectional schematic diagram of an element isolation region and a channel impurity diffusion region formation process. 窒化層形成工程の要部断面模式図である。It is a principal part cross-sectional schematic diagram of a nitride layer formation process. 低酸素濃度界面酸化領域形成工程の要部断面模式図である。It is a principal part cross-sectional schematic diagram of a low oxygen concentration interface oxidation area | region formation process. 高酸素濃度界面酸化領域形成工程の要部断面模式図である。It is a principal part cross-sectional schematic diagram of a high oxygen concentration interface oxidation area | region formation process. 多結晶シリコン堆積工程の要部断面模式図である。It is a principal part cross-sectional schematic diagram of a polycrystalline-silicon deposition process. ゲート電極加工工程の要部断面模式図である。It is a principal part cross-sectional schematic diagram of a gate electrode processing process. MOSFETの要部断面模式図である。It is a principal part cross-sectional schematic diagram of MOSFET.

符号の説明Explanation of symbols

1,10 シリコン基板
2,13 窒化層
3,14 低酸素濃度界面酸化領域
4,15 高酸素濃度界面酸化領域
11 素子分離領域
12 チャネル不純物拡散領域
16 酸化領域
17 多結晶シリコン
18 フォトレジスト
19 ゲート電極
20 ソース・ドレイン・エクステンション領域
21 サイドウォールスペーサ
22 ソース・ドレイン拡散領域
23 シリサイド
DESCRIPTION OF SYMBOLS 1,10 Silicon substrate 2,13 Nitride layer 3,14 Low oxygen concentration interface oxidation region 4,15 High oxygen concentration interface oxidation region 11 Element isolation region 12 Channel impurity diffusion region 16 Oxidation region 17 Polycrystalline silicon 18 Photoresist 19 Gate electrode 20 Source / drain extension region 21 Side wall spacer 22 Source / drain diffusion region 23 Silicide

Claims (5)

半導体装置の製造方法において、
半導体基板上に窒化層を形成する工程と、
酸化性溶液を用いて前記窒化層と前記半導体基板との間に酸化領域を形成する工程と、
酸化性ガス雰囲気で熱処理を行い前記酸化領域の酸素濃度を増加させる工程と、
を有することを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device,
Forming a nitride layer on the semiconductor substrate;
Forming an oxidized region between the nitride layer and the semiconductor substrate using an oxidizing solution;
Performing a heat treatment in an oxidizing gas atmosphere to increase the oxygen concentration in the oxidized region;
A method for manufacturing a semiconductor device, comprising:
前記窒化層は、窒化物または酸窒化物からなることを特徴とする請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the nitride layer is made of nitride or oxynitride. 前記酸化性溶液を用いて前記窒化層と前記半導体基板との間に前記酸化領域を形成する工程においては、
前記酸化性溶液に、過酸化水素、塩酸、硫酸、硝酸のうちの1種または2種以上を含む溶液を用い、前記窒化層と前記半導体基板との間に前記酸化領域を形成することを特徴とする請求項1記載の半導体装置の製造方法。
In the step of forming the oxidized region between the nitride layer and the semiconductor substrate using the oxidizing solution,
A solution containing one or more of hydrogen peroxide, hydrochloric acid, sulfuric acid, and nitric acid is used as the oxidizing solution, and the oxidized region is formed between the nitride layer and the semiconductor substrate. A method for manufacturing a semiconductor device according to claim 1.
前記酸化性ガス雰囲気で熱処理を行い前記酸化領域の酸素濃度を増加させる工程においては、
前記酸化領域の酸素濃度を増加させることによって前記酸化領域と前記半導体基板の界面近傍の酸素濃度が窒素濃度より大きくなるよう、前記酸化性ガス雰囲気で熱処理を行うことを特徴とする請求項1記載の半導体装置の製造方法。
In the step of increasing the oxygen concentration in the oxidized region by performing a heat treatment in the oxidizing gas atmosphere,
The heat treatment is performed in the oxidizing gas atmosphere so that the oxygen concentration in the vicinity of the interface between the oxidized region and the semiconductor substrate becomes higher than the nitrogen concentration by increasing the oxygen concentration in the oxidized region. Semiconductor device manufacturing method.
前記酸化性ガス雰囲気で熱処理を行い前記酸化領域の酸素濃度を増加させる工程後に、
前記酸化領域の酸素濃度を増加させる際に前記窒化層表面に同時に形成される他の酸化領域を窒化する工程を有することを特徴とする請求項1記載の半導体装置の製造方法。
After the step of increasing the oxygen concentration in the oxidized region by performing a heat treatment in the oxidizing gas atmosphere,
2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of nitriding another oxidized region simultaneously formed on the surface of the nitride layer when increasing the oxygen concentration of the oxidized region.
JP2005331460A 2005-11-16 2005-11-16 Method of manufacturing semiconductor device Pending JP2007142024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331460A JP2007142024A (en) 2005-11-16 2005-11-16 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331460A JP2007142024A (en) 2005-11-16 2005-11-16 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2007142024A true JP2007142024A (en) 2007-06-07

Family

ID=38204563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331460A Pending JP2007142024A (en) 2005-11-16 2005-11-16 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2007142024A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288069A (en) * 2006-04-19 2007-11-01 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device
JP2009009959A (en) * 2007-06-26 2009-01-15 Fujitsu Ltd Semiconductor device manufacturing method and semiconductor device
JP2010263125A (en) * 2009-05-08 2010-11-18 Tokyo Electron Ltd Film forming method, forming method of gate electrode structure, and processing apparatus
JP2013515355A (en) * 2009-12-21 2013-05-02 アプライド マテリアルズ インコーポレイテッド Wet oxidation process performed on dielectric material formed from flowable CVD process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288069A (en) * 2006-04-19 2007-11-01 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device
JP2009009959A (en) * 2007-06-26 2009-01-15 Fujitsu Ltd Semiconductor device manufacturing method and semiconductor device
JP2010263125A (en) * 2009-05-08 2010-11-18 Tokyo Electron Ltd Film forming method, forming method of gate electrode structure, and processing apparatus
JP2013515355A (en) * 2009-12-21 2013-05-02 アプライド マテリアルズ インコーポレイテッド Wet oxidation process performed on dielectric material formed from flowable CVD process

Similar Documents

Publication Publication Date Title
JP4317523B2 (en) Semiconductor device and manufacturing method thereof
JP4919586B2 (en) Semiconductor device and manufacturing method thereof
KR101286309B1 (en) Replacement metal gate transistors with reduced gate oxide leakage
JPWO2003047000A1 (en) Semiconductor device and manufacturing method thereof
KR100596487B1 (en) Semiconductor device and method of manufacturing the same
JP2001332547A (en) Semiconductor device and its manufacturing method
US6555483B2 (en) Gate insulation film having a slanted nitrogen concentration profile
JP3399413B2 (en) Oxynitride film and method for forming the same
JP5050351B2 (en) Manufacturing method of semiconductor device
JP2007142024A (en) Method of manufacturing semiconductor device
JP2008205127A (en) Method of manufacturing semiconductor device
JP4005055B2 (en) Semiconductor device and manufacturing method thereof
JPH09312395A (en) Method of fabricating semiconductor device
JP2005327902A (en) Semiconductor device and manufacturing method therefor
KR100823712B1 (en) Method of manufacturing a semiconductor device
JP2004207560A (en) Semiconductor device and its manufacturing method
JP2008072001A (en) Semiconductor device and manufacturing method therefor
JP3647850B2 (en) Semiconductor device and manufacturing method thereof
KR20050105806A (en) Method for manufacturing semiconductor device
JP2005197686A (en) Method of manufacturing flash memory element
JP3644682B2 (en) Manufacturing method of semiconductor device
JP5141321B2 (en) Manufacturing method of semiconductor device
JP2006253267A (en) Semiconductor device and its manufacturing method
KR100608340B1 (en) Gate formation method of semiconductor device
KR0171936B1 (en) Method of manufacturing transistor in semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080729