JPH04269859A - Capacitor - Google Patents

Capacitor

Info

Publication number
JPH04269859A
JPH04269859A JP3050691A JP3050691A JPH04269859A JP H04269859 A JPH04269859 A JP H04269859A JP 3050691 A JP3050691 A JP 3050691A JP 3050691 A JP3050691 A JP 3050691A JP H04269859 A JPH04269859 A JP H04269859A
Authority
JP
Japan
Prior art keywords
film
high dielectric
laminated
capacitor
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3050691A
Other languages
Japanese (ja)
Inventor
Kazuya Ishihara
数也 石原
Keizo Sakiyama
崎山 恵三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3050691A priority Critical patent/JPH04269859A/en
Publication of JPH04269859A publication Critical patent/JPH04269859A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a capacitor whose permittivity is high and which can suppress a leakage current by a method wherein a laminated structure of a one- layer high dielectric composite oxide film and a one-layer silicon nitride film is provided between capacitor electrodes. CONSTITUTION:A laminated structure of a one-layer high dielectric composite oxide film 8 and a one-layer silicon nitride film 9 is provided between capacitor electrodes 7, 19. For example, a transistor for a DRAM cell is formed; after that, an insulating film 6 is laminated on the transistor part. Then, a lower-part electrode 7 is laminated by a sputtering operation; after that, a substrate 4 is heated to 300 deg.C; a high dielectric film 8 is laminated by a sputtering method; an Si3N4 film 9 is laminated on its upper part by an LPCVD method by heating the substrate 4 to 700 deg.C. Simultaneously with the formation of the Si3N4 film 9, the high dielectric film 8 is crystallized and its permittivity is enhanced. After that, an upper-part electrode 10 is laminated by a sputtering operation; after that, a capacitor is formed by a photolithographic process; am insulating film is deposited; a contact hole is made; an interconnection 11 is formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高誘電体複合酸化物(
以下「高誘電体物」と略す)を利用したキャパシタに関
するものである。
[Industrial Application Field] The present invention relates to a high dielectric composite oxide (
The present invention relates to a capacitor using a high dielectric material (hereinafter abbreviated as a "high dielectric material").

【0002】0002

【従来の技術】高誘電体物を利用したキャパシタは、従
来の誘電体膜,例えばSiO2,Si3N4,Ta2O
5 に比べ非常に誘電率が高いため、小面積化が実現で
きる。
2. Description of the Related Art Capacitors using high dielectric materials are manufactured using conventional dielectric films such as SiO2, Si3N4, Ta2O.
Since the dielectric constant is much higher than that of 5, it is possible to reduce the area.

【0003】従来は、一のキャパシタ電極上に高誘電体
を堆積させ、700℃以上で加熱し、高誘電体を結晶化
し、その上面にもう一方のキャパシタ電極を設けること
により、高い誘電率のキャパシタを得ていた。
Conventionally, a high dielectric constant has been achieved by depositing a high dielectric material on one capacitor electrode, heating it at 700° C. or higher to crystallize the high dielectric material, and providing the other capacitor electrode on the top surface. I was getting a capacitor.

【0004】0004

【発明が解決しようとする課題】高誘電体膜は、SiO
2 膜,Si3N4 膜に比べピンホールが多く、また
グレインサイズが大きいために粒界を通じてリーク電流
等が発生しやすい。また、高誘電体膜をアモルファス状
態にすることにより、リーク電流は減少するが、誘電率
は、前記高誘電体膜が結晶状態の場合に比べて、かなり
低下する。
[Problem to be solved by the invention] The high dielectric constant film is made of SiO
2 film and Si3N4 film, there are more pinholes and the grain size is larger, so leakage current etc. are likely to occur through grain boundaries. Further, by making the high dielectric constant film in an amorphous state, leakage current is reduced, but the dielectric constant is considerably lower than when the high dielectric constant film is in a crystalline state.

【0005】本発明は、以上の問題点に鑑みてなされた
もので、リーク電流を抑制し、高誘電率が得られる手段
を提供することを目的とする。
The present invention was made in view of the above problems, and an object of the present invention is to provide a means for suppressing leakage current and obtaining a high dielectric constant.

【0006】[0006]

【課題を解決するための手段】請求項1記載の本発明の
キャパシタは、キャパシタ電極間に、1層の高誘電体膜
と1層のシリコン窒化膜との積層構造を有することを特
徴とする。
Means for Solving the Problems The capacitor of the present invention as set forth in claim 1 is characterized in that it has a laminated structure of one layer of high dielectric constant film and one layer of silicon nitride film between capacitor electrodes. .

【0007】また、請求項2記載の本発明のキャパシタ
は、キャパシタ電極間に、2層のシリコン窒化膜と、該
シリコン窒化膜の間に設けられた1層の高誘電体膜との
積層構造を有することを特徴とする。
Further, the capacitor of the present invention according to claim 2 has a laminated structure of two layers of silicon nitride films between the capacitor electrodes and one layer of high dielectric constant film provided between the silicon nitride films. It is characterized by having the following.

【0008】[0008]

【作用】上記請求項1記載の本発明及び請求項2記載の
本発明を用いることにより、高誘電体のグレイン粒界及
び表面に窒化シリコン膜(以下「Si3N4 膜 」と
略す)が形成される。
[Operation] By using the present invention as set forth in claim 1 and the present invention as set forth in claim 2, a silicon nitride film (hereinafter abbreviated as "Si3N4 film") is formed on the grain boundaries and surfaces of the high dielectric constant. .

【0009】[0009]

【実施例】以下、実施例に基づいてDRAMメモリセル
に用いる本発明のキャパシタについて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a capacitor of the present invention used in a DRAM memory cell will be explained in detail based on examples.

【0010】図1は、請求項1記載の本発明の一実施例
の作成工程図を示す。図1に於いて、1はLOCOS酸
化膜,2はn+ 拡散層,3はポリシリコン,4は基板
,5はゲート酸化膜を示す。
FIG. 1 shows a manufacturing process diagram of an embodiment of the present invention as defined in claim 1. In FIG. 1, 1 is a LOCOS oxide film, 2 is an n+ diffusion layer, 3 is polysilicon, 4 is a substrate, and 5 is a gate oxide film.

【0011】以下、請求項1記載の本発明の製造工程を
説明する。
The manufacturing process of the present invention according to claim 1 will be explained below.

【0012】従来方法により、トランジスタを形成した
後(図1(a))、絶縁膜6をトランジスタ部に積層す
る(図1(b))。
After forming a transistor by a conventional method (FIG. 1(a)), an insulating film 6 is laminated on the transistor portion (FIG. 1(b)).

【0013】次に、スパッタリングにより誘電体下部電
極7(Pt)を厚さ1000〜2000Å積層し(図1
(c))、その後基板4を300℃に加熱し、スパッタ
法により高誘電体膜8を厚さ1000〜5000Å積層
し、その上部に、基板4を700℃に加熱し、LPCV
D法によりSi3N4膜9を厚さ30〜50Å積層する
(図1(D))。高誘電体膜8として、BaTiO3 
膜,SrTiO2 膜, PbTiO3 膜,PZT膜
等を用いることができる。
Next, a dielectric lower electrode 7 (Pt) is deposited to a thickness of 1000 to 2000 Å by sputtering (see FIG.
(c)) Then, the substrate 4 is heated to 300°C, a high dielectric constant film 8 is laminated to a thickness of 1000 to 5000 Å by sputtering, and on top of that, the substrate 4 is heated to 700°C, and the LPCV
A Si3N4 film 9 is deposited to a thickness of 30 to 50 Å by method D (FIG. 1(D)). As the high dielectric film 8, BaTiO3
A film, SrTiO2 film, PbTiO3 film, PZT film, etc. can be used.

【0014】Si3 N4 膜9形成と同時に高誘電体
膜8が結晶化され、結晶化により誘電率が向上する。そ
の後、上部電極10(Pt)をスパッタリングにより厚
さ1000〜2000Å積層後(図1(e))、フォト
リソグラフィ工程によりキャパシタを形成し、絶縁膜1
2を堆積しコンタクト孔を形成した後、配線11を形成
する(図1(f))。電極7,10として白金(Pt)
を用いるのは、非常に酸化されにくい金属のためである
[0014] Simultaneously with the formation of the Si3N4 film 9, the high dielectric constant film 8 is crystallized, and the dielectric constant is improved by crystallization. Thereafter, after laminating the upper electrode 10 (Pt) to a thickness of 1000 to 2000 Å by sputtering (FIG. 1(e)), a capacitor is formed by a photolithography process, and the insulating film 1
After depositing 2 and forming a contact hole, a wiring 11 is formed (FIG. 1(f)). Platinum (Pt) as electrodes 7 and 10
is used because it is a metal that is very difficult to oxidize.

【0015】図2は、請求項2記載の本発明の構成断面
図を示す。
FIG. 2 shows a cross-sectional view of the structure of the present invention according to claim 2.

【0016】次に請求項2記載の本発明の製造工程を説
明する。請求項1記載の本発明の製造工程における、下
部電極7を厚さ1000〜2000Å積層し(図1(c
))、LPCVD法によりSi3 N4 膜9を厚さ3
0〜50Å積層した後、基板4を300℃に加熱し、ス
パッタ法により高誘電体膜8を厚さ1000〜5000
Å積層し、基板4を700℃に加熱した後LPCVD法
によりSi3 N4 膜9を厚さ30〜50Å積層する
。その後、上部電極10(Pt)をスパッタリングによ
り厚さ1000〜2000Å積層後、フォトリソグラフ
ィ工程によりキャパシタを形成し、絶縁膜12を積層し
、コンタクト孔を形成した後、配線11を形成する。
Next, the manufacturing process of the present invention according to claim 2 will be explained. In the manufacturing process of the present invention according to claim 1, the lower electrode 7 is laminated to a thickness of 1000 to 2000 Å (FIG. 1(c)
)), the Si3 N4 film 9 is grown to a thickness of 3 by the LPCVD method.
After laminating layers of 0 to 50 Å, the substrate 4 is heated to 300° C., and a high dielectric constant film 8 is formed to a thickness of 1000 to 5000 Å by sputtering.
After heating the substrate 4 to 700 DEG C., a Si3 N4 film 9 is deposited to a thickness of 30 to 50 .ANG. by LPCVD. After that, an upper electrode 10 (Pt) is deposited to a thickness of 1000 to 2000 Å by sputtering, a capacitor is formed by a photolithography process, an insulating film 12 is deposited, a contact hole is formed, and then a wiring 11 is formed.

【0017】以上、実施例では高誘電体膜8の形成にス
パッタ法を用いたが、CVD法を用いても実施可能であ
る。
Although the sputtering method was used to form the high dielectric constant film 8 in the embodiments described above, it is also possible to use the CVD method.

【0018】[0018]

【発明の効果】以上、詳細に説明した様に、請求項1記
載の本発明及び請求項2記載の本発明を用いることによ
り、それぞれ高誘電率を得ることができ、且つリーク電
流を迎えることができる。
[Effects of the Invention] As explained in detail above, by using the present invention according to claim 1 and the present invention according to claim 2, a high dielectric constant can be obtained, and leakage current will not occur. Can be done.

【0019】また、請求項1記載の本発明は、高誘電率
を得ることができる点で請求項2記載の本発明より優れ
ているが、リーク電流を迎えることができる点では、請
求項2記載の本発明の方が優れている。
[0019]Also, the present invention according to claim 1 is superior to the present invention according to claim 2 in that a high dielectric constant can be obtained, but the present invention according to claim 2 is superior in that a leakage current can be generated. The described invention is superior.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】請求項1記載の本発明の一実施例の作成工程図
である。
FIG. 1 is a production process diagram of an embodiment of the present invention as set forth in claim 1.

【図2】請求項2記載の本発明の一実施例の構成断面図
である。
FIG. 2 is a cross-sectional view of the configuration of an embodiment of the present invention according to claim 2.

【符号の説明】[Explanation of symbols]

1  LOCOS酸化膜 2  n+ 拡散層 3  ポリシリコン 4  基板 5  ゲート酸化膜 6  絶縁膜 7  下部電極(Pt) 8  高誘電体複合酸化物膜 9  Si3 N4 膜 10  上部電極(Pt) 11  配線 12  絶縁膜 1 LOCOS oxide film 2 n+ diffusion layer 3 Polysilicon 4 Board 5 Gate oxide film 6 Insulating film 7 Lower electrode (Pt) 8 High dielectric composite oxide film 9 Si3 N4 film 10 Upper electrode (Pt) 11 Wiring 12 Insulating film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  キャパシタ電極間に、1層の高誘電体
複合酸化物膜と1層のシリコン窒化膜との積層構造を有
することを特徴とするキャパシタ。
1. A capacitor having a laminated structure of one layer of high dielectric composite oxide film and one layer of silicon nitride film between capacitor electrodes.
【請求項2】  キャパシタ電極間に、2層のシリコン
窒化膜と該シリコン窒化膜の間に設けられた1層の高誘
電体複合酸化物膜との積層構造を有することを特徴とす
るキャパシタ。
2. A capacitor characterized by having a laminated structure of two layers of silicon nitride films and one layer of high dielectric composite oxide film provided between the silicon nitride films between capacitor electrodes.
JP3050691A 1991-02-26 1991-02-26 Capacitor Pending JPH04269859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050691A JPH04269859A (en) 1991-02-26 1991-02-26 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050691A JPH04269859A (en) 1991-02-26 1991-02-26 Capacitor

Publications (1)

Publication Number Publication Date
JPH04269859A true JPH04269859A (en) 1992-09-25

Family

ID=12305706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050691A Pending JPH04269859A (en) 1991-02-26 1991-02-26 Capacitor

Country Status (1)

Country Link
JP (1) JPH04269859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284580B1 (en) 2000-02-23 2001-09-04 Oki Electric Industry Co., Ltd. Method for manufacturing a MOS transistor having multi-layered gate oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284580B1 (en) 2000-02-23 2001-09-04 Oki Electric Industry Co., Ltd. Method for manufacturing a MOS transistor having multi-layered gate oxide

Similar Documents

Publication Publication Date Title
JP2573384B2 (en) Semiconductor memory device and manufacturing method thereof
KR20010014838A (en) Amorphous dielectric capacitors on silicon
JP2000022111A (en) Formation of capacitor for semiconductor element using high-temperature oxidation
JP2011155271A (en) Stratified structure with ferroelectric layer and process for producing the same
JPH01257365A (en) Semiconductor integrated circuit device
KR970008552A (en) Capacitor Manufacturing Method of Semiconductor Device
JPH08274270A (en) Electronic component
KR100264368B1 (en) Pzt capacitor as integrated circuit memory element and method of fabricating the same
JP3381969B2 (en) Ferroelectric thin film fabrication method
JPH04269859A (en) Capacitor
JPH08222711A (en) Ferroelectric capacitor and formation of ferroelectric capacitor and ferroelectric film
JP2002252337A (en) Storage node of composite structure and its manufacturing method
JPH0334580A (en) Electronic parts
JP3419974B2 (en) Method for manufacturing ferroelectric capacitor
JP2001210807A (en) Method for manufacturing capacitor of semiconductor element
JPH0493067A (en) Semiconductor memory device
JPH10340994A (en) Manufacture of semiconductor device
JPH0513676A (en) Semiconductor device
JP2002164506A (en) Semiconductor device and its manufacturing method
JP2990824B2 (en) Method for manufacturing semiconductor device
KR100465838B1 (en) High dielectric capacitor having double dielectric layer in semiconductor device and method for forming the same
JP2773190B2 (en) Method for manufacturing semiconductor device
JP5030349B2 (en) Dielectric film fabrication method
JPH05190767A (en) Semiconductor device
JP2972238B2 (en) Semiconductor storage element