JPH0334580A - Electronic parts - Google Patents

Electronic parts

Info

Publication number
JPH0334580A
JPH0334580A JP1169589A JP16958989A JPH0334580A JP H0334580 A JPH0334580 A JP H0334580A JP 1169589 A JP1169589 A JP 1169589A JP 16958989 A JP16958989 A JP 16958989A JP H0334580 A JPH0334580 A JP H0334580A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric
film
ferroelectric thin
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1169589A
Other languages
Japanese (ja)
Inventor
Hiroshi Toyoda
啓 豊田
Koji Yamakawa
晃司 山川
Kazuhide Abe
和秀 阿部
Motomasa Imai
今井 基真
Mitsuo Harada
光雄 原田
Yoshiko Kobanawa
小塙 佳子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1169589A priority Critical patent/JPH0334580A/en
Publication of JPH0334580A publication Critical patent/JPH0334580A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the crack generation of the ferroelectric substance film sandwiched by electrodes by forming a first ferroelectric film through an insulating layer on a silicon substrate, and providing at least one or more layers of second ferroelectric films, in the condition of being sandwiched by the electrodes, on the ferroelectric substance film. CONSTITUTION:This is made in such structure that a first ferroelectric substance film 3 is formed through an insulating layer 2 or a silicon substrate 1, and that at least one or more layers of second ferroelectric film 6 are provided, in the conditions of being caught by electrodes 5 and 7, on the ferroelectric substance film. Hereby, the difference of thermal expansion coefficient of the insulating layer 2 and the second ferroelectric substance film 6 by thermal effect can be approximated by suppressing it with the first ferroelectric film 2 formed on the insulating layer, so electric parts high in reliability can be obtained, in which the crack generation of the second ferroelectric substance film sandwiched by electrodes is prevented. Moreover, by providing an oxide layer, which has at least one kind among Mg and Zr for its main ingredient, as a ground layer for the first ferroelectric substance film, the composition changes of the first and second ferroelectric substance films are suppressed.

Description

【発明の詳細な説明】 C発明の目的] (産業上の利用分野) 本発明は、強誘電体薄膜を備えた電子部品に関する。[Detailed description of the invention] C Purpose of the invention] (Industrial application field) The present invention relates to an electronic component including a ferroelectric thin film.

(従来の技術) 強誘電体薄膜は、電子部品の高機能化、小社化、高集積
化に伴い、近年、焦電型赤外線センカ光スイッチ、デイ
スプレィデバイス、FET、強誘電体メモリ等に用いら
れている。前記強誘電体薄膜は、通常、ペロブスカイト
型酸化物を用いる場合が多く  PbTi0i  pz
T(PbT10.とPbZr0iの固溶体)PLZT 
(PZTI、:Laを添加したもの)が代表的なものと
して用いられているが、その他LI Ta O,Li 
Nb Oq  KTa Os、KNbOi又はB14 
Tl 2012などのチタン酸ビスマス系、BaTi0
i系、5rTi03系なども使用されている。PbTl
0iが焦電センサに使用されたり、PLZTが光スィッ
チとして用いられたりする例がある。
(Prior art) Ferroelectric thin films have recently been used in pyroelectric infrared sensor optical switches, display devices, FETs, ferroelectric memories, etc. as electronic components become more sophisticated, smaller in size, and more highly integrated. It is used. The ferroelectric thin film usually uses perovskite oxide in many cases.
T (solid solution of PbT10. and PbZr0i) PLZT
(PZTI, added with La) is typically used, but other materials such as LI Ta O, Li
Nb Oq KTa Os, KNbOi or B14
Bismuth titanate series such as Tl 2012, BaTi0
i series, 5rTi03 series, etc. are also used. PbTl
There are examples where Oi is used for pyroelectric sensors and PLZT is used as optical switches.

ところで、強誘電体薄膜を備えた電子部品(例えば強誘
電体メモリ)としては従来より次のような構造のものが
知られている。即ち、半導体素子や配線等が既に形成さ
れているシリコン基板上にSl s N4 、Sj 0
2 、Si 02ガラス、PSG(リンシリケートガラ
ス)などからなる第1の絶縁層を被覆し、この絶縁層上
にPt等の電極材料層の蒸着、バターニングにより形成
された下部電極を設け、かつこの下部電極上に強誘電体
薄膜が形成され、更にこの強誘電体薄膜上にPt等の電
極材料層の蒸着、パターニングにより形成された上部電
極が設けられている。かかる構造の強誘電体メモリにお
ける強誘電体薄膜は、CVD法、スパッタ法、真空蒸着
法により成膜される。この際、強誘電体薄膜を結晶化す
るために成膜工程中は基板を500〜800℃に高温加
熱したり、成膜後に同温度でアニーリングを行なう。
Incidentally, as electronic components (for example, ferroelectric memories) equipped with ferroelectric thin films, electronic components having the following structure are conventionally known. That is, Sl s N4 and Sj 0 are deposited on a silicon substrate on which semiconductor elements, wiring, etc. have already been formed.
2. A first insulating layer made of Si02 glass, PSG (phosphosilicate glass), etc. is coated, and a lower electrode formed by vapor deposition and buttering of an electrode material layer such as Pt is provided on this insulating layer, and A ferroelectric thin film is formed on this lower electrode, and an upper electrode is further formed on this ferroelectric thin film by vapor deposition and patterning of an electrode material layer such as Pt. A ferroelectric thin film in a ferroelectric memory having such a structure is formed by a CVD method, a sputtering method, or a vacuum evaporation method. At this time, in order to crystallize the ferroelectric thin film, the substrate is heated to a high temperature of 500 to 800[deg.] C. during the film formation process, and annealing is performed at the same temperature after film formation.

しかしながら、上記構造の電子部品にあってはPb T
i O3、PZTからなる強誘電体薄膜と該薄膜が形成
される5in2等からなる絶縁層との熱膨張係数が異な
ることから、強誘電体薄膜の成膜時において該薄膜部分
にクラックが生じる。その結果、前記強誘電体薄膜を上
下に挟む下部電極、上部電極7の間でのリークを引き起
こし、電子部品の信頼性を著しく低下させる問題があっ
た。
However, in electronic components with the above structure, PbT
Since the coefficient of thermal expansion is different between the ferroelectric thin film made of iO3, PZT and the insulating layer made of 5in2 or the like on which the thin film is formed, cracks occur in the thin film portion during the formation of the ferroelectric thin film. As a result, leakage occurs between the lower electrode and the upper electrode 7 that sandwich the ferroelectric thin film above and below, resulting in a problem of significantly lowering the reliability of the electronic component.

(発明が解決しようとする課題) 本発明は、上記従来の課題をM決するためになされたも
ので、電極で挟まれた強誘電体薄膜のクラック発生を防
止した信頼性の高い電子部品を提供しようとするもので
ある。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and provides a highly reliable electronic component that prevents the occurrence of cracks in the ferroelectric thin film sandwiched between electrodes. This is what I am trying to do.

[発明の構成] (課題を解決するための手段) 本発明の電子部品は、シリコン基板上に絶縁層を介して
第1の強誘電体薄膜を形成し、該強誘電体薄膜上に第2
の強誘電体薄膜を電極で挟んだ状態にて少なくとも1層
以上設けたことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The electronic component of the present invention includes a first ferroelectric thin film formed on a silicon substrate via an insulating layer, and a second ferroelectric thin film formed on the ferroelectric thin film.
The device is characterized in that at least one layer of ferroelectric thin film is provided between electrodes.

上記第1、第2の薄膜を構成する強誘電体は同一でも異
なってもよいが、熱膨張係数を近似させることや、生産
性の観点から同一の強誘電体で第1、第2の薄膜を形成
することが望ましい。かかる強誘電体としては、例えば
Pb TI O,、又はPbT10iとPbZrO3の
固溶体(PZT)、PZTにLaを添加したPLZTな
どのPZTを主成分とするペロブスカイト型酸化物等を
挙げることができる。前記第1の強誘電体薄膜の厚さは
、1000〜aooo入の範囲とすることが望ましい。
The ferroelectric materials constituting the first and second thin films may be the same or different, but from the viewpoint of approximating the coefficient of thermal expansion and productivity, the first and second thin films may be made of the same ferroelectric material. It is desirable to form a Examples of such ferroelectric materials include Pb 2 O, a solid solution of PbT10i and PbZrO3 (PZT), and a perovskite oxide mainly composed of PZT, such as PLZT, which is PZT with La added. The thickness of the first ferroelectric thin film is preferably in the range of 1,000 to 1,000 mm.

上記絶縁層は、例えばSl 3 N4 、Si 02、
SiO2ガラス、PSG等により形成される。
The insulating layer is made of, for example, Sl 3 N4, Si 02,
It is made of SiO2 glass, PSG, etc.

上記電極は、例えばPL等から形成される。The electrodes are made of, for example, PL.

また、本発明の別の電子部品は荊記第1の強誘電体層の
下地層としてMg及びZrの少なくとも1種を主成分と
する酸化物層を設けた構造を有する。
Another electronic component of the present invention has a structure in which an oxide layer containing at least one of Mg and Zr as a main component is provided as a base layer of the first ferroelectric layer.

上記Mgを主成分とする酸化物としては、例えばMg 
Oを挙げることができ、Zrを主成分とする酸化物とし
ては例えばZr O,を挙げることができる。かかる酸
化物の絶縁層の厚さは、500Å以上とすることが望ま
しい。この理由は、その厚さを500Å未満にすると強
誘電体薄膜を結晶^化するための基板の高温加熱等にお
いて強誘電体の構成成分であるpbなどが基板側へ拡散
するのを阻止するバリア層として作用させることが困難
となるからである。
Examples of the above-mentioned oxide containing Mg as a main component include Mg
Examples of oxides containing Zr as a main component include ZrO. The thickness of such an oxide insulating layer is preferably 500 Å or more. The reason for this is that when the thickness is less than 500 Å, a barrier is formed to prevent PB, which is a component of the ferroelectric, from diffusing toward the substrate during high-temperature heating of the substrate to crystallize the ferroelectric thin film. This is because it becomes difficult to make it act as a layer.

(作用) 本発明によれば、シリコン基板上に絶縁層を介して第1
の強誘電体薄膜を形成し、該強誘電体薄膜上に第2の強
誘電体薄膜を電極で挟んだ状態にて少なくとも1層以上
設けた構造とすることによって、熱影響による前記第2
の強誘電体薄膜の前記絶縁層に対する熱膨張率の差を該
絶縁層上に形成した第1の強誘電体薄膜により抑制して
近似できるため、電極間に挟まれた前記第2の強誘電体
薄膜のクラブ、り発生を防止した信頼性の高い電子部品
を得ることができる。
(Function) According to the present invention, the first
By forming a ferroelectric thin film and providing at least one layer of a second ferroelectric thin film on the ferroelectric thin film with electrodes sandwiching the second ferroelectric thin film, the second ferroelectric thin film is
The difference in thermal expansion coefficient of the ferroelectric thin film with respect to the insulating layer can be suppressed and approximated by the first ferroelectric thin film formed on the insulating layer. It is possible to obtain a highly reliable electronic component that prevents the occurrence of clubbing and scratching of the body thin film.

また、第1の強誘電体薄膜の下地層としてMg及びZr
の少なくとも1種を主成分とする酸化物WA(例えばM
g 01ZrO□等)を設けることによって、第1、第
2の強誘電体薄膜の組成変動を抑制して該薄膜の強誘電
特性を良好な状態に維持でき、しかも第2の強誘電体薄
膜のm或に適した配向(分極の軸方向への配向)が可能
となる。
Furthermore, Mg and Zr are used as the base layer of the first ferroelectric thin film.
An oxide WA containing at least one of the following as a main component (for example, M
g 01ZrO A suitable orientation (orientation in the axial direction of polarization) is possible.

即ち、電極で強誘電体薄膜を挾み、これをシリコン基板
の絶縁膜上に設けた構造の電子部品にあっては前記強誘
電体薄膜を結晶させるための基板の高温加熱、アニーリ
ングの時に強誘電体を構成するpbなどの成分がptか
らなる下部電極を通して前記5h02ガラス、PSGな
どからなる絶縁膜に拡散する。その結果、前記絶縁膜の
抵抗率が下がるばかりか、強誘電体薄膜の組成が変化し
て電極との界面の格子整合性が乱れ、強誘電体薄膜の特
性劣化を招く問題があった。このようなことから第1の
強誘電体薄膜の下地層、つまりSIO□などの絶縁膜の
上にMg O又はZr 02等の酸化物層を設けること
によって、前記電極上に設けられる第2の強誘電体薄膜
の結晶化のための高温熱処理において、第1の強誘電体
の構成成分であるPb等が前記絶縁膜に拡散するのを前
記酸化物層によるバリア作用により阻止できる。史に、
第1の強誘電体薄膜の組成が変化しないことにより、第
2の強誘電体薄膜の構成成分であるpb等がその下の電
極を通して拡散するのも防止できる。その結果、5IO
2等の絶縁膜の抵抗率が下げられたり、電極で挟まれた
第2の強誘電体薄膜の組成変動を抑制して該薄膜の強誘
電特性を良好な状態に維持できる。
In other words, for electronic components having a structure in which a ferroelectric thin film is sandwiched between electrodes and this is provided on an insulating film of a silicon substrate, the substrate is heated to a high temperature and annealed to crystallize the ferroelectric thin film. Components such as PB constituting the dielectric diffuse into the insulating film made of 5H02 glass, PSG, etc., through the lower electrode made of PT. As a result, not only the resistivity of the insulating film decreases, but also the composition of the ferroelectric thin film changes and the lattice matching at the interface with the electrode is disturbed, causing a problem of deterioration of the characteristics of the ferroelectric thin film. For this reason, by providing an oxide layer such as MgO or ZrO2 on the base layer of the first ferroelectric thin film, that is, an insulating film such as SIO□, the second ferroelectric thin film provided on the electrode In high-temperature heat treatment for crystallizing the ferroelectric thin film, diffusion of Pb, etc., which is a constituent of the first ferroelectric, into the insulating film can be prevented by the barrier action of the oxide layer. In history,
Since the composition of the first ferroelectric thin film does not change, it is also possible to prevent PB, etc., which are the constituent components of the second ferroelectric thin film, from diffusing through the electrode below. As a result, 5IO
The resistivity of the second insulating film can be lowered, and composition fluctuations of the second ferroelectric thin film sandwiched between the electrodes can be suppressed to maintain the ferroelectric properties of the thin film in a good state.

また、強誘電体薄膜は強誘電特性を向上するために分極
する軸方向を配向させることが望ましい。
Further, in order to improve the ferroelectric properties of the ferroelectric thin film, it is desirable that the axis of polarization be oriented.

強誘電体薄膜を配向させる際には、その下地層の影響を
大きく受ける。前記下地層の配向性は、その下の層の影
響を大きく受ける。上述した第2の強誘電体薄膜の下地
となるPtからなる電極は、スパッタリング法等により
容易に<111>に配向するが、その下地となる第1の
強誘電体薄膜の下地である絶縁膜はSl 02等からな
るため、第1の強誘電体薄膜を<100>に配向できず
、ptの下部電極を<100>に配向させることが難し
い。その結集、Ptの下部電極を下地層とする強誘電体
薄膜も< 100>に配向させることが困難となり、強
誘電体薄膜をその組成等に応じて< 100>等の最適
な方向に配向させることができないという問題があった
。これに対し、前記Mg OやZr 02の酸化物層は
、それを堆積するためのスパッタリングの条件等を換え
ることにより<100>、<100>等の方向に配向で
きるため、該酸化物層上に形成される第1の強誘電体薄
膜、電極も同方向に配向できる。その結果、該電極を下
地とする第2の強誘電体薄膜もこれらの方向に配向でき
るため、その薄膜の組成に適した配向(分極の軸方向へ
の配向)が可能となり、優れた強誘電特性を有する電子
部品を得ることができる。
Orientation of a ferroelectric thin film is greatly influenced by its underlying layer. The orientation of the base layer is greatly influenced by the layer below it. The electrode made of Pt, which is the base of the second ferroelectric thin film, is easily oriented in <111> by sputtering or the like, but the insulating film, which is the base of the first ferroelectric thin film, is Since it is made of Sl 02 or the like, the first ferroelectric thin film cannot be oriented in the <100> direction, and it is difficult to orient the PT lower electrode in the <100> direction. As a result, it becomes difficult to orient the ferroelectric thin film with the Pt lower electrode as the base layer in the <100> direction, and it becomes difficult to orient the ferroelectric thin film in the optimal direction such as <100> depending on its composition etc. The problem was that I couldn't do it. On the other hand, the MgO or ZrO2 oxide layer can be oriented in <100>, <100>, etc. directions by changing the sputtering conditions for depositing it, so that The first ferroelectric thin film and electrode formed on the substrate can also be oriented in the same direction. As a result, the second ferroelectric thin film, which is based on the electrode, can also be oriented in these directions, making it possible to achieve an orientation suitable for the composition of the thin film (orientation in the polarization axis direction), resulting in excellent ferroelectric properties. It is possible to obtain electronic components having characteristics.

(実施例) 以下、本発明の実施例を図面に示す製造方法を併記して
詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail together with a manufacturing method shown in the drawings.

実施例1 まず、半導体素子や配線が既に形成されたシリコンウェ
ハ1上にSl 02ガラスからなる絶縁膜2を堆積した
後、全面に下記条件のRFマグネトロンスパッタリング
により厚さ5000λのMg Oからなる酸化物層3を
成膜した(第1図(a)図示)。こうして成膜されたM
g Oからなる酸化物層3は、結晶化しており、<10
0>方向に配向されていた。
Example 1 First, an insulating film 2 made of Sl 02 glass is deposited on a silicon wafer 1 on which semiconductor elements and wiring have already been formed, and then an oxide film 2 made of MgO with a thickness of 5000λ is deposited on the entire surface by RF magnetron sputtering under the following conditions. A material layer 3 was formed (as shown in FIG. 1(a)). M thus formed
The oxide layer 3 made of gO is crystallized and has a thickness of <10
0> direction.

(Mg Oの成膜条件〕 ターゲット;水冷Cu製プレートにボンディングされた
5インチφのMg Oセラミ ックス ウェハ温度;500℃ ガ  ス ;Ar10□ ガス圧;  0.5Pa ウェハとターゲット間の距M:  1oOa+11電力
/ターゲット;  200W 次いで、前記酸化物層3の全面に下記条件のRFマグネ
トロンスパッタリングにより厚さ2000大の下地用の
第1のPb Tl 03薄膜4を成膜した(第1図(b
)図示)。こうして成膜された薄膜4は、単一相であり
、<001>に強い配向性を示した。
(MgO film formation conditions) Target: 5-inch φ MgO ceramic wafer bonded to a water-cooled Cu plate Temperature: 500°C Gas: Ar10□ Gas pressure: 0.5Pa Distance M between wafer and target: 1oOa+11 Power/target: 200 W Next, a first Pb Tl 03 thin film 4 for the base layer with a thickness of 2000 was deposited on the entire surface of the oxide layer 3 by RF magnetron sputtering under the following conditions (see Fig. 1(b)).
). The thin film 4 thus formed had a single phase and exhibited strong <001> orientation.

(PbTlOiの成膜条件〕 ターゲット;水冷Cu製プレートにボンディングされた
 5インチφのPb Tl 03セラミツクス ウェハ温度;600℃ ガ  ス ;  A r  / 02 ガス圧;  0.8Pa ウェハとターゲット間の距離:100■麿電力/ターゲ
ット;  200W 次いで、前記PbT10i薄膜4の全面に下記条件のR
Fマグネトロンスパッタリングにより厚さ2000 入
のPt膜を成膜した。この場合、ウェハlの温度を60
0℃に上げることによりpt膜を下地と同じ< 100
>方向に配向させることができる。ウェハ温度を低く、
例えば室温程度にしておいた場合には下地の影響を受け
ず、<111>方向に配向する。この後、Pt膜をイオ
ンミリングによりパターニングして第1電極5を形成し
た(第1図(c)図示)。
(Film formation conditions for PbTlOi) Target: 5 inch φ Pb Tl 03 ceramic wafer bonded to a water-cooled Cu plate Temperature: 600°C Gas: Ar/02 Gas pressure: 0.8 Pa Distance between wafer and target: 100 μm power/target; 200 W Next, the entire surface of the PbT10i thin film 4 was subjected to R under the following conditions.
A Pt film with a thickness of 2000 μm was formed by F magnetron sputtering. In this case, the temperature of wafer l is set to 60
By raising the temperature to 0℃, the PT film becomes the same as the base < 100
> direction. lower wafer temperature,
For example, if the temperature is kept at about room temperature, it will not be affected by the underlying material and will be oriented in the <111> direction. Thereafter, the Pt film was patterned by ion milling to form the first electrode 5 (as shown in FIG. 1(c)).

(Ptの成膜条件〕 ターゲット;水冷Cu製プレートにボンディングされた
5インチφのpt板 ウェハ温度;600℃ ガ  ス ; A「 ガス圧;  0.5Pa ウェハとターゲット間の距離;  110G5電力/タ
ーゲット;  500W 次いで、前記第1電極5を含むPb Tl 03薄膜4
上に該薄膜と同条件のRFマグネトロンスパッタリング
により厚さ5000Åの第2のPb T10.薄膜を成
膜した。こうして成膜されたPbTlO3薄膜は、前記
第1の薄膜4と同様、単一相であり、<001>方向に
強い配向性を示した。つづいて、前記pb ’rt o
、薄膜上に写真蝕刻法によりレジストパターン(図示せ
ず)を形成した後、該レジストパターンをマスクとして
薄膜を)IF系エツチング液で選択的にエツチングして
前記電極5上にPbT10s薄膜パターン6を形成した
。この後、レジストパターンを除去した。
(Pt film formation conditions) Target: 5 inch φ PT plate bonded to water-cooled Cu plate Wafer Temperature: 600°C Gas: A Gas pressure: 0.5 Pa Distance between wafer and target: 110G5 power/target ; 500W Next, the Pb Tl 03 thin film 4 including the first electrode 5 was heated.
A second Pb T10.0 film with a thickness of 5000 Å was deposited on top of the thin film by RF magnetron sputtering under the same conditions as the thin film. A thin film was formed. The PbTlO3 thin film thus formed had a single phase, similar to the first thin film 4, and exhibited strong orientation in the <001> direction. Next, the pb'rto
After forming a resist pattern (not shown) on the thin film by photolithography, the thin film is selectively etched using an IF etching solution using the resist pattern as a mask to form a PbT10s thin film pattern 6 on the electrode 5. Formed. After this, the resist pattern was removed.

ひきつづき、写真蝕刻法によりレジストパターン(図示
せず)を形成した後、該レジストパターンを含む全面に
厚さ2000ÅのPt膜を前述したのと同様な条件(但
しウェハ温度は室温)で成膜し、更に前記レジストパタ
ーン及びその上のPt膜を除去する、リフトオフ法によ
りパターニングして第2電極7をPbTiO3薄膜パタ
ーン6上に形成して強誘電体薄膜素子を製造した(第1
図(d)図示)。
Subsequently, a resist pattern (not shown) was formed by photolithography, and then a Pt film with a thickness of 2000 Å was formed on the entire surface including the resist pattern under the same conditions as described above (however, the wafer temperature was room temperature). Then, a second electrode 7 was formed on the PbTiO3 thin film pattern 6 by patterning by a lift-off method in which the resist pattern and the Pt film thereon were removed (the first
Figure (d) (illustrated).

本実施例1の強誘電体薄膜素子について、強誘電体特性
として残留分極を測定したところ、Pb Ti O,薄
膜パターン8が<001>方向に強い配向を有するため
、大きな残留分極が得られ、優れた強誘電体特性を持つ
ことが確認された。また、第2電極7を形成する前にP
bT10g薄膜パターン6を電子顕微鏡で観察したとこ
ろ、クラックのない良好な膜構造を有することが確認さ
れた。
When the remanent polarization of the ferroelectric thin film element of Example 1 was measured as a ferroelectric property, a large remanent polarization was obtained because the Pb Ti O thin film pattern 8 had a strong orientation in the <001> direction. It was confirmed that it has excellent ferroelectric properties. Furthermore, before forming the second electrode 7, P
When the bT10g thin film pattern 6 was observed with an electron microscope, it was confirmed that it had a good film structure with no cracks.

実施例2 前記実施例1と同様な方法により第2a極7をPbT1
0i薄膜パターンB上に形成した。続いて、実施例1と
同条件のRFマグネトロンスパッタリングにより厚さ5
000ÅのPbT103薄膜を成膜し、選択的にエツチ
ングして前記第2電極7上に第2のPbT10.薄膜パ
ターン8を形成し、た後、この薄膜パターン8上に更に
ptからなる第3電極9を形成して強誘電体薄膜素子を
製造した(第2図図示)。
Example 2 The second a electrode 7 was made of PbT1 by the same method as in Example 1.
It was formed on the 0i thin film pattern B. Subsequently, RF magnetron sputtering was performed under the same conditions as in Example 1 to give a thickness of 5 mm.
000 Å thick PbT103 thin film is formed and selectively etched to form a second PbT10. After forming a thin film pattern 8, a third electrode 9 made of PT was further formed on the thin film pattern 8 to produce a ferroelectric thin film element (as shown in FIG. 2).

本実施例2の強誘電体薄膜素子について、強誘電体特性
として残留分極を測定したところ、Pb TI O,薄
膜パターン 6.8がそれぞれ<001>方向に強い配
向を有するため、大きな残留分極が得られ、優れた強誘
電体特性を持つことが確認された。また、第1、第2の
電極5.7で挟まれたPbTjOi薄膜パターン6、及
び第2、第3の電極 7.9で挾まれた第2のPbT1
0i薄膜パターン8をそれぞれ独立した強誘電体層とし
て利用できる。
Regarding the ferroelectric thin film element of Example 2, when residual polarization was measured as a ferroelectric property, it was found that Pb TI O and thin film pattern 6.8 each had a strong orientation in the <001> direction, so a large residual polarization was observed. It was confirmed that the material had excellent ferroelectric properties. Also, a PbTjOi thin film pattern 6 sandwiched between the first and second electrodes 5.7, and a second PbT1 sandwiched between the second and third electrodes 7.9.
The Oi thin film patterns 8 can be used as independent ferroelectric layers.

実施例3 まず、半導体素子や配線が既に形成されたシリコンウェ
ハ上にSiO2ガラスからなる絶縁膜を堆積した後、全
面に下記条件のRFマグネトロンスパッタリングにより
厚さ5000λのZr 02からなる酸化物層を成膜し
た。こうして成膜されたZr O2からなる酸化物層は
、結晶化しており、<100>に配向されていた。
Example 3 First, an insulating film made of SiO2 glass was deposited on a silicon wafer on which semiconductor elements and wiring had already been formed, and then an oxide layer made of Zr02 with a thickness of 5000λ was deposited on the entire surface by RF magnetron sputtering under the following conditions. A film was formed. The oxide layer made of Zr 2 O 2 thus formed was crystallized and oriented in <100>.

(ZrOの成膜条件〕 ターゲット;水冷Cu製プレートにボンディングされた
5インチφのZr O2セラ ミックス ウェハ温度;500℃ ガ  ス ;Ar10□ ガス圧;0.5Pa ウェハとターゲット間の距離;  100+a厘電力/
ターゲット;  200W 次いで、実施例1と同様な方法により第1のPbTl0
i薄膜、ptからなる第1電極、Pb TI O* F
lF膜パターン及びPtからなる第2電極の形成を行な
って前述した第1図(d)と同構造の強誘電体薄膜素子
を製造した。
(ZrO film formation conditions) Target: 5 inch φ ZrO2 ceramic wafer bonded to water-cooled Cu plate Temperature: 500°C Gas: Ar10□ Gas pressure: 0.5 Pa Distance between wafer and target: 100+A power /
Target: 200W Next, the first PbTl0 was heated in the same manner as in Example 1.
i thin film, first electrode made of pt, Pb TI O*F
A ferroelectric thin film element having the same structure as that shown in FIG. 1(d) described above was manufactured by forming an IF film pattern and a second electrode made of Pt.

本実施例3の強誘電体薄膜素子についても、PbT10
i薄膜パターンが<001>方向に強い配向を有するた
め、大きな残留分極が得られ、優れた強誘電体特性を持
つことが確認された。また、PbTi0i薄膜パターン
を電子顕微鏡で観察したところ、クラックのない良好な
膜構造を有することが確認された。
Regarding the ferroelectric thin film element of Example 3, PbT10
Since the i thin film pattern has a strong orientation in the <001> direction, it was confirmed that a large residual polarization was obtained and that it had excellent ferroelectric properties. Furthermore, when the PbTiOi thin film pattern was observed using an electron microscope, it was confirmed that it had a good film structure without cracks.

[発明の効果] 以上詳述した如く、本発明によれば電極で挟まれた強誘
電体薄膜のクラック発生を防止でき、しかも強誘電体薄
膜を結晶化するための基板の高温加熱等での強誘電体の
構成成分の絶縁膜等への拡散を防止でき、更に強誘電体
薄膜の組成等に応じた方向に配向させることができ、ひ
いては優れた強誘電体特性、高い信頼性を有する強誘電
体薄膜素子、焦電センサ等の電子部品を提供することが
できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to prevent the occurrence of cracks in the ferroelectric thin film sandwiched between electrodes, and it is also possible to prevent cracks from occurring in the ferroelectric thin film sandwiched between the electrodes, and to prevent the occurrence of cracks during high-temperature heating of the substrate for crystallizing the ferroelectric thin film. It is possible to prevent the diffusion of ferroelectric components into insulating films, etc., and it is also possible to orient the ferroelectric thin film in a direction depending on its composition. Electronic components such as dielectric thin film elements and pyroelectric sensors can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の実施例1における強誘
電体薄膜素子の製造工程を示す断面図、第2図は本発明
の実施例2により得られた強誘電体薄膜素子を示す断面
図である。 l・・・シリコンウェハ、2・・・絶縁M、3・・・M
g Oからなる酸化物層、4・・・PbTi0i薄膜、
5.7.9・・・電極、6.8・・・Pb Tl 03
薄膜パターン。
1(a) to (d) are cross-sectional views showing the manufacturing process of a ferroelectric thin film element according to Example 1 of the present invention, and FIG. 2 is a ferroelectric thin film element obtained according to Example 2 of the present invention. FIG. l...Silicon wafer, 2...Insulation M, 3...M
g An oxide layer consisting of O, 4...PbTiOi thin film,
5.7.9... Electrode, 6.8... Pb Tl 03
Thin film pattern.

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板上に絶縁層を介して第1の強誘電体
薄膜を形成し、該強誘電体薄膜上に第2の強誘電体薄膜
を電極で挟んだ状態にて少なくとも1層以上設けたこと
を特徴とする電子部品。
(1) A first ferroelectric thin film is formed on a silicon substrate via an insulating layer, and at least one layer of a second ferroelectric thin film is provided on the ferroelectric thin film with electrodes sandwiched therebetween. An electronic component characterized by:
(2)第1の強誘電体薄膜の下地層としてMg及びZr
の少なくとも1種を主成分とする酸化物層を設けたこと
を特徴とする請求項1記載の電子部品。
(2) Mg and Zr as the base layer of the first ferroelectric thin film
2. The electronic component according to claim 1, further comprising an oxide layer containing at least one of the following as a main component.
JP1169589A 1989-06-30 1989-06-30 Electronic parts Pending JPH0334580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1169589A JPH0334580A (en) 1989-06-30 1989-06-30 Electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1169589A JPH0334580A (en) 1989-06-30 1989-06-30 Electronic parts

Publications (1)

Publication Number Publication Date
JPH0334580A true JPH0334580A (en) 1991-02-14

Family

ID=15889288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1169589A Pending JPH0334580A (en) 1989-06-30 1989-06-30 Electronic parts

Country Status (1)

Country Link
JP (1) JPH0334580A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002045A1 (en) * 1990-07-20 1992-02-06 Seiko Epson Corporation Method for manufacturing semiconductor device
US6074885A (en) * 1997-11-25 2000-06-13 Radiant Technologies, Inc Lead titanate isolation layers for use in fabricating PZT-based capacitors and similar structures
EP1168457A2 (en) * 2000-06-26 2002-01-02 Ramtron International Corporation Ferroelectric memory cell and method of manufacture
EP1408537A2 (en) * 1996-06-27 2004-04-14 Gennum Corporation Multi-layer film capacitor structures and method
JP2010232567A (en) * 2009-03-29 2010-10-14 Toyohashi Univ Of Technology Semiconductor integrated device, and method of manufacturing the same
US10153092B2 (en) 2016-10-11 2018-12-11 Tdk Corporation Thin-film capacitor
US10319524B2 (en) 2016-10-11 2019-06-11 Tdk Corporation Thin-film capacitor
US10529495B2 (en) 2016-10-11 2020-01-07 Tdk Corporation Thin-film capacitor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002045A1 (en) * 1990-07-20 1992-02-06 Seiko Epson Corporation Method for manufacturing semiconductor device
EP1408537A2 (en) * 1996-06-27 2004-04-14 Gennum Corporation Multi-layer film capacitor structures and method
EP1408537A3 (en) * 1996-06-27 2004-07-07 Gennum Corporation Multi-layer film capacitor structures and method
JP2009152621A (en) * 1996-06-27 2009-07-09 Gennum Corp Multi-layer film capacitor structure and method
US6074885A (en) * 1997-11-25 2000-06-13 Radiant Technologies, Inc Lead titanate isolation layers for use in fabricating PZT-based capacitors and similar structures
EP1168457A2 (en) * 2000-06-26 2002-01-02 Ramtron International Corporation Ferroelectric memory cell and method of manufacture
JP2010232567A (en) * 2009-03-29 2010-10-14 Toyohashi Univ Of Technology Semiconductor integrated device, and method of manufacturing the same
US10153092B2 (en) 2016-10-11 2018-12-11 Tdk Corporation Thin-film capacitor
US10319524B2 (en) 2016-10-11 2019-06-11 Tdk Corporation Thin-film capacitor
US10529495B2 (en) 2016-10-11 2020-01-07 Tdk Corporation Thin-film capacitor

Similar Documents

Publication Publication Date Title
KR100417743B1 (en) Ferroelectric memory with ferroelectric thin film having thickness of 90 nanometers or less, and method of making same
US5070026A (en) Process of making a ferroelectric electronic component and product
JP4218350B2 (en) Ferroelectric thin film element and manufacturing method thereof, thin film capacitor and piezoelectric actuator using the same
JPH0334580A (en) Electronic parts
US7545625B2 (en) Electrode for thin film capacitor devices
JPH08274270A (en) Electronic component
US6507060B2 (en) Silicon-based PT/PZT/PT sandwich structure and method for manufacturing the same
JPH02248089A (en) Electronic component
JPH08222711A (en) Ferroelectric capacitor and formation of ferroelectric capacitor and ferroelectric film
JPH02189969A (en) Electronic component
JPH04287968A (en) Integrated circuit device and manufacture thereof
TWI755445B (en) Membrane structure and method for producing the same
JPH029450B2 (en)
JP3344348B2 (en) Metal oxide film forming method
JPH07286897A (en) Pyroelectric type infrared ray element and its manufacturing method
JPH0380562A (en) Manufacture of thin film capacitor
JP5030349B2 (en) Dielectric film fabrication method
JPH0621064A (en) Manufacture of semiconductor device
KR100485409B1 (en) Stratified structure with a ferroelectric layer and process for producing the same
JP2002299576A (en) Ferroelectric thin film device and method of manufacturing the same
JP2002299577A (en) Thin ferroelectric film device and method of manufacturing the same
JPH11204364A (en) Manufacture of dielectric thin film capacitor
JPH0864780A (en) Si substrate dielectric thin film structure
JPS63313023A (en) Pyroelectric type infrared array sensor and its production
JP2002299578A (en) Thin ferroelectric film device and method of manufacturing the same