JPH0426969B2 - - Google Patents

Info

Publication number
JPH0426969B2
JPH0426969B2 JP31230887A JP31230887A JPH0426969B2 JP H0426969 B2 JPH0426969 B2 JP H0426969B2 JP 31230887 A JP31230887 A JP 31230887A JP 31230887 A JP31230887 A JP 31230887A JP H0426969 B2 JPH0426969 B2 JP H0426969B2
Authority
JP
Japan
Prior art keywords
approximately
cutting speed
rev
rake angle
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31230887A
Other languages
Japanese (ja)
Other versions
JPS63245332A (en
Inventor
Takeo Nakagawa
Kyoshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP31230887A priority Critical patent/JPS63245332A/en
Publication of JPS63245332A publication Critical patent/JPS63245332A/en
Publication of JPH0426969B2 publication Critical patent/JPH0426969B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 本発明は金属短繊維、とりわけ複合材料の基材
として用いられるのに適した極細短繊維の製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing short metal fibers, particularly ultrafine short fibers suitable for use as a base material for composite materials.

一般に、繊維と言われるものには、金属短繊
維、ガラス繊維、カーボン繊維、アスベスト等
種々のものがある。これら繊維のうち、ブレーキ
ライニング、クラツチ板などの摩擦材料や、フイ
ルター、導電性FRP、電磁シールド用FRP、騒
音遮蔽板などの構造用複合材料としては、金属繊
維が最も適している。
In general, there are various types of fibers such as short metal fibers, glass fibers, carbon fibers, and asbestos. Among these fibers, metal fibers are most suitable for friction materials such as brake linings and clutch plates, and structural composite materials such as filters, conductive FRP, electromagnetic shielding FRP, and noise shielding plates.

しかし、この種用途に使われる金属繊維は、直
径がたとえば100ミクロン以下、長さが10mm以下
というように極細であつて、しかも強化繊維とし
て引張り強度など良好な物性を備えていることが
要求されるため、これを簡単に多量生産するのは
難しく、鉛繊維のような特殊なものを除いて製造
コストが極めて高価になり、上記した広範囲の需
要に答えることができなかつた。
However, the metal fibers used for this type of application must be extremely fine, with a diameter of 100 microns or less and a length of 10 mm or less, and must also have good physical properties such as tensile strength as reinforcing fibers. Therefore, it is difficult to easily mass-produce them, and the manufacturing cost is extremely high, except for special products such as lead fibers, making it impossible to meet the wide-ranging demand described above.

すなわち、金属極細短繊維を製造する場合、一
般に、鋳造インゴツトを圧延して線材を作り、こ
の線材を引抜きダイスなどを用いて引抜き、この
引抜きと焼鈍を幾度となく繰返すことで前記のよ
うな直径の繊維に伸ばし、最後に切断する方法が
とられていたものであり、このように非常に手間
のかかる工程をかけることや設備として大掛りな
ものを要することから、生産性が低く、また非常
にコストが高くなつていたものである。
That is, when manufacturing ultrafine metal short fibers, generally a cast ingot is rolled to make a wire rod, this wire rod is drawn using a drawing die, etc., and this drawing and annealing are repeated many times to obtain the diameter as described above. The method used was to stretch it into fibers and then cut it at the end.This extremely time-consuming process and the need for large-scale equipment resulted in low productivity and very slow production. The cost was increasing.

なお、コンクリート補強用鋼繊維など比較的長
く太い金属繊維の製造法としては、インゴツトを
フライス切削する方法がある。しかしこの方法
は、外周に複数の切刃を取付けたカツターの回転
による断続加工となるため、生産速度の点で問題
がある。また、この方法では機械や工具に高い精
度が要求され、わずかな精度の狂い(たとえば、
主軸の振れ、アーバとカツタ内径のすきま、超硬
チツプの溝深さ、刃幅、取付誤差等による切刃外
周の振れ)が直接製品の寸法形状や物性に影響す
るので、前述したように極めて細くかつ短い繊維
をバラツキなく量産するのが難しいという問題が
あつた。
Note that, as a method for producing relatively long and thick metal fibers such as steel fibers for reinforcing concrete, there is a method of milling an ingot. However, this method involves intermittent machining by rotating a cutter with a plurality of cutting blades attached to its outer periphery, which poses a problem in terms of production speed. In addition, this method requires high precision of machines and tools, and slight deviations in precision (for example,
Runout of the spindle, clearance between the arbor and cutter inner diameter, groove depth of the carbide tip, blade width, runout of the outer circumference of the cutting edge due to installation errors, etc.) directly affects the dimensions and physical properties of the product, so as mentioned above, There was a problem in that it was difficult to mass-produce thin and short fibers without variation.

本発明は、前記した実情から研究を重ねて創案
されたもので、その目的とするところは、弾性
率、耐摩耗性、電気および熱の伝導性、ぬれ性お
よび焼結性などの良好な物性と寸法形状を備えた
極細の金属短繊維を、きわめて能率よく安価に多
量生産できる方法を提供することにある。
The present invention was created through repeated research in view of the above-mentioned circumstances, and its purpose is to improve physical properties such as elastic modulus, abrasion resistance, electrical and thermal conductivity, wettability, and sinterability. An object of the present invention is to provide a method for mass-producing ultra-fine short metal fibers having dimensions and shapes extremely efficiently and inexpensively.

この目的を達成するため、本発明は、黄銅で代
表される比較的延性の低い柱状のブロツクを所定
条件で旋削することで材料の自然な割れを利用
し、非円形断面の針状短繊維を分断創生するよう
にしたものである。
To achieve this objective, the present invention utilizes the natural cracks of the material by turning a columnar block with relatively low ductility, such as brass, under predetermined conditions, and produces acicular short fibers with a non-circular cross section. It is designed to divide and create.

すなわち、本発明の特徴とするところは、金属
短繊維を得るにあたり、原料として黄銅のような
延性の低い材料の柱状ブロツクを用い、この柱状
ブロツクを、製造すべき繊維長さに対応する切込
み量でかつ切削速度約86〜276m/min、送り量
約0.05〜0.3mm/rev、工具すくい角約0〜−40°の
各範囲内で下記条件に設定して旋削し、繊維軸線
が切削方向と直角をなす非円形断面の針状短繊維
を分離創成することにある。
That is, the feature of the present invention is that when obtaining short metal fibers, a columnar block made of a material with low ductility such as brass is used as a raw material, and the columnar block is cut by a depth corresponding to the length of the fiber to be produced. Turning was performed under the following conditions at a cutting speed of approximately 86 to 276 m/min, a feed rate of approximately 0.05 to 0.3 mm/rev, and a tool rake angle of approximately 0 to -40°, and the fiber axis was aligned with the cutting direction. The purpose of this method is to separate and create acicular short fibers with a non-circular cross section that forms a right angle.

工具すくい角が約0〜−10°では、全切削速
度範囲において、送り量の下限を約0.07〜0.1
mm/revの範囲でかつ工具すくい角が正に近い
ほど漸増した値にとる。
When the tool rake angle is approximately 0 to -10°, the lower limit of the feed rate is approximately 0.07 to 0.1 in the entire cutting speed range.
mm/rev and the value gradually increases as the tool rake angle becomes more positive.

工具すくい角が約−10°を超え約−20°まで
は、切削速度を上限未満速度とし、送り量の下
限を約0.05〜0.07mm/revの範囲でかつ工具す
くい角が正に近いほど漸増した値にとる。
When the tool rake angle exceeds approximately -10° and reaches approximately -20°, the cutting speed is set to less than the upper limit, and the lower limit of the feed rate is set in the range of approximately 0.05 to 0.07 mm/rev and increases gradually as the tool rake angle approaches positive. value.

工具すくい角が約−20°を超え約−30°まで
は、切削速度を約158m/min以下とし、送り
量を、切削速度が下限では約0.05mm/rev以上、
切削速度が約158m/minでは送り量を約0.05〜
0.075mm/revの間、切削速度が下限から約
158m/minの間では、約0.05mm/rev以上で切
削速度が速く工具すくい角が負に大きいほど小
さい値にとる。
When the tool rake angle exceeds approximately -20° and reaches approximately -30°, the cutting speed should be approximately 158 m/min or less, and the feed rate should be approximately 0.05 mm/rev or more when the cutting speed is at the lower limit.
When the cutting speed is approximately 158m/min, the feed rate should be approximately 0.05~
During 0.075mm/rev, the cutting speed is from the lower limit to approx.
Between 158 m/min and approximately 0.05 mm/rev or more, the faster the cutting speed and the larger the negative tool rake angle, the smaller the value.

工具すくい角が約−30°を超え負に大きい時
は、切削速度を約158m/min以下とし、送り
量を、切削速度が下限では約0.05〜0.1mm/
rev、切削速度が約158m/minでは送り量を約
0.05〜0.075mm/revの間、切削速度が下限から
約158m/minの間では、約0.05〜0.1mm/revの
間で切削速度が速いほど小さい値にとる。
When the tool rake angle is negative and exceeds about -30°, the cutting speed should be set to about 158 m/min or less, and the feed rate should be adjusted to about 0.05 to 0.1 mm/min when the cutting speed is at the lower limit.
rev, cutting speed is approximately 158 m/min, the feed rate is approximately
Between 0.05 and 0.075 mm/rev, and when the cutting speed is between the lower limit and about 158 m/min, it is between about 0.05 and 0.1 mm/rev, and the higher the cutting speed, the smaller the value.

以下本発明を添付図面に基いて説明する。 The present invention will be explained below based on the accompanying drawings.

第1図および第2図は本発明による極細短繊維
製造法の実施例を示すもので、極細短繊維を作る
にあたつて、原料として鋳造インゴツトの如き柱
状ブロツク1を用いる。この実施例における柱状
ブロツク1は、黄銅のような延性の低い材質、最
も好適には快削黄銅が適当である。しかして、次
にそのような柱状ブロツク1の軸線方向端部をチ
ヤツクなどの固持手段によりつかみ、この固持手
段を介して柱状ブロツク1を所定速度と回転数で
回転させると共に、柱状ブロツク1の端面2に、
工具3の切刃部4を所定の切込み深さlとすくい
角θに設定して当接させ、この工具3にブロツク
軸線方向へ所定の送りfを与える。
FIGS. 1 and 2 show an embodiment of the method for producing ultrafine short fibers according to the present invention. In producing the ultrafine short fibers, a columnar block 1 such as a cast ingot is used as a raw material. The columnar block 1 in this embodiment is suitably made of a material with low ductility such as brass, most preferably free-cutting brass. Next, the end of the columnar block 1 in the axial direction is gripped by a holding means such as a chuck, and the columnar block 1 is rotated at a predetermined speed and number of rotations via this holding means, and the end face of the columnar block 1 is rotated. 2,
The cutting edge 4 of the tool 3 is set to a predetermined depth of cut l and rake angle θ and brought into contact with each other, and a predetermined feed f is applied to the tool 3 in the direction of the block axis.

こうすることにより、金属ブロツク1は、工具
3の切刃部4により表面の薄い層5が連続的にか
き集められる。このとき工具のすくい角、切削速
度および送り量の設定が適当でない場合には、か
き集められた薄い層がすくい面にそつて長く流出
し、わん曲ないしカール状の流れ型チツプとなつ
たり、自由面側に鋸歯状凹凸の連なつた鋸歯型チ
ツプとなる。
By doing so, the thin layer 5 on the surface of the metal block 1 is continuously scraped off by the cutting edge 4 of the tool 3. If the rake angle, cutting speed, and feed rate of the tool are not set appropriately, the collected thin layer may flow out for a long time along the rake face, resulting in curved or curled flow chips or free chips. It becomes a serrated chip with a series of serrations and depressions on the surface side.

本発明では柱状ブロツク1として黄銅で代表さ
れる比較的延性の低いものからなつており、しか
も後述するように工具すくい角と切削速度および
送り量を一定条件に設定している。そのため、さ
きのように切刃部4に柱状ブロツク表面層が一定
の量までかき集められ、これが盛り上がつたとこ
ろで、不安定現象により、かき集められた層と柱
状ブロツク表面層との略界面にそつて割れが入
り、この割れにそつてかき集められた層が瞬間的
に破断分離され、繊維軸が切削方向と直角で非円
形断面の針状をなした短繊維6が創生され、すく
い面7から夫々が一本一本独立したかたちで連続
的に放出されるのである。
In the present invention, the columnar block 1 is made of a material with relatively low ductility, such as brass, and the tool rake angle, cutting speed, and feed rate are set to constant conditions, as will be described later. Therefore, as before, when the surface layer of the columnar block is scraped up to a certain amount on the cutting edge 4 and this rises, due to an unstable phenomenon, it is scraped along the approximate interface between the scraped layer and the surface layer of the columnar block. The layer scraped along the crack is instantaneously broken and separated, creating needle-shaped short fibers 6 with fiber axes perpendicular to the cutting direction and a non-circular cross section. Each of them is released continuously, one by one, independently.

第3図はその短繊維6を拡大して示している。 FIG. 3 shows the short fiber 6 in an enlarged manner.

なお、第1図は工具3の送りを軸線方向として
いるが、これに代え軸線と直角方向すなわち半径
方向への送りとしてもよい。その場合、当然のこ
とながら送りと切込みは第1図と逆の関係にな
る。
Although FIG. 1 shows that the tool 3 is fed in the axial direction, it may be fed in a direction perpendicular to the axis, that is, in the radial direction. In that case, it goes without saying that the feed and depth of cut will have an inverse relationship to that shown in FIG.

本発明は上記短繊維製造において、一定の旋削
条件を採用するものであり、すなわち、基本的に
は、切込み量を製造すべき繊維長さに一致させ、
かつ、工具すくい角θを約0〜−40°、送り量f
を約0.05〜0.3mm/rev、切削速度Vを約86〜
276m/minとするものである。この条件を満た
さない場合には、鋸歯状あるいは流れ型のチツプ
となり、目的とする短繊維を工業的に安定して製
造できない。
The present invention employs constant turning conditions in the production of short fibers, that is, basically, the depth of cut is made to match the length of the fiber to be produced,
And, the tool rake angle θ is approximately 0 to -40°, and the feed amount f
about 0.05~0.3mm/rev, cutting speed V about 86~
The speed will be 276m/min. If this condition is not met, chips will be serrated or flow-shaped, making it impossible to produce the desired short fibers industrially and stably.

まず、すくい角θは、繊維の太さ、形状および
強度に影響を与える重要な条件であり、できるだ
けマイナス角にすることが好ましい。すくい角の
上限を0°としたのは、すくい角を正側にすると削
られた層が圧縮されないまますくい面にそつて流
れやすくなり、流れ型チツプとなるからである。
すくい角を負に大きくすると、削られて切刃部に
たまりつつある層に圧縮変形を与え、不安定現象
の発生を促して亀裂を入りやすくすることができ
るので、細くかつ硬い繊維とすることができ、し
かも同時に、第3図の如く短繊維6の自由面に粗
面61を形成することができる。前記粗面61は
繊維軸線にそつて走るうね状のものとなり、これ
により表面積が増加し摩擦抵抗を増強することが
できる。しかし、すくい角を極度に大きくする
と、送りの大きい領域で鋸歯状チツプが生じやす
くなり、送りの小さい場合には流れ型のチツプと
なり繊維生成ができなくなる。従つてすくい角の
負の上限は−40°とすべきである。
First, the rake angle θ is an important condition that affects the thickness, shape, and strength of the fiber, and it is preferable to make it as negative as possible. The reason why the upper limit of the rake angle is set to 0° is because when the rake angle is set to the positive side, the chipped layer flows easily along the rake face without being compressed, resulting in a flow type chip.
If the rake angle is increased to a negative value, the layer that has been scraped and is accumulating on the cutting edge will be compressed and deformed, promoting instability and making it easier to crack, so it is necessary to use thin and hard fibers. Moreover, at the same time, a rough surface 61 can be formed on the free surface of the short fiber 6 as shown in FIG. The rough surface 61 has a ridge shape running along the fiber axis, thereby increasing the surface area and increasing the frictional resistance. However, if the rake angle is extremely large, serrated chips are likely to occur in areas where the feed is large, and when the feed is small, flow-type chips occur, making it impossible to produce fibers. Therefore, the negative upper limit of the rake angle should be −40°.

次に、送りfは、これを小さくすれば繊維断面
積が小さくなる傾向を示し、送りを小さくし、す
くい角を負に大きくするほど細い短繊維とするこ
とができる。ただ、あまり送りを小さくすると切
刃部4から離れるときに各繊維の長さ方向側縁の
連なりが生じやすくなり、流れ型のチツプとなる
ので、工具すくい角および切削速度との関係にお
いて適当な範囲に設定すべきである。本発明者ら
の実施に検討したところでは、すくい角が上記条
件内であつても送りは最低限約0.05mm/revが必
要であつた。送りの上限は繊維太さの関係からみ
て、約0.3mm/revである。
Next, as the feed f is decreased, the fiber cross-sectional area tends to become smaller, and the smaller the feed and the more negative the rake angle, the thinner the short fibers can be. However, if the feed rate is too small, the longitudinal side edges of each fiber will tend to form a series when it leaves the cutting edge 4, resulting in a flowing chip. Should be set to a range. According to the studies carried out by the present inventors, even if the rake angle is within the above conditions, the minimum feed rate is about 0.05 mm/rev. The upper limit of feed is approximately 0.3 mm/rev in view of the fiber thickness.

次に、切削速度vは生産性に影響を与え、切削
速度が速いほど繊維生産本数は増大する。しかし
反面において、切削速度が速いほど繊維生成域は
狭くなる。これは速度の増加により素材の破断ひ
ずみが増し、チツプが分離しにくくなるためと考
えられる。本発明者らの実施によれば、すくい角
が0〜−40°、送り0.05mm/rev以上では、生産性
とあいまち約86〜276m/minが実用的範囲であ
ることがわかつた。
Next, the cutting speed v affects productivity, and the faster the cutting speed, the greater the number of fibers produced. However, on the other hand, the higher the cutting speed, the narrower the fiber generation area. This is thought to be because the increasing speed increases the breaking strain of the material, making it difficult for the chips to separate. According to the experiments conducted by the present inventors, it has been found that when the rake angle is 0 to -40° and the feed rate is 0.05 mm/rev or more, the practical range of productivity is about 86 to 276 m/min.

なお、すくい角θは繊維断面形状にも影響を与
え、切削速度と送りを一定の条件ですくい角を負
に大きくするほど上底の幅が減少し下底が増大す
る。従つて、すくい角の設定により、台形状から
三角形状のものまで製造が可能である。また、短
繊維6の長さは第1図のような軸線方向送りにお
いては工具3の切込み深さと一致し、半径方向送
りにおいては切込み幅と一致する。従つてそれら
を調整することにより比較的長いものから極短の
ものまで製造することが可能である。
Note that the rake angle θ also affects the cross-sectional shape of the fiber, and as the rake angle becomes more negative under constant conditions of cutting speed and feed, the width of the upper base decreases and the width of the lower base increases. Therefore, by setting the rake angle, it is possible to manufacture anything from a trapezoidal shape to a triangular shape. Further, the length of the short fibers 6 corresponds to the depth of cut of the tool 3 in the axial direction as shown in FIG. 1, and corresponds to the width of the cut in the radial direction. Therefore, by adjusting them, it is possible to manufacture anything from relatively long to extremely short.

以上述べたところが基本的条件であるが、目的
短繊維をバラツキなく安定して製造するために
は、前記基本的条件の枠内で、工具すくい角と切
削速度および送り量を次のような関係に設定する
べきである。
The above-mentioned basic conditions are the basic conditions, but in order to stably produce the desired short fiber without variation, within the framework of the above-mentioned basic conditions, the following relationship between the tool rake angle, cutting speed, and feed amount is required. should be set to .

この条件により、所期の短繊維を高能率で歩留
り良く生産することができる。
Under these conditions, desired short fibers can be produced with high efficiency and good yield.

工具すくい角が約0〜−10°では、全切削速
度範囲において、送り量の下限を約0.07〜0.1
mm/revの範囲でかつ工具すくい角が正に近い
ほど漸増した値にとる。
When the tool rake angle is approximately 0 to -10°, the lower limit of the feed rate is approximately 0.07 to 0.1 in the entire cutting speed range.
mm/rev and the value gradually increases as the tool rake angle becomes more positive.

工具すくい角が約−10°を超え約−20°まで
は、切削速度を上限を下回る速度とし、送り量
の下限を約0.05〜0.07mm/revの範囲でかつ工
具すくい角が正に近いほど漸増した値にとる。
When the tool rake angle is more than about -10° and up to about -20°, the cutting speed should be lower than the upper limit, and the lower limit of the feed rate should be in the range of about 0.05 to 0.07 mm/rev, and the closer the tool rake angle is to positive. Take a gradually increasing value.

工具すくい角が約−20°を超え約−30°まで
は、切削速度を約158m/min以下とし、送り
量を、切削速度が下限では約0.05mm/rev以上、
切削速度が約158m/minでは送り量を約0.05〜
0.075mm/revの間、切削速度が下限から約
158m/minの間では、約0.05mm/rev以上で切
削速度が速く工具すくい角が負に大きいほど小
さい値にとる。
When the tool rake angle exceeds approximately -20° and reaches approximately -30°, the cutting speed should be approximately 158 m/min or less, and the feed rate should be approximately 0.05 mm/rev or more when the cutting speed is at the lower limit.
When the cutting speed is approximately 158m/min, the feed rate should be approximately 0.05~
During 0.075mm/rev, the cutting speed is from the lower limit to approx.
Between 158 m/min and approximately 0.05 mm/rev or more, the faster the cutting speed and the larger the negative tool rake angle, the smaller the value.

工具すくい角が約−30°を超え負に大きい時
は、切削速度を約158m/min以下とし、送り
量を、切削速度が下限では約0.05〜0.1mm/
rev、切削速度が約158m/minでは送り量を約
0.05〜0.075mm/revの間、切削速度が下限から
約158m/minの間では、約0.05〜0.1mm/revの
間で切削速度が速いほど小さい値にとる。
When the tool rake angle is negative and exceeds about -30°, the cutting speed should be set to about 158 m/min or less, and the feed rate should be adjusted to about 0.05 to 0.1 mm/min when the cutting speed is at the lower limit.
rev, cutting speed is approximately 158 m/min, the feed rate is approximately
Between 0.05 and 0.075 mm/rev, and when the cutting speed is between the lower limit and about 158 m/min, it is between about 0.05 and 0.1 mm/rev, and the higher the cutting speed, the smaller the value.

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

柱状ブロツクとして、外径60mmの快削黄銅棒
(Pb:2.98%、Fe:0.23%、Fe+Sn:0.30%、
残部Zn、引張り強さ38.4Kg/mm2、伸び23.6%、
絞り25.2%)を用い、工具としてP種超硬のス
ローアウイチツプ(12.7mm□×4.8mmt)をホ
ルダに取付けたバイトを用い、平均切削速度86
〜276m/min、送り0.021〜0.306mm/rev、す
くい角を10°、0°、−10°、−20°、−30°、−40°
、切
込みを5mmとし、第1図および第2図の方法で
極細短繊維を製造した。
A free-cutting brass rod with an outer diameter of 60 mm (Pb: 2.98%, Fe: 0.23%, Fe+Sn: 0.30%,
Remaining Zn, tensile strength 38.4Kg/mm 2 , elongation 23.6%,
The average cutting speed was 86 using a cutting tool with a P-class carbide throw-a-chip (12.7 mm x 4.8 mm) attached to the holder.
~276m/min, feed rate 0.021~0.306mm/rev, rake angle 10°, 0°, −10°, −20°, −30°, −40°
The cutting depth was set to 5 mm, and ultrafine short fibers were produced by the method shown in FIGS. 1 and 2.

このときの短繊維製造に及ぼす旋削条件の影
響を第4図に示す。第4図において、斜線で囲
まれた領域で所期の極細短繊維が得られた。第
4図において、各切削速度表示から右側の実線
で囲まれた部分が夫々繊維生成である。この第
4図の結果から、さきに述べたように切削速度
約86〜276m/min、すくい角約0〜−40°、送
り0.05〜0.3mm/revの条件を満たし、かつ切削
速度、すくい角および送り量に前記〜の関
係を持たせることが必要であることがわかる。
FIG. 4 shows the influence of turning conditions on short fiber production at this time. In FIG. 4, the desired ultrafine short fibers were obtained in the area surrounded by diagonal lines. In FIG. 4, the portions surrounded by solid lines on the right side of each cutting speed display represent fiber generation. From the results shown in Fig. 4, as mentioned earlier, the conditions of cutting speed of about 86 to 276 m/min, rake angle of about 0 to -40°, feed rate of 0.05 to 0.3 mm/rev are satisfied, and the cutting speed and rake angle are It can be seen that it is necessary to give the above relationship to the feed amount and the feed amount.

それ以外の領域、つまりすくい角が強度に負
に大きくかつ送りも大きい領域では鋸歯状チツ
プとなり、またすくい角が大きいか送りが小さ
すぎても流れ型のチツプとなり、目的の短繊維
を生成することが難しい。
In other areas, that is, areas where the rake angle is negative to the strength and the feed rate is large, the chips will be serrated, and if the rake angle is too large or the feed is too small, the chips will be flow-type chips, producing the desired short fibers. It's difficult.

前記適正条件での短繊維の断面積と旋削条件
との関係について検討すると、第5図と第6図
のとおりである。
The relationship between the cross-sectional area of the short fibers and the turning conditions under the appropriate conditions is as shown in FIGS. 5 and 6.

第5図は送りと断面積との関係であり、送り
が小さくなるほど断面積も小さくなるが、送り
が大きい領域では切削速度およびすくい角が断
面積に影響を及ぼすことがかわる。第6図はす
くい角と断面積の関係を示している。
FIG. 5 shows the relationship between feed and cross-sectional area. The smaller the feed, the smaller the cross-sectional area becomes. However, in the region where the feed is large, the influence of the cutting speed and rake angle on the cross-sectional area changes. Figure 6 shows the relationship between rake angle and cross-sectional area.

また、切削速度が上限と下限における繊維の
生産性を検討した結果が第7図であり、送りを
小さくし、切削速度を大きくすると最も生産性
がよくなることがわかる。回転せん断刃や平フ
ライスによる短繊維の生産本数QはQ=Z・N
(Z=歯数、N=カツタ回転数)で、実際の生
産設備においては、カツタ径300φ、Z=50、
N=210(V=200m/min)と考えられ、従つ
て、Q=約1万本/minとなるが、本発明では
実験装置でも約200万本/minを製造できてお
り、このことから従来法の約200倍という著し
い生産性向上を図り得ることがわかる。
Furthermore, FIG. 7 shows the results of examining the fiber productivity at the upper and lower limits of the cutting speed, and it can be seen that the productivity is highest when the feed is reduced and the cutting speed is increased. The number of short fibers produced using a rotating shear blade or flat milling cutter is Q=Z・N
(Z = number of teeth, N = number of cutter rotations), and in actual production equipment, the cutter diameter is 300φ, Z = 50,
It is thought that N = 210 (V = 200 m/min), and therefore Q = approximately 10,000 pieces/min, but with the present invention, approximately 2 million pieces/min can be produced even with experimental equipment, and from this It can be seen that it is possible to achieve a remarkable productivity improvement of about 200 times compared to the conventional method.

以上説明した本発明によるときには、複合材料
用の基材に好適な物質を備え、しかも寸法が極細
で表面積の大きい短繊維を、バラツキなく多量生
産することができ、さらに加工度の低い安価な原
料から直接製造することができ、機械や工具も簡
単であるため、原材料と大差ないコストで提供で
きるなどのすぐれた効果が得られる。
According to the present invention as described above, it is possible to uniformly produce large quantities of short fibers that are equipped with a substance suitable for a base material for composite materials, have ultra-fine dimensions and a large surface area, and also use inexpensive raw materials with a low degree of processing. It can be manufactured directly from raw materials, and the machines and tools are simple, so it can be provided at a cost that is not much different from that of raw materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る金属短繊維製造法の一実
施例を示す斜視図、第2図は繊維生成機構を示す
拡大断面図、第3図は本発明により得られた短繊
維の部分的拡大斜視図、第4図は本発明における
製造条件と短繊維生成域の関係を示すグラフ、第
5図は送りと断面積の関係を示すグラフ、第6図
はすくい角と断面積と関係を示すグラフ、第7図
は本発明による短繊維生産性を示すグラフであ
る。 1……柱状ブロツク、3……工具、6……短繊
維、θ……工具すくい角、f……送り、V……切
削速度。
FIG. 1 is a perspective view showing an example of the method for producing short metal fibers according to the present invention, FIG. 2 is an enlarged cross-sectional view showing the fiber production mechanism, and FIG. 3 is a partial view of the short metal fibers obtained by the present invention. An enlarged perspective view, FIG. 4 is a graph showing the relationship between manufacturing conditions and short fiber production area in the present invention, FIG. 5 is a graph showing the relationship between feed and cross-sectional area, and FIG. 6 is a graph showing the relationship between rake angle and cross-sectional area. The graph shown in FIG. 7 is a graph showing short fiber productivity according to the present invention. 1... Columnar block, 3... Tool, 6... Short fiber, θ... Tool rake angle, f... Feed, V... Cutting speed.

Claims (1)

【特許請求の範囲】 1 金属短繊維を得るにあたり、原料として黄銅
のような延性の低い材料の柱状ブロツクを用い、
この柱状ブロツクを、製造すべき繊維長さに対応
する切込み量でかつ切削速度約86〜276m/min、
送り量約0.05〜0.3mm/rev、工具すくい角約0〜
−40°の各範囲内で下記条件に設定して旋削し、
繊維軸線が切削方向と直角をなす非円形断面の針
状短繊維を分離創成することを特徴とする金属短
繊維の製造法。 工具すくい角が約0〜−10°では、全切削速
度範囲において、送り量の下限を約0.07〜0.1
mm/revの範囲でかつ工具すくい角が正に近い
ほど漸増した値にとる。 工具すくい角が約−10°を越え約−20°まで
は、切削速度を上限未満の速度とし、送り量の
下限を約0.05〜0.07mm/revの範囲でかつ工具
すくい角が正に近いほど漸増した値にとる。 工具すくい角が約−20°を越え約−30°まで
は、切削速度を約158m/min以下とし、送り
量を、切削速度が下限では約0.05mm/rev以上、
切削速度が約158m/minでは約0.05〜0.075
mm/revの間、切削速度が下限から約158m/
minの間では、約0.05mm/rev以上で切削速度
が速く工具すくい角が負に大きいほど小さい値
にとる。 工具すくい角が約−30°を越え負に大きいと
きは、切削速度を約158m/min以下とし、送
り量を、切削速度が下限では約0.05〜0.1mm/
rev、切削速度が約158m/minでは約0.05〜
0.075mm/revの間、切削速度が下限から約
158m/minの間では、約0.05〜0.1mm/revの間
で切削速度が速いほど小さい値にとる。
[Claims] 1. To obtain short metal fibers, a columnar block of a material with low ductility such as brass is used as a raw material,
This columnar block is cut at a depth of cut corresponding to the fiber length to be manufactured and at a cutting speed of approximately 86 to 276 m/min.
Feed rate approx. 0.05~0.3mm/rev, tool rake angle approx. 0~
Turning is performed under the following conditions within each range of -40°,
A method for producing short metal fibers, which comprises separating and creating acicular short fibers with a non-circular cross section, the fiber axis of which is perpendicular to the cutting direction. When the tool rake angle is approximately 0 to -10°, the lower limit of the feed rate is approximately 0.07 to 0.1 in the entire cutting speed range.
mm/rev and the value gradually increases as the tool rake angle becomes more positive. When the tool rake angle is more than about -10° and up to about -20°, the cutting speed should be less than the upper limit, and the lower limit of the feed rate should be in the range of about 0.05 to 0.07 mm/rev, and the closer the tool rake angle is to positive. Take a gradually increasing value. When the tool rake angle exceeds approximately -20° and reaches approximately -30°, the cutting speed should be approximately 158 m/min or less, and the feed rate should be approximately 0.05 mm/rev or more when the cutting speed is at the lower limit.
Approximately 0.05 to 0.075 when the cutting speed is approximately 158m/min
mm/rev, the cutting speed is approximately 158 m/rev from the lower limit.
min, the value should be smaller as the cutting speed is faster and the tool rake angle is more negative at approximately 0.05 mm/rev or higher. When the tool rake angle exceeds approximately -30° and is negative, the cutting speed should be set to approximately 158 m/min or less, and the feed rate should be adjusted to approximately 0.05 to 0.1 mm/min at the lower limit of cutting speed.
rev, about 0.05 ~ at cutting speed of about 158 m/min
During 0.075mm/rev, the cutting speed is from the lower limit to approx.
Between 158 m/min and approximately 0.05 to 0.1 mm/rev, the faster the cutting speed, the smaller the value.
JP31230887A 1987-12-11 1987-12-11 Manufacture of metallic short fiber Granted JPS63245332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31230887A JPS63245332A (en) 1987-12-11 1987-12-11 Manufacture of metallic short fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31230887A JPS63245332A (en) 1987-12-11 1987-12-11 Manufacture of metallic short fiber

Publications (2)

Publication Number Publication Date
JPS63245332A JPS63245332A (en) 1988-10-12
JPH0426969B2 true JPH0426969B2 (en) 1992-05-08

Family

ID=18027686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31230887A Granted JPS63245332A (en) 1987-12-11 1987-12-11 Manufacture of metallic short fiber

Country Status (1)

Country Link
JP (1) JPS63245332A (en)

Also Published As

Publication number Publication date
JPS63245332A (en) 1988-10-12

Similar Documents

Publication Publication Date Title
EP0030606B1 (en) Production of short metal fibers
US4298660A (en) Steel fiber for reinforced concrete
AU2018437433B2 (en) Micro-textured cutter based on silicon brass structure and processing method and application thereof
RU2743504C2 (en) Mill for electrode bit and its use as end mill for processing oxide ceramics
Ibrahim et al. The effect of dry machining on surface integrity of titanium alloy Ti-6Al-4V ELI
CN102211218A (en) Diamond coated cutter and application thereof to processing of fiber composite material
US4560622A (en) Steel fiber for reinforcing concrete and production thereof
US7617750B2 (en) Process of producing nanocrystalline bodies
Li et al. Machined channel quality and tool life using cermet micro-mill in micro-milling aluminum alloy
CN110587836B (en) Micro-milling processing method for sapphire surface
KR101764529B1 (en) Corrugated monowire for cutting
CN101767228A (en) Polycrystalline diamond thread-forming tool
CN114160855A (en) Steepest curve spiral blade cylindrical end milling cutter
JP2957571B1 (en) Wire for saw wire
CN85102569A (en) The natural chip breaking lathe tool of finish turning stainless steel-like parts
JPS6317571B2 (en)
Heidari et al. Increasing wear resistance of copper electrode in electrical discharge machining by using ultra-fine-grained structure
JPH0426969B2 (en)
JPH05228729A (en) Shaving die
Zhu et al. Effect of cutting speed on machinability of stone–plastic composite material
Zhao et al. Influence of Thermogenetic Effect on Machinability of IN718 Alloy Made by Additive–Subtractive Integrated Manufacturing
Mohid et al. Chip pattern, burr and surface roughness in laser assisted micro milling of Ti6Al4V using micro ball end mill
RU2221667C1 (en) Apparatus for cutting wire by blanks
CN2136094Y (en) Cutting and extruding tap
CN212191062U (en) Thread rolling die