JPS63245332A - Manufacture of metallic short fiber - Google Patents

Manufacture of metallic short fiber

Info

Publication number
JPS63245332A
JPS63245332A JP31230887A JP31230887A JPS63245332A JP S63245332 A JPS63245332 A JP S63245332A JP 31230887 A JP31230887 A JP 31230887A JP 31230887 A JP31230887 A JP 31230887A JP S63245332 A JPS63245332 A JP S63245332A
Authority
JP
Japan
Prior art keywords
cutting speed
approximately
rake angle
rev
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31230887A
Other languages
Japanese (ja)
Other versions
JPH0426969B2 (en
Inventor
Takeo Nakagawa
威雄 中川
Kiyoshi Suzuki
清 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP31230887A priority Critical patent/JPS63245332A/en
Publication of JPS63245332A publication Critical patent/JPS63245332A/en
Publication of JPH0426969B2 publication Critical patent/JPH0426969B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce such a metallic short fiber that has good physical properties and dimensional form in an inexpensive manner, by turning a low ductile columnar block, typical of brass, under the specified condition, utilizing the natural, and disruptively generating the acicular short fiber of a noncircular section. CONSTITUTION:In a casting ingot block 1 of low ductility such as brass, a thin layer 5 of the surface is continuously scraped up by a cutting edge 4 of a tool 3, and a rake angle theta, cutting speed and feed rate are all set under the specified condition. And the surface layer 5 is gathered 5 is gathered up to the specified quantity in the cutting edge 4, and when it is protuberant, a crack runs along an interface due to an interface due to an unstable phenomenon, and it is disruptively separated, thus such an acicular short fiber that its axis is orthogonal with the cutting direction and is formed into a noncircular section is generated, and it is continuously discharged out of a cutting face 7. In this case, infeed rate is accorded with fiber length L, and the rake angle theta should be set to about 0-40 deg.C, feed rate to about 0.05-0.3mm/rev., and cutting speed to about 86-276/min., respectively.

Description

【発明の詳細な説明】 本発明は金属短繊維、とりわけ複合材料の基材として用
いられるのに適した極細短繊維の製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing short metal fibers, particularly ultrafine short fibers suitable for use as a base material for composite materials.

一般に、繊維と言われるものには、金属短繊維。In general, short metal fibers are called fibers.

ガラス繊維、カーボン繊維、アスベスト等種々のものが
ある。これら繊維のうち、ブレーキライニング、クラッ
チ板などの摩擦材料や、フィルター、導電性FRP、電
磁シールド用FRP、騒音遮蔽板などの構造用複合材料
としては、金属繊維が最も適している。
There are various materials such as glass fiber, carbon fiber, and asbestos. Among these fibers, metal fibers are most suitable for friction materials such as brake linings and clutch plates, and structural composite materials such as filters, conductive FRP, electromagnetic shielding FRP, and noise shielding plates.

しかし、この種用途に使われる金属繊維は、直径がたと
えば100ミクロン以下、長さが10mm以下というよ
うに極細であって、しかも強化繊維として引張り強度な
ど良好な物性を備えていることが要求されるため、これ
を簡単に多量生産するのは難しく、鉛繊維のような特殊
なものを除いて製造コストが極めて高価になり、上記し
た広範囲の需要に答えることができなかった。
However, the metal fibers used for this type of application must be extremely fine, with a diameter of 100 microns or less and a length of 10 mm or less, and must also have good physical properties such as tensile strength as reinforcing fibers. Therefore, it is difficult to easily mass-produce them, and the manufacturing cost is extremely high, except for special products such as lead fibers, and it has not been possible to meet the wide-ranging demand described above.

すなわち、金属極細短繊維を製造する場合、一般に、鋳
造インゴットを圧延して線材を作り、この線材を引抜き
ダイスなどを用いて引抜き、この引抜きと焼鈍を幾度と
なく繰返すことで前記のような直径の繊維に伸ばし、最
後に切断する方法がとられていたものであり、このよう
に非常に手間のかかる工程をかけることや設備として大
掛りなものを要することから、生産性が低く、また非常
にコストが高くなっていたものである。
That is, when producing ultrafine metal short fibers, generally a cast ingot is rolled to make a wire rod, this wire rod is drawn using a drawing die, etc., and this drawing and annealing are repeated many times to obtain the diameter as described above. The method used was to stretch it into fibers and then cut it at the end.This extremely time-consuming process and the need for large-scale equipment resulted in low productivity and very slow production. The cost was increasing.

なお、コンクリート補強用鋼繊維など比較的長く太い金
属繊維の製造法としては、インゴットをフライス切削す
る方法がある。しかしこの方法は、外周に複数の切刃を
取付けたカッターの回転による断続加工となるため、生
産速度の点で問題がある。また、この方法では機械や工
具に高い精度が 、要求され、わずかな精度の狂い(た
とえば、主軸の振れ、アーμとカッタ内径のすきま、超
硬チップの溝深さ、刃幅、取付誤差等による切刃外周の
振れ)が直接製品の寸法形状や物性に影響するので、前
述したように極めて細くかつ短い繊維をバラツキなく量
産するのが難しいという問題があった。
Note that, as a method for manufacturing relatively long and thick metal fibers such as steel fibers for reinforcing concrete, there is a method of milling an ingot. However, this method involves intermittent machining by rotating a cutter with a plurality of cutting blades attached to its outer periphery, which poses a problem in terms of production speed. In addition, this method requires high accuracy from the machine and tools, and slight deviations in accuracy (for example, spindle runout, clearance between the arc and the inner diameter of the cutter, groove depth of the carbide tip, blade width, installation error, etc.) Since the run-out of the outer circumference of the cutting edge directly affects the dimensions and physical properties of the product, there is a problem in that it is difficult to mass-produce extremely thin and short fibers without variation, as described above.

本発明は、前記した実情から研究を重ねて創案されたも
ので、その目的とするところは、弾性率、耐摩耗性、電
気および熱の伝導性、ぬれ性および焼結性などの良好な
物性と寸法形状を備えた極細の金属短繊維を、きわめて
能率よく安価に多量生産できる方法を提供することにあ
る。
The present invention was created through repeated research in view of the above-mentioned circumstances, and its purpose is to improve physical properties such as elastic modulus, abrasion resistance, electrical and thermal conductivity, wettability, and sinterability. An object of the present invention is to provide a method for mass-producing ultra-fine short metal fibers having dimensions and shapes extremely efficiently and inexpensively.

この目的を達成するため、本発明は、黄銅で代表される
比較的延性の低い柱状のブロックを所定条件で旋削する
ことで材料の自然な割れを利用し、非円形断面の針状短
繊維を分断創生するようにしたものである。
To achieve this objective, the present invention utilizes the natural cracks of the material by turning a columnar block with relatively low ductility, such as brass, under predetermined conditions, and produces acicular short fibers with a non-circular cross section. It is designed to divide and create.

すなわち、本発明の特徴とするところは、金屑短繊維を
得るにあたり、原料として黄銅のような延性の低い材料
の柱状ブロックを用い、この柱状ブロックを、製造すべ
き繊維長さに対応する切込み量でかつ切削速度約86〜
276m/min、送り量的0.05〜0 、3 mm
/rev、工具すくい角約0〜−40°の各範囲内で下
記条件に設定して旋削し、繊維軸線が切削方向と直角を
なす非円形断面の針状短繊維を分離創成することを特徴
とする金属短繊維の製造法。
That is, the present invention is characterized by using a columnar block made of a material with low ductility such as brass as a raw material to obtain short gold scrap fibers, and cutting this columnar block with a cut corresponding to the length of the fiber to be produced. amount and cutting speed of about 86~
276m/min, feed amount 0.05~0, 3mm
/rev, turning is carried out under the following conditions within the range of tool rake angle of about 0 to -40° to separate and create acicular short fibers with a non-circular cross section whose fiber axis is perpendicular to the cutting direction. A method for producing short metal fibers.

■工具すくい角が約0〜−10’では、全切削速度範囲
において、送り量の下限を約0.07〜0.1mm/r
evの範囲でかつ工具すくい角が正に近いほど漸増した
値にとる。
■When the tool rake angle is approximately 0 to -10', the lower limit of the feed rate is approximately 0.07 to 0.1 mm/r in the entire cutting speed range.
ev range and the closer the tool rake angle is to positive, the value gradually increases.

■工具すくい角が約−10″を超え約−20°までは、
切削速度を上限を下回る速度とし、送り量の下限を約0
.05〜0.07mm/revの範囲でかつ工具すくい
角が正に近いほど漸増した値にとる。
■If the tool rake angle exceeds approximately -10" and reaches approximately -20°,
Set the cutting speed below the upper limit and set the lower limit of the feed rate to approximately 0.
.. The value is set in the range of 0.05 to 0.07 mm/rev and gradually increases as the tool rake angle becomes more positive.

■工具すくい角が約−20” を超え約−30°までは
、切削速度を約158m/min以下とし、送り量を、
切削速度が下限では約0.05my+/rev以上、切
削速度が約158 m/minでは送り量を約0.05
〜0.75mm/revの間、切削速度が下限から約1
58 m/minの間では、約0 、051m/rev
以上で切削速度が速く工具すくい角が負に大きいほど小
さい値にとる。
■When the tool rake angle exceeds approximately -20" and reaches approximately -30°, the cutting speed should be approximately 158 m/min or less, and the feed rate should be adjusted to
When the cutting speed is at the lower limit, the feed rate is approximately 0.05 my+/rev or more, and when the cutting speed is approximately 158 m/min, the feed amount is approximately 0.05 m/rev.
~0.75mm/rev, the cutting speed is approximately 1 from the lower limit
Between 58 m/min, approx. 0 and 051 m/rev
Above, the faster the cutting speed and the more negative the tool rake angle, the smaller the value.

■工具すくい角が約−30°を超え負に大きい時は、切
削速度を約158 m/min以下とし、送り量を、切
削速度が下限では約0.05〜0゜1 nu / re
v、切削速度が約158 m/minでは送り量を約o
、o5〜0. 75 mm/revの間、切削速度が下
限から約158 m /mj、nの間では、約01o5
〜0.1mm/revの間で切削速度が速いほど小さい
値にとる。
■When the tool rake angle is negative and exceeds about -30°, reduce the cutting speed to about 158 m/min or less, and reduce the feed rate to about 0.05 to 0°1 nu/re when the cutting speed is at the lower limit.
v, when the cutting speed is about 158 m/min, the feed rate is about o
, o5~0. Between 75 mm/rev and cutting speed of about 158 m/mj from the lower limit, about 01o5 between n
~0.1 mm/rev, the faster the cutting speed, the smaller the value.

以下本発明を添付図面に基いて説明する。The present invention will be explained below based on the accompanying drawings.

第1図および第2図は本発明による極細短繊維製造法の
実施例を示すもので、極細短繊維を作るにあたって、原
料として鋳造インゴットの如き柱状ブロック1を用いる
。この実施例における柱状ブロック1は、黄銅のような
延性の低い材質、最も好適には快削黄銅が適当である。
FIGS. 1 and 2 show an embodiment of the method for producing ultrafine short fibers according to the present invention. In producing the ultrafine short fibers, a columnar block 1 such as a cast ingot is used as a raw material. The columnar block 1 in this embodiment is suitably made of a material with low ductility such as brass, most preferably free-cutting brass.

しかして、次にそのような柱状ブロック1の軸線方向端
部をチャックなどの固持手段によりつかみ、この固持手
段を介して柱状ブロック1を所定速度と回転数で回転さ
せると共に、柱状ブロック1の端面2に、工具3の切刃
部4を所定の切込み深さQとすくい角θに設定して当接
させ、この工具3にブロック軸線方向へ所定の送りfを
与える。
Next, the end of the columnar block 1 in the axial direction is gripped by a holding means such as a chuck, and the columnar block 1 is rotated at a predetermined speed and number of rotations via this holding means, and the end face of the columnar block 1 is 2, the cutting edge 4 of the tool 3 is set to a predetermined depth of cut Q and a rake angle θ and brought into contact with each other, and a predetermined feed f is applied to the tool 3 in the block axis direction.

こうすることにより、金属ブロック1は、工具3の切刃
部4により表面の薄いN5が連続的にかき集められる。
By doing this, the thin N5 on the surface of the metal block 1 is continuously scraped up by the cutting edge 4 of the tool 3.

このとき工具のすくい角、゛切削速度および送り量の設
定が適当でない場合には、かき集められた薄い層がすく
い面にそって長く流出し、わん曲ないしカール状の流れ
型チップとなったり、自由面側に鋸歯状凹凸の連なった
鋸歯型チップとなる6 本発明では柱状ブロック1として黄銅で代表される比較
的延性の低いものからなっており、しかも後述するよう
に工具すくい角と切削速度および送り量を一定条件に設
定している。そのため、さぎのように切刃部4に柱状ブ
ロック表面層が一定の量までかき集められ、これが盛り
上がったところで、不安定現象により、かき集められた
層と柱状ブロック表面層との略界面にそって割れが入り
At this time, if the rake angle, cutting speed, and feed rate of the tool are not set appropriately, the collected thin layer may flow out for a long time along the rake face, resulting in curved or curled flow chips. 6 In the present invention, the columnar block 1 is made of a material with relatively low ductility, typically brass, and the tool rake angle and cutting speed are determined as described later. and the feed rate are set to certain conditions. Therefore, like a rabbit, the surface layer of the columnar block is scraped up to a certain amount by the cutting edge 4, and when this rises, due to an unstable phenomenon, it cracks along the approximate interface between the scraped layer and the surface layer of the columnar block. enters.

この割れにそってかき集められた層が瞬間的に破断分離
され、繊維軸が切削方向と直角で非円形断面の針状をな
した短繊維6が創生され、すくい面7から夫々が一本一
本独立したかたちで連続的に放出されるのである。
The layers collected along the cracks are instantaneously broken and separated, creating needle-shaped short fibers 6 with fiber axes perpendicular to the cutting direction and non-circular cross sections, one each from the rake face 7. It is released continuously in an independent form.

第3図はその短繊維6を拡大して示している。FIG. 3 shows the short fiber 6 in an enlarged manner.

なお、第1図は工具3の送りを軸線方向としているが、
これに代え軸線と直角方向すなわち半径方向への送りと
してもよい。その場合、当然のことながら送りと切込み
は第1図と逆の関係になる。
In addition, although FIG. 1 shows that the tool 3 is fed in the axial direction,
Alternatively, the feed may be perpendicular to the axis, that is, in the radial direction. In that case, it goes without saying that the feed and depth of cut will have an inverse relationship to that shown in FIG.

本発明は上記短繊維製造において、一定の旋削条件を採
用するものであり、すなわち、基本的には、切込み量を
製造すべき繊維長さに一致させ、かつ、工具すくい角θ
を約0〜−40°、送り量fを約0.05〜0.3mn
/rev、切削速度■を約86〜276 m/minと
するものである。この条件を満たさない場合には、鋸歯
状あるいは流れ型のチップとなり、目的とする短繊維を
工業的に安定して製造できない。
The present invention employs certain turning conditions in the production of short fibers, that is, basically, the depth of cut is made to match the length of the fiber to be produced, and the tool rake angle θ is
approximately 0 to -40°, feed amount f approximately 0.05 to 0.3 mn
/rev, and the cutting speed is approximately 86 to 276 m/min. If this condition is not met, chips will be serrated or flow-shaped, making it impossible to produce the desired short fibers industrially and stably.

まず、すくい角Oは、繊維の太さ、形状および強度に影
響を与える重要な条件であり、できるだけマイナス角に
することが好ましい。すくい角の上限を0°としたのは
、すくい角を正側にすると削られた層が圧縮されないま
ますくい面にそって流れやすくなり、流れ型チップとな
るからである。
First, the rake angle O is an important condition that affects the thickness, shape, and strength of the fiber, and it is preferable to make it as negative as possible. The reason why the upper limit of the rake angle is set to 0° is because when the rake angle is set to the positive side, the shaved layer easily flows along the rake face without being compressed, resulting in a flow type chip.

すくい角を負に大きくすると、削られて切刃部にたまり
つつある層に圧縮変形を与え、不安定現象の発生を促し
て亀裂を入りやすくすることができるので、細くかつ硬
い繊維とすることができ、しかも同時に、第3図の如く
短繊維6の自由面に粗面61を形成することができる。
If the rake angle is increased to a negative value, the layer that has been scraped and is accumulating on the cutting edge will be compressed and deformed, promoting instability and making it easier to crack, so it is necessary to use thin and hard fibers. Moreover, at the same time, a rough surface 61 can be formed on the free surface of the short fiber 6 as shown in FIG.

前記粗面61は繊維軸線にそって走ろうね状のものとな
り、これにより表面積が増加し摩擦抵抗を増強すること
ができる。しかし、すくい角を極度に大きくすると、送
りの大きい領域で鋸歯状チップが生じやすくなり、送り
の小さい場合には流れ型のチップとなり繊維生成ができ
なくなる。従ってすくい角の負の上限は一40°とすべ
きである。
The rough surface 61 has a funnel-like shape running along the fiber axis, thereby increasing the surface area and increasing the frictional resistance. However, if the rake angle is made extremely large, serrated chips tend to occur in areas where the feed is large, and when the feed is small, flow-shaped chips occur, making it impossible to produce fibers. Therefore, the negative upper limit of the rake angle should be -40°.

次に、送りfは、これを小さくすれば繊維断面積が小さ
くなる傾向を示し、送りを小さくし、すくい角を負に大
きくするほど細い短繊維とすることができる。ただ、あ
まり送りを小さくすると切刃部4から離れるときに各繊
維の長さ方向側縁の連なりが生じやすくなり、流れ型の
チップとなるので、工具すくい角および切削速度との関
係において適当な範囲に設定すべきである。本発明者ら
の実施に検討したところでは、すくい角が上記条件内で
あっても送りは最低限約0 、05 mm/revが必
要であった。送りの上限は繊維太さの関係からみて、約
0.3mm/revである。
Next, as the feed f is decreased, the fiber cross-sectional area tends to become smaller, and the smaller the feed and the more negative the rake angle, the thinner the short fibers can be. However, if the feed rate is too small, the longitudinal side edges of each fiber will tend to connect when they leave the cutting edge 4, resulting in a flowing chip. Should be set to a range. According to the studies carried out by the present inventors, even if the rake angle is within the above conditions, a minimum feed of about 0.05 mm/rev is required. The upper limit of feed is approximately 0.3 mm/rev in view of the fiber thickness.

次に、切削速度Vは生産性に影響を与え、切削速度が速
いほど繊維生産本数は増大する。しかし反面において、
切削速度が速いほど繊維生成域は狭くなる。これは速度
の増加により素材の破断ひずみが増し、チップが分離し
にくくなるためと考えられる。本発明者らの実施によれ
ば、すくい角がO〜−40°、送り0 、05 nun
/rev以上では、生産性とあいまち約86〜276m
/minが実用的範囲であることがわかった。
Next, the cutting speed V affects productivity, and the faster the cutting speed, the greater the number of fibers produced. But on the other hand,
The faster the cutting speed, the narrower the fiber generation area. This is thought to be because the increasing speed increases the breaking strain of the material, making it difficult to separate the chips. According to the implementation by the present inventors, the rake angle is 0 to -40°, the feed is 0, 05 nun
/rev or higher, the productivity and error is approximately 86 to 276 m.
/min was found to be within a practical range.

なお、すくい角θは繊維断面形状にも影響を与え、切削
速度と送りを一定の条件ですくい角を負に大きくするほ
ど上底の幅が減少し下底が増大する。従って、すくい角
の設定により、台形状から三角形状のものまで製造が可
能である。また、短繊維6の長さは第1図のような軸線
方向法りにおいては工具3の切込み深さと一致し、半径
方向法りにおいては切込み幅と一致する。従ってそれら
を調整することにより比較的長いものから極短のものま
で製造することが可能である。
Note that the rake angle θ also affects the cross-sectional shape of the fiber, and as the rake angle becomes more negative under constant conditions of cutting speed and feed, the width of the upper base decreases and the width of the lower base increases. Therefore, by setting the rake angle, it is possible to manufacture anything from a trapezoidal shape to a triangular shape. Further, the length of the short fibers 6 corresponds to the cutting depth of the tool 3 in the axial direction as shown in FIG. 1, and corresponds to the cutting width in the radial direction. Therefore, by adjusting them, it is possible to manufacture anything from relatively long to extremely short.

以上述べたところが基本的条件であるが、目的短繊維を
バラツキなく安定して製造するためには、前記基本的条
件の枠内で、工具すくい角と切削速度および送り量を次
のような関係に設定するべきである。
The above-mentioned basic conditions are the basic conditions, but in order to stably produce the desired short fiber without variation, within the framework of the above-mentioned basic conditions, the following relationship between the tool rake angle, cutting speed, and feed amount is required. should be set to .

この条件により、所期の短繊維を高能率で歩留り良く生
産することができる。
Under these conditions, desired short fibers can be produced with high efficiency and good yield.

■工具すくい角が約0〜−10°では、全切削速度範囲
において、送り量の下限を約0.07〜0、 lawn
/revの範囲でかつ工具すくい角が正に近いほど漸増
した値にとる。
■When the tool rake angle is approximately 0 to -10°, the lower limit of the feed rate should be approximately 0.07 to 0, in the entire cutting speed range.
/rev and the value gradually increases as the tool rake angle becomes more positive.

■工具すくい角が約−100を超え約−20″までは、
切削速度を上限を下回る速度とし、送り量の下限を約0
 、05〜0 、07mn/revの範囲でかつ工具す
くい角が正に近いほど漸増した値にとる。
■If the tool rake angle exceeds about -100 and reaches about -20",
Set the cutting speed below the upper limit and set the lower limit of the feed rate to approximately 0.
, 05 to 0,07 mn/rev, and the value gradually increases as the tool rake angle becomes more positive.

■工具すくい角が約−20°を超え約−30°までは、
切削速度を約158 m/+nin以下とし、送り量を
、切削速度が下限では約0.O5nm/rev以上、切
削速度が約158 m /winでは送り量を約0 、
05〜0 、75mm/revの間、切削速度が下限か
ら約158 m/minの間では、約0.051m/r
ev以上で切削速度が速く工具すくい角が負に大きいほ
ど小さい値にとる。
■If the tool rake angle exceeds about -20° and reaches about -30°,
The cutting speed was set to about 158 m/+nin or less, and the feed rate was set to about 0.0 mm at the lower limit of the cutting speed. When the cutting speed is approximately 158 m/win and the feed rate is approximately 0,
05~0, 75mm/rev, cutting speed is between about 158 m/min from the lower limit, about 0.051 m/r
ev or more, the faster the cutting speed and the more negative the tool rake angle, the smaller the value.

■工具すくい角が約−30°を超え負に大きい時は、切
削速度を約158 m /win以下とし、送り量を、
切削速度が下限では約0.05〜0゜1 nvn / 
r6y、切削速度が約158m/minでは送り量を約
0.05〜0 、 75 mm/revの間、切削速度
が下限から約158m/minの間では。
■When the tool rake angle is negative and exceeds about -30°, reduce the cutting speed to about 158 m/win or less and reduce the feed rate.
When the cutting speed is at the lower limit, it is approximately 0.05~0゜1 nvn/
r6y, when the cutting speed is about 158 m/min, the feed rate is between about 0.05 and 0.75 mm/rev, and when the cutting speed is between the lower limit and about 158 m/min.

約0.05〜O,lnm/revの間で切削速度が速い
ほど小さい値にとる。
The higher the cutting speed is, the smaller the value is set between approximately 0.05 and 0.1 nm/rev.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

■、柱状ブロックとして、外径60mmの快削黄銅棒(
Pb:2.98%、Fe:0,23%、Fe+Sn :
 0.30%、残部Zn、引張り強さ38.4眩/rm
m”、伸び23.6%、絞り25.2%)を用い、工具
として2種超硬のスローアウイチップ(12,7nn+
口X4.8mmt)をホルダに取付けたバイトを用い、
平均切削速度86〜276 m / min、送り0.
021〜0.306+nm/rev、すくい角を10’
 、O’ 、−10°、−20’ 、−30’ 、−4
0’ 、切込ミラ5 mmとし、第1図および第2図の
方法で極細短繊維を製造した。
■As a columnar block, a free-cutting brass rod with an outer diameter of 60 mm (
Pb: 2.98%, Fe: 0.23%, Fe+Sn:
0.30%, balance Zn, tensile strength 38.4 glare/rm
m”, elongation 23.6%, reduction of area 25.2%), and a Class 2 carbide throw-a-wi tip (12.7nn+
Using a cutting tool with a mouth x 4.8mmt) attached to a holder,
Average cutting speed 86-276 m/min, feed 0.
021~0.306+nm/rev, rake angle 10'
, O', -10°, -20', -30', -4
0' and a cutting miller of 5 mm, ultrafine short fibers were produced by the method shown in FIGS. 1 and 2.

■、このときの短繊維製造に及ぼす旋削条件の影響を第
4図に示す。第4図において、斜線で囲まれた領域で所
期の極細短繊維が得られた。第4図において、各切削速
度表示から右側の実線で囲まれた部分が夫々繊維生成で
ある。この第4図の結果から、さきに述べたように切削
速度約86〜276 m/min、すくい金的O〜−4
0°、送り0.05〜0.3++m/revの条件を満
たし、かつ切削速度、すくい角および送り量に前記■〜
■の関係を持たせることが必要であることがわかる。
(2) The influence of turning conditions on short fiber production at this time is shown in Fig. 4. In FIG. 4, the desired ultrafine short fibers were obtained in the area surrounded by diagonal lines. In FIG. 4, the portions surrounded by solid lines on the right side of each cutting speed display represent fiber generation. From the results shown in Fig. 4, as mentioned earlier, the cutting speed is approximately 86 to 276 m/min, and the rake metal is O to -4.
0°, feed rate 0.05~0.3++m/rev, and the cutting speed, rake angle, and feed amount meet the above ■~
It can be seen that it is necessary to have the following relationship.

それ以外の領域、つまりすくい角が極度に負に大きくか
つ送りも大きい領域では鋸歯状チップとなり、またすく
い角が大きいか送りが小さすぎても流れ型のチップとな
り、目的の短繊維を生成することが難しい。
In other areas, that is, in areas where the rake angle is extremely negative and the feed is large, the chips will be serrated, and if the rake angle is too large or the feed is too small, the chips will be flow-type chips, producing the desired short fibers. It's difficult.

■、前記適正条件での短繊維の断面積と旋削条件との関
係について検討すると、第5図と第6図のとおりである
(2) A study of the relationship between the cross-sectional area of short fibers and turning conditions under the above-mentioned appropriate conditions is as shown in FIGS. 5 and 6.

第5図は送りと断面積との関係であり、送りが小さくな
るほど断面積も小さくなるが、送りが大きい領域では切
削速度およびすくい角が断面積に影響を及ぼすことがわ
かる。第6図はすくい角と断面積の関係を示している。
FIG. 5 shows the relationship between feed and cross-sectional area, and it can be seen that the smaller the feed, the smaller the cross-sectional area, but in the region where the feed is large, the cutting speed and rake angle affect the cross-sectional area. Figure 6 shows the relationship between rake angle and cross-sectional area.

■、また、切削速度が上限と下限における繊維の生産性
を検討した結果が第7図であり、送りを小さくし、切削
速度を大きくすると最も生産性がよくなることがわかる
。回転せん断力や平フライスによる短繊維の生産本数Q
はQ = Z−N(2=歯数、N=カッタ回転数)で、
実際の生産設備においては、カッタ径300φ、z=5
0、N”210 (V=200m/m1n)と考えられ
、従って、Q=約1万本/minとなるが。
(2) Furthermore, Fig. 7 shows the results of examining the fiber productivity at the upper and lower limits of the cutting speed, and it can be seen that the productivity is highest when the feed is reduced and the cutting speed is increased. Number of short fibers produced by rotary shear force and flat milling Q
is Q = Z-N (2 = number of teeth, N = cutter rotation speed),
In actual production equipment, cutter diameter is 300φ, z=5
0, N''210 (V=200m/m1n), and therefore Q=approximately 10,000 lines/min.

本発明では実験装置でも約200万本/mjnを製造で
きており、このことから従来法の約2゜0倍という著し
い生産性向上を図り得ることがわかる。
The present invention was able to produce approximately 2,000,000 pieces/mjn even with experimental equipment, which shows that it is possible to achieve a remarkable productivity improvement of approximately 2.0 times that of the conventional method.

以上説明した本発明によるときには、複合材料用の基材
に好適な物性を歯え、しかも寸法が極細で表面積の大き
い短繊維を、バラツキなく多量生産することができ、さ
らに加工度の低い安価な原料から直接製造することがで
き、機械や工具も簡単であるため、原材料と大差ないコ
ストで提供できるなどのすぐれた効果が得られる。
According to the present invention as described above, short fibers having physical properties suitable for a base material for composite materials, ultrafine dimensions and a large surface area can be produced in large quantities without variation, and can be produced at low cost with a low degree of processing. It can be manufactured directly from raw materials, and the machines and tools are simple, so it can be provided at a cost that is not much different from that of raw materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る金属短繊維製造法の一実施例を示
す斜視図、第2図は繊維生成機構を示す拡大断面図、第
3図は本発明により得られた短繊維の部分的拡大斜視図
、第4図は本発明における製造条件と短繊維生成域の関
係を示すグラフ、第5図は送りと断面積の関係を示すグ
ラフ、第6図はすくい角と断面積と関係を示すグラフ、
第7図は本発明による短繊維生産性を示すグラフである
。 1・・・柱状ブロック、3・・工具、6・・・短繊維、
O・・・工具すくい角、f・・・送り、■・・・切削速
度。
FIG. 1 is a perspective view showing an example of the method for producing short metal fibers according to the present invention, FIG. 2 is an enlarged cross-sectional view showing the fiber production mechanism, and FIG. 3 is a partial view of the short metal fibers obtained by the present invention. An enlarged perspective view, FIG. 4 is a graph showing the relationship between manufacturing conditions and short fiber production area in the present invention, FIG. 5 is a graph showing the relationship between feed and cross-sectional area, and FIG. 6 is a graph showing the relationship between rake angle and cross-sectional area. Graph showing,
FIG. 7 is a graph showing short fiber productivity according to the present invention. 1... Columnar block, 3... Tool, 6... Short fiber,
O...Tool rake angle, f...Feed, ■...Cutting speed.

Claims (1)

【特許請求の範囲】 金属短繊維を得るにあたり、原料として黄銅のような延
性の低い材料の柱状ブロックを用い、この柱状ブロック
を、製造すべき繊維長さに対応する切込み量でかつ切削
速度約86〜276m/min、送り量約0.05〜0
.03mm/rev、工具すくい角約0〜−40°の各
範囲内で下記条件に設定して旋削し、繊維軸線が切削方
向と直角をなす非円形断面の針状短繊維を分離創成する
ことを特徴とする金属短繊維の製造法。 (1)工具すくい角が約0〜−10°では、全切削速度
範囲において、送り量の下限を約0.07〜0.1mm
/revの範囲でかつ工具すくい角が正に近いほど漸増
した値にとる。 (2)工具すくい角が約−10°を超え約−20°まで
は、切削速度を上限を下回る速度とし、送り量の下限を
約0.05〜0.07mm/revの範囲でかつ工具す
くい角が正に近いほど漸増した値にとる。 (3)工具すくい角が約−20°を超え約−30°まで
は、切削速度を約158m/min以下とし、送り量を
、切削速度が下限では約0.05mm/rev以上、切
削速度が約158m/minでは送り量を約0.05〜
0.75mm/revの間、切削速度が下限から約15
8m/minの間では、約0.05mm/rev以上で
切削速度が速く工具すくい角が負に大きいほど小さい値
にとる。 (4)工具すくい角が約−30°を超え負に大きい時は
、切削速度を約158m/min以下とし、送り量を、
切削速度が下限では約0.05〜0.1mm/rev、
切削速度が約158m/minでは送り量を約0.05
〜0.75mm/revの間、切削速度が下限から約1
58m/minの間では、約0.05〜0.1mm/r
evの間で切削速度が速いほど小さい値にとる。
[Claims] To obtain short metal fibers, a columnar block made of a material with low ductility such as brass is used as a raw material, and the columnar block is cut at a cutting depth corresponding to the length of the fiber to be produced and at a cutting speed of approximately 86-276m/min, feed rate approximately 0.05-0
.. Turning was performed under the following conditions within the range of 03 mm/rev and tool rake angle of approximately 0 to -40° to separate and create acicular short fibers with a non-circular cross section whose fiber axis was perpendicular to the cutting direction. Characteristic manufacturing method of short metal fibers. (1) When the tool rake angle is approximately 0 to -10°, the lower limit of the feed rate is approximately 0.07 to 0.1 mm in the entire cutting speed range.
/rev and the value gradually increases as the tool rake angle becomes more positive. (2) When the tool rake angle exceeds about -10° and reaches about -20°, the cutting speed should be lower than the upper limit, the lower limit of the feed rate should be in the range of about 0.05 to 0.07 mm/rev, and the tool rake angle should be lower than the upper limit. The closer the angle is to positive, the more gradually the value is taken. (3) When the tool rake angle is more than about -20° and up to about -30°, the cutting speed should be about 158 m/min or less, and the feed rate should be about 0.05 mm/rev or more when the cutting speed is at the lower limit, and the cutting speed should be about 0.05 mm/rev or more when the cutting speed is at the lower limit. At approximately 158m/min, the feed amount should be approximately 0.05~
Between 0.75mm/rev, the cutting speed is approximately 15% from the lower limit.
Between 8 m/min and approximately 0.05 mm/rev or more, the faster the cutting speed and the more negative the tool rake angle, the smaller the value. (4) When the tool rake angle is negative and exceeds about -30°, reduce the cutting speed to about 158 m/min or less and reduce the feed rate.
The cutting speed is approximately 0.05 to 0.1 mm/rev at the lower limit,
When the cutting speed is approximately 158 m/min, the feed rate is approximately 0.05
~0.75mm/rev, the cutting speed is approximately 1 from the lower limit
Between 58m/min, approximately 0.05~0.1mm/r
ev, the faster the cutting speed is, the smaller the value is taken.
JP31230887A 1987-12-11 1987-12-11 Manufacture of metallic short fiber Granted JPS63245332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31230887A JPS63245332A (en) 1987-12-11 1987-12-11 Manufacture of metallic short fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31230887A JPS63245332A (en) 1987-12-11 1987-12-11 Manufacture of metallic short fiber

Publications (2)

Publication Number Publication Date
JPS63245332A true JPS63245332A (en) 1988-10-12
JPH0426969B2 JPH0426969B2 (en) 1992-05-08

Family

ID=18027686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31230887A Granted JPS63245332A (en) 1987-12-11 1987-12-11 Manufacture of metallic short fiber

Country Status (1)

Country Link
JP (1) JPS63245332A (en)

Also Published As

Publication number Publication date
JPH0426969B2 (en) 1992-05-08

Similar Documents

Publication Publication Date Title
Zhu et al. Evaluation of novel tool geometries in dry drilling aluminium 2024-T351/titanium Ti6Al4V stack
Aramcharoen et al. Size effect and tool geometry in micromilling of tool steel
EP2024121B1 (en) Method of producing nanocrystalline chips
EP0030606B1 (en) Production of short metal fibers
Mantle et al. Surface integrity and fatigue life of turned gamma titanium aluminide
Ibrahim et al. The effect of dry machining on surface integrity of titanium alloy Ti-6Al-4V ELI
CA2671711C (en) Process of producing nanocrystalline bodies
US4560622A (en) Steel fiber for reinforcing concrete and production thereof
Hajiahmadi Burr size investigation in micro milling of stainless steel 316L
Li et al. Machined channel quality and tool life using cermet micro-mill in micro-milling aluminum alloy
WO2001077398A1 (en) Forged scroll part and production method therefor
Gobivel et al. Machinability studies on the turning of magnesium metal matrix composites
Heidari et al. Increasing wear resistance of copper electrode in electrical discharge machining by using ultra-fine-grained structure
JPS63245332A (en) Manufacture of metallic short fiber
CN85102569A (en) The natural chip breaking lathe tool of finish turning stainless steel-like parts
Liu et al. Production of long metal fibers using a combined method of microsaw turning and pulling
JPS6317571B2 (en)
JP2003019542A (en) Method for producing mold for casting
Zhao et al. Influence of Thermogenetic Effect on Machinability of IN718 Alloy Made by Additive–Subtractive Integrated Manufacturing
Bai et al. Wear and breakage behaviors of PCD small-diameter end-mill: a case study on machining 2A12 aluminum alloy
Isa et al. Experimental investigation of cutting parameters effect on surface roughness during wet and dry turning of low carbon steel material
RU2221667C1 (en) Apparatus for cutting wire by blanks
Mohid et al. Chip pattern, burr and surface roughness in laser assisted micro milling of Ti6Al4V using micro ball end mill
YEMUL et al. Literature review on tool wear in turning operation of aluminium
CN109676154A (en) A kind of silicon carbide whisker reinforced aluminum matrix composites method for turning