JPS6317571B2 - - Google Patents

Info

Publication number
JPS6317571B2
JPS6317571B2 JP11734879A JP11734879A JPS6317571B2 JP S6317571 B2 JPS6317571 B2 JP S6317571B2 JP 11734879 A JP11734879 A JP 11734879A JP 11734879 A JP11734879 A JP 11734879A JP S6317571 B2 JPS6317571 B2 JP S6317571B2
Authority
JP
Japan
Prior art keywords
cutting speed
approximately
rev
feed rate
rake angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11734879A
Other languages
Japanese (ja)
Other versions
JPS5645336A (en
Inventor
Takeo Nakagawa
Kyoshi Suzuki
Masuo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP11734879A priority Critical patent/JPS5645336A/en
Publication of JPS5645336A publication Critical patent/JPS5645336A/en
Publication of JPS6317571B2 publication Critical patent/JPS6317571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 本発明は短繊維とりわけ高弾性率、高い耐摩耗
性、電気及び熱の良導性および良好なぬれ性と焼
結性などの特性を備え、複合材料や多孔質焼結材
料の基材として用いられるのに適した銅合金の極
細短繊維の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The short fibers of the present invention have properties such as high elastic modulus, high abrasion resistance, good electrical and thermal conductivity, and good wettability and sinterability, and are suitable for use in composite materials and porous sintered materials. The present invention relates to a method for producing ultrafine short fibers of copper alloy suitable for use as a base material for binding materials.

繊維とりわけ金属繊維は、熱伝導性や導電性な
どの特性からクラツチ、ブレーキライニングなど
の摩擦材料や強化プラスチツク材、導電性プラス
チツク、シールド材など各種構造用複合材料の基
材として、あるいはフイルタ、ヒートパイプ、熱
交換器構成部品などの多孔質焼結品および空孔内
に異種材料を含浸または混入させた吸音材、遮音
材、オイレスメタル、研削材などの基材として広
い用途が見込まれている。
Fibers, especially metal fibers, have properties such as thermal conductivity and electrical conductivity, so they can be used as friction materials such as clutches and brake linings, as base materials for various structural composite materials such as reinforced plastics, conductive plastics, and shielding materials, as well as for filters and heat exchangers. It is expected to be widely used as a base material for porous sintered products such as pipes and heat exchanger components, as well as sound absorbing materials with different materials impregnated or mixed into the pores, sound insulating materials, Oiles metal, and abrasive materials. .

ところでこの種用途に使われる金属繊維は、一
般に直径が100ミクロン以下、長さが10mm以下と
いうように細小短繊維であつてしかも引張り強度
など良好な物性を備えていることが要求される。
かかる短繊維を得る場合、従来では一般に、鋳造
インゴツトを圧延して線材を作り、これを出発原
料としてダイスなどで引抜きを行い、この引き抜
きと焼鈍とを幾度となく繰り返すことで所期の直
径まで延ばし、こうして細く伸ばした長繊維を寸
断する方法が採られていた。
By the way, the metal fibers used for this type of application are generally required to be short and fine fibers with a diameter of 100 microns or less and a length of 10 mm or less, and to have good physical properties such as tensile strength.
To obtain such short fibers, the conventional method is to roll a cast ingot to make a wire rod, use this as a starting material and draw it with a die, etc., and repeat this drawing and annealing several times until the desired diameter is reached. The method used was to stretch the fibers and then shred the long fibers.

しかしこの方法では、目的繊維を得るまでに圧
延―引抜き―焼鈍―引抜き―寸断という非常に手
間のかかる工程を要するため生産性が低く、しか
も圧延工程や引き抜き、焼鈍の各工程毎に大掛り
な設備を要することなどもあつて、製造コストが
極めて高くなる不具合があつたものである。
However, this method requires a very labor-intensive process of rolling, drawing, annealing, drawing, and shredding to obtain the desired fibers, resulting in low productivity.Moreover, each step of rolling, drawing, and annealing requires a large-scale process. There were some drawbacks, such as the need for equipment, which led to extremely high production costs.

本発明は前記した従来の極細金属短繊維製造法
の欠点を除去するために研究して創案されたもの
で、その目的とするところは、首記の如き特性を
備えた銅合金の極細短繊維をきわめて簡単、安価
に効率良く多量生産できる方法を提供することに
ある。
The present invention was developed through research to eliminate the drawbacks of the conventional method for producing ultrafine short metal fibers, and its purpose is to provide ultrafine short fibers made of copper alloy having the above-mentioned characteristics. The objective is to provide a method that allows for extremely simple, inexpensive, and efficient mass production.

また本発明の他の目的は、繊維形状が単純な直
線状でなく、繊維軸線方向の全部または一部に曲
りがあり、複合材料や多孔質焼結成品などの基材
として良好な性状を示す銅合金の異形極細短繊維
を極めて効率よく生産できる方法を提供すること
にある。
Another object of the present invention is that the fiber shape is not a simple straight line, but is curved in whole or in part in the fiber axis direction, and exhibits good properties as a base material for composite materials, porous sintered products, etc. It is an object of the present invention to provide a method for producing irregularly shaped ultrafine short fibers of copper alloy very efficiently.

上記目的を達成するため本発明は、黄銅などの
比較的延性の低い銅合金のブロツクを回転させる
と共に、この銅合金ブロツクに、所期の繊維長さ
と等しい長さの複数個の刃部を階段状、凹凸状も
しくは溝を介して並列状に配した工具を当て、所
定の工具すくい角と送りおよび切削速度を設定し
て旋削することにより、各刃部ごとに非円形断面
の極細短繊維を創生するようにし、さらに、同法
を、前記各刃部のすくい面又は/及び逃げ面に曲
面または凹凸を付した工具で実施することによ
り、繊維長さ方向が曲線状もしくは凹凸状になつ
た極細短繊維を各刃部ごとに創生させるようにし
たものである。ただ、本発明はいずれの方法にお
いても、材料の自然な割れを利用して短繊維を創
生するもので、びびり振動や外部からの強制振動
を加える手法は採用しない。
In order to achieve the above object, the present invention rotates a block made of a relatively low ductility copper alloy such as brass, and at the same time, a plurality of blades having a length equal to the desired fiber length are attached to the copper alloy block in steps. By applying tools arranged parallel to each other through shapes, irregularities, or grooves, and turning by setting the specified tool rake angle, feed, and cutting speed, ultrafine short fibers with a non-circular cross section are produced at each cutting edge. Furthermore, by carrying out the same method with a tool having a curved surface or unevenness on the rake face and/or flank face of each of the blade parts, the fiber length direction becomes curved or uneven. The ultra-fine short fibers are created in each blade part. However, in any of the methods of the present invention, short fibers are created by utilizing natural cracks in the material, and methods of applying chatter vibration or forced vibration from the outside are not adopted.

以下本発明を添付図面に基いて具体的に説明す
る。
The present invention will be specifically described below with reference to the accompanying drawings.

第1図と第2図は本発明による銅合金短繊維製
造法の実施例を示すもので、1は短繊維製造用の
原料である銅合金ブロツクであり、この銅合金ブ
ロツクとしては、黄銅で代表される比較的延性の
低いものを鋳造など常法により棒状ないし柱状に
加工したものを用いる。
Figures 1 and 2 show an embodiment of the method for producing short copper alloy fibers according to the present invention. 1 is a copper alloy block which is a raw material for producing short fibers, and this copper alloy block is made of brass. A typical material with relatively low ductility is processed into a rod or column shape by a conventional method such as casting.

銅合金短繊維を得るにあたつては、銅合金ブロ
ツク1の軸線方向端部をチヤツクなどの固持手段
で掴み、この固持手段を介して銅合金ブロツク1
を所定の速度と回転数で回転させると共に、銅合
金ブロツク1の端面11に所定のすくい角θを持
ちかつ刃部に特殊加工を施した工具3の切刃部4
を当接させ、この工具3にブロツク軸線方向への
送りfを与えるか、あるいは、切刃部4を銅合金
ブロツク1の周面12に当接させてブロツク軸線
と直角方向への送りを与える。
In order to obtain copper alloy short fibers, the axial end of the copper alloy block 1 is grasped with a holding means such as a chuck, and the copper alloy block 1 is held through this holding means.
The cutting edge portion 4 of the tool 3 is rotated at a predetermined speed and number of rotations, and has a predetermined rake angle θ on the end face 11 of the copper alloy block 1 and has a specially processed blade portion.
The cutting edge 4 is brought into contact with the circumferential surface 12 of the copper alloy block 1 to give a feed f in the direction of the block axis, or the cutting edge 4 is brought into contact with the circumferential surface 12 of the copper alloy block 1 to give a feed in the direction perpendicular to the block axis. .

このようにすれば、第2a図から明らかなよう
に、銅合金ブロツク1の回転と工具3の送りfに
応じて切刃部4のすくい面7に銅合金ブロツクの
薄い層5が堆積し始め、これが一定に達したとこ
ろで不安定現象により割れ10が入つて剪断分離
され、切込みlに相当する長さLの針状短繊維6
が創生される。
In this way, as is clear from FIG. 2a, a thin layer 5 of the copper alloy block begins to accumulate on the rake face 7 of the cutting edge 4 in response to the rotation of the copper alloy block 1 and the feed f of the tool 3. , when this reaches a certain level, cracks 10 occur due to an unstable phenomenon and are sheared and separated, resulting in acicular short fibers 6 having a length L corresponding to the cut l.
is created.

しかし、このとき、工具すくい角θ、切削速度
Vおよび送りfが適切でないと、掻き集められた
薄い層がすくい面に沿つて長く流出し、湾曲ない
しカール状の流れ型チツプとなつたり、自由面側
に鋸歯状凹凸の連なつた鋸歯型チツプとなり、所
期の短繊維が得られない。
However, at this time, if the tool rake angle θ, cutting speed V, and feed f are not appropriate, the collected thin layer will flow out for a long time along the rake face, resulting in curved or curled flow chips, or the free surface The chips become serrated chips with a series of serrated irregularities on the sides, making it impossible to obtain the desired short fibers.

そこで本発明は、工具すくい角θ、切削速度V
および送りfを所定の条件に設定するもので、す
なわち基本的には、 工具すくい角θ:約0〜−40゜ 切削速度V:約86〜276m/min 送り量f:約0.05〜0.3mm/rev とするものである。
Therefore, the present invention provides a tool rake angle θ, a cutting speed V
and feed f to predetermined conditions, basically, Tool rake angle θ: Approximately 0 to -40° Cutting speed V: Approximately 86 to 276 m/min Feed rate f: Approximately 0.05 to 0.3 mm/ rev.

まず、工具すくい角は繊維生成に大きな影響を
与える。通常の切削に用いられる工具は、機械本
体の動力負荷を低減させるためにすくい角を正側
に大きくとつて流れ型切り屑の排出を促し、かつ
作業者の安全対策から刃先にブレーカーを設けて
長く連なる流れ型切り屑を分断する方式を採つて
いる。しかし、このような通常の切削屑は、形状
(長さ、太さ)がバラバラで、複合用繊維として
使用するのに適した特性を有さない。
First, the tool rake angle has a large effect on fiber formation. Tools used for normal cutting have a large rake angle on the positive side to reduce the power load on the machine body to encourage the discharge of flowing chips, and are equipped with a breaker at the cutting edge for worker safety. A method is used to break up long flowing chips. However, such ordinary cutting chips vary in shape (length, thickness) and do not have characteristics suitable for use as composite fibers.

本発明は、切削の通念からすると有害とされて
いる負のすくい角を持つ工具を用い、この工具に
より、削られてすくい面7に掻き集められて堆積
した銅合金片5′を強く圧縮し、材料の自然な割
れ(剪断)を促すことにより繊維を生成させるよ
うにしたものであり、この理由から本発明は、工
具すくい角の上限を0゜としたのである。
The present invention uses a tool with a negative rake angle, which is considered to be harmful according to the conventional wisdom of cutting, and uses this tool to strongly compress the copper alloy pieces 5' that have been scraped and accumulated on the rake face 7. Fibers are generated by promoting natural cracking (shearing) of the material, and for this reason, the upper limit of the tool rake angle is set to 0° in the present invention.

ただし、工具すくい角を極度に負に大きくする
と、送り量の大きい領域では鋸歯状のチツプが生
じやすくなり、送り量の小さい領域では流れ型の
チツプとなる。したがつてすくい角の下限を−
40゜としたものであり、0〜−40゜において細くか
つ硬い繊維を生成することができる。
However, if the tool rake angle is made extremely negative, serrated chips tend to occur in areas where the feed rate is large, and flow-type chips occur in areas where the feed rate is small. Therefore, the lower limit of rake angle is −
40°, and thin and hard fibers can be produced at 0 to -40°.

次に送り量は、これを小さくすれば繊維断面積
が小さくなる傾向を示し、送りを小さくし、すく
い角を負に大きくするほど細い短繊維とすること
ができる。ただ、あまり送りを小さくすると、切
刃部4から離れるときに繊維の長さ方向の側縁の
連なりが生じやすくなり、流れ型のチツプとなる
ので、すくい角および切削速度との関係において
適切な範囲に設定すべきである。本発明者等の実
地に検討したところでは、すくい角が上記範囲内
において、送りは最低でも約0.05mm/revが必要
であつた。また、上限は断面積の小さな短繊維を
作る目的から約0.3mm/revである。
Next, as the feed amount is decreased, the fiber cross-sectional area tends to become smaller, and the smaller the feed and the more negative the rake angle, the thinner the short fibers can be. However, if the feed rate is too small, the side edges in the longitudinal direction of the fibers tend to form a series when leaving the cutting edge 4, resulting in a flowing chip. Should be set to a range. According to actual studies conducted by the present inventors, it was found that the feed rate should be at least about 0.05 mm/rev when the rake angle is within the above range. Furthermore, the upper limit is approximately 0.3 mm/rev for the purpose of producing short fibers with a small cross-sectional area.

次に切削速度は、生産性に影響を与え、切削速
度が速いほど繊維生産本数を増加することができ
る。しかし反面、切削速度が速いほど繊維生成域
は狭くなる。これは、切削速度の増加により素材
の破断ひずみが増し、チツプが分離しにくくなる
と考えられる。一般に工具すくい角が0〜−40゜、
送り量が0.05mm/rev以上では、工業的生産の面
とチツプ分離性の点を考慮すると、約86〜
276m/minである。
Next, the cutting speed affects productivity, and the faster the cutting speed, the more fibers can be produced. However, on the other hand, the faster the cutting speed is, the narrower the fiber generation area becomes. This is thought to be due to an increase in the cutting speed, which increases the fracture strain of the material and makes it difficult for the chips to separate. Generally, the tool rake angle is 0 to -40°,
When the feed rate is 0.05mm/rev or more, it is approximately 86~
The speed is 276m/min.

以上述べたところが基本的条件であるが、本発
明者らが実地に検討したところ、さらに前記基本
的条件の枠内で、工具すくい角と送り量と切削速
度の関係を次のように設定すると最も効果的であ
ることがわかつた。すなわち、 工具すくい角が約0〜−10゜では、全切削速
度範囲において、送り量の下限を約0.07〜0.1
mm/revの範囲でかつ工具すくい角が正に近い
ほど漸増した値にとる。
The above are the basic conditions, but the inventors actually investigated and found that within the framework of the above basic conditions, the relationship between the tool rake angle, feed amount, and cutting speed is set as follows. It was found to be the most effective. In other words, when the tool rake angle is approximately 0 to -10°, the lower limit of the feed amount is approximately 0.07 to 0.1 in the entire cutting speed range.
mm/rev and the value gradually increases as the tool rake angle becomes more positive.

工具すくい角が約−10゜を超え約−20゜まで
は、切削速度を上限を下回る速度とし、送り量
の下限を、約0.05〜0.07mm/revの範囲でかつ
工具すくい角が正に近いほどまた切削速度が速
いほど漸増した値にとる。
When the tool rake angle is more than about -10° and up to about -20°, the cutting speed should be lower than the upper limit, and the lower limit of the feed rate should be within the range of about 0.05 to 0.07 mm/rev and the tool rake angle is close to positive. The value increases gradually as the cutting speed increases.

工具すくい角が約−20゜を超え約−30゜まで
は、切削速度を約158m/min以下とし、切削
速度が下限では送り量を約0.05mm/rev以上、
切削速度が約158m/minでは送り量を約0.05〜
0.075mm/revの間、切削速度が下限から約
158m/minの間では、送り量を約0.05mm/rev
以上でかつ送り量の上限を切削速度が速く工具
すくい角が負に大きいほど小さい値にとる。
When the tool rake angle exceeds approximately -20° and reaches approximately -30°, the cutting speed should be approximately 158 m/min or less, and when the cutting speed is at the lower limit, the feed rate should be approximately 0.05 mm/rev or more,
When the cutting speed is approximately 158m/min, the feed rate should be approximately 0.05~
During 0.075mm/rev, the cutting speed is from the lower limit to approx.
Between 158m/min, the feed rate is approximately 0.05mm/rev.
In addition, the upper limit of the feed rate is set to a smaller value as the cutting speed is faster and the tool rake angle is more negative.

工具すくい角が約−30゜を超え負に大きい時
は、切削速度を約158m/min以下とし、切削
速度が下限では送り量を約0.05〜0.1mm/revの
間、切削速度が約158m/minでは送り量を約
0.05〜0.075mm/revの間、切削速度が下限から
約158m/minの間では、送り量を約0.05〜0.1
mm/revの間で切削速度が速いほど小さい値に
とる。
When the tool rake angle is negative and exceeds approximately -30°, the cutting speed is set to approximately 158 m/min or less, and when the cutting speed is at the lower limit, the feed rate is approximately 0.05 to 0.1 mm/rev, and the cutting speed is approximately 158 m/min. min sets the feed amount to approx.
When the cutting speed is between 0.05 and 0.075 mm/rev and the cutting speed is between the lower limit and about 158 m/min, the feed rate should be adjusted to about 0.05 to 0.1.
Between mm/rev, the faster the cutting speed, the smaller the value.

このような条件の設定により、所期の銅合金短
繊維を歩留良く生産することができる。
By setting such conditions, the desired copper alloy short fibers can be produced with a high yield.

さらに本発明は、上記に加え、切刃部に特殊加
工した工具を用いることが特徴である。この工具
とは、第3図ないし第10図に示すように製造目
的の繊維長さに等しい長さlの刃部31を複数個
階段状、凹凸状もしくは溝を介して並列状に配し
たものである。
Furthermore, in addition to the above, the present invention is characterized by using a specially machined tool for the cutting edge portion. As shown in Figures 3 to 10, this tool has a plurality of blade parts 31 with a length l equal to the length of the fiber to be manufactured, arranged in a step-like shape, in a concave-convex shape, or in a parallel manner through grooves. It is.

まず、第3図の実施例は、切刃部4の一端から
他端に長さlごとに切欠き32を形成することで
傾斜状の刃部31を作り、各刃部31に所定のす
くい角θと横逃げ角λを与え、切欠き32には繊
維の分断をよくするため、第3a図のように所定
の切欠き量mを持たせたものである。
First, in the embodiment shown in FIG. 3, an inclined blade part 31 is created by forming notches 32 every length l from one end of the cutting blade part 4 to the other end, and a predetermined rake is formed on each blade part 31. The angle θ and the lateral relief angle λ are given, and the cutout 32 has a predetermined cutout amount m as shown in FIG. 3a in order to improve the separation of the fibers.

第4図の実施例は、工具ホルダ8の先端部にそ
れぞれが所期の繊維長さに等しい長さlの刃部8
1を持つチツプ82を階段状に取付け、隣合うチ
ツプに第3図の切欠き量に相当する所定の段差m
を付けたものである。この第4図の実施例では、
各チツプ毎あるいは所定のチツプグループ毎に所
定のすくい角θを設定することができるため、旋
削に伴う銅合金ブロツク1の径の減少による周速
の変化にうまく対応でき、径の大きい銅合金ブロ
ツクから一度に大量の銅合金短繊維を創生でき
る。
In the embodiment shown in FIG. 4, blade portions 8 each having a length l equal to the desired fiber length are provided at the tip of the tool holder 8.
Chips 82 with 1 are installed in a stepped manner, and adjacent chips are provided with a predetermined step m corresponding to the notch amount shown in FIG.
This is the one with the . In this embodiment of FIG. 4,
Since a predetermined rake angle θ can be set for each chip or for each predetermined chip group, it is possible to effectively cope with changes in peripheral speed due to a decrease in the diameter of the copper alloy block 1 due to turning, and it is possible to adjust the rake angle θ for each chip or for each chip group. A large amount of short copper alloy fibers can be created at once.

次いで第5図は、第3図と第4図の刃部が銅合
金ブロツク軸線に対し傾斜しているのに対し、各
刃部31を銅合金ブロツク軸線と垂直に構成し、
各刃部31のあいだを傾斜状の切欠き32で結ん
だものである。第6図は第5図のものをスローア
ウエイ形にしたものである。
Next, in FIG. 5, while the blade portions in FIGS. 3 and 4 are inclined with respect to the axis of the copper alloy block, each blade portion 31 is configured perpendicular to the axis of the copper alloy block,
Each blade part 31 is connected by an inclined notch 32. FIG. 6 shows a throw-away version of the one shown in FIG. 5.

第7図は切刃部4に凹凸状の刃部を設けたもの
で、すなわち、所期の繊維長さに等しい長さlを
持つ方形状ないし梯形状の刃部31を交互に突出
凹入させたものである。第8図はこれをスローア
ウエイ形にしたものである。
In FIG. 7, the cutting edge 4 is provided with a concave and convex blade part, that is, a rectangular or ladder-shaped blade part 31 having a length l equal to the desired fiber length is alternately protruded and recessed. This is what I did. FIG. 8 shows this in a throw-away type.

第9図は傾斜状の切刃部4に所期の繊維長さに
相当する間隔で直角状の溝33を形成し、これに
より傾斜状の複数個の刃部31を並列状に配した
ものである。
In FIG. 9, right-angled grooves 33 are formed in the slanted cutting edge 4 at intervals corresponding to the desired fiber length, thereby arranging a plurality of slanted blades 31 in parallel. It is.

第10図aないしdは、旋削方向を銅合金ブロ
ツクの周面12にとり、送りを半径方向にとつた
場合に好適な切刃部4を示すもので、その構成は
既述したものと同じなので、同符号を示すに止め
説明は省略する。
Figures 10a to 10d show cutting edges 4 suitable when the turning direction is set on the circumferential surface 12 of the copper alloy block and the feed is set in the radial direction, and its configuration is the same as that described above. , the same reference numerals are shown and the explanation will be omitted.

第11図a,bは本発明の第2発明に使用する
工具の実施例を示すもので、第3図ないし第10
図における切刃部4を構成する各刃部31のすく
い面7又は/及び逃げ面7′を曲面9としたり、
あるいは曲線、直線またはそれらの組合せによる
凹凸面9′としたものである。なお、第11図は
その若干例を示すものであつて、これに限定され
るものではないのは勿論である。
Figures 11a and 11b show examples of the tool used in the second invention of the present invention, and Figures 3 to 10
The rake face 7 and/or flank face 7' of each blade part 31 constituting the cutting edge part 4 in the figure is made into a curved surface 9,
Alternatively, the uneven surface 9' may be formed by a curve, a straight line, or a combination thereof. Note that FIG. 11 shows some examples, and it goes without saying that the invention is not limited to these.

いずれにしても、本発明は、前記第3図ないし
第11図に例示されるような工具3を用い、銅合
金ブロツク1を旋削するものである。こうすれ
ば、銅合金ブロツク1はこれに接する工具3の複
数個の刃部31ごとに表面の薄い層が連続的に掻
き集められるが、銅合金ブロツク1が比較的延性
が低い材質で、しかも前記したような所定の工具
すくい角と送り量および切削速度が設定されてい
るので、連続的に流出して流れ型切り屑あるいは
鋸歯状切り屑となつたりせず、掻き集められた薄
い層が一定の量まで盛り上がり圧縮されたところ
で、掻き集められた薄い層と銅合金ブロツク表面
層とのほぼ界面にそつて割れが入り、この割れに
沿つて瞬間的に破断分離され、第2図で模式的に
示すように、切刃部4を構成する各刃部31,3
1のすくい面7から、繊維軸が切削方向と直角
で、非円形断面の硬い銅合金短繊維6として順次
放出されるものである。第2図は各銅合金短繊維
6が隣合う同志連結されないことを強調して示し
ている。
In any case, according to the present invention, a copper alloy block 1 is turned using a tool 3 as illustrated in FIGS. 3 to 11. In this way, a thin layer on the surface of the copper alloy block 1 is continuously scraped off by each of the plurality of blades 31 of the tool 3 in contact with the copper alloy block 1, but the copper alloy block 1 is made of a material with relatively low ductility; The predetermined tool rake angle, feed rate, and cutting speed are set, so that the thin layer that is raked is maintained at a constant rate, rather than being continuously flowed out and forming flowing chips or serrated chips. When the copper alloy block swells up to a certain amount and is compressed, a crack appears almost along the interface between the scraped thin layer and the surface layer of the copper alloy block, and the copper alloy block is instantaneously broken and separated along this crack, as schematically shown in Figure 2. As shown in FIG.
1, the fiber axis is perpendicular to the cutting direction, and hard copper alloy short fibers 6 having a non-circular cross section are sequentially released from the rake face 7 of the cutter. FIG. 2 emphasizes that the copper alloy short fibers 6 are not connected to each other.

そして、第11図のように各刃部31,31の
すくい面7又は/及び逃げ面7′に曲面9や凹凸
面9′を形成した場合には、それら曲面9や凹凸
面9′により掻き集められた表層が塑性変形され
るので、単純な直線状でなく、繊維軸線方向の全
部または一部が湾曲しあるいは屈曲した異形の銅
合金短繊維6′を、銅合金ブロツク1の広い領域
から同時に多数連続創生することができる。この
短繊維は引き抜き抵抗や絡み合い性が良好なの
で、自由面が全長にわたり粗面で表面積が大きい
こととあいまち、複合用基材や多孔質焼結品用基
材等として好適なものとなる。
If a curved surface 9 or an uneven surface 9' is formed on the rake surface 7 and/or flank surface 7' of each blade part 31, 31 as shown in FIG. As the surface layer is plastically deformed, the copper alloy short fibers 6', which are not simply linear but have irregular shapes that are curved or bent in whole or in part in the fiber axis direction, are simultaneously removed from a wide area of the copper alloy block 1. Can be created in large numbers in succession. These short fibers have good pull-out resistance and entanglement properties, and this combined with the fact that the free surface is rough over the entire length and has a large surface area makes it suitable for use as a base material for composites, a base material for porous sintered products, and the like.

前記銅合金短繊維6,6′は、各刃部31,3
1の長さlを任意に設定することにより比較的長
いものから短いものまで自由に製造することがで
き、また、銅合金短繊維6,6′の太さ(断面積)
は、切刃部4のすくい角、送り量および切削速度
をさきに規定した範囲内で調整することにより調
整可能である。
The copper alloy short fibers 6, 6' are connected to each blade portion 31, 3.
By arbitrarily setting the length l of 1, it is possible to freely manufacture from relatively long to short lengths, and the thickness (cross-sectional area) of copper alloy short fibers 6, 6'
can be adjusted by adjusting the rake angle, feed rate, and cutting speed of the cutting edge 4 within the ranges specified above.

なお、工具3として刃部31の傾斜したもの
(第3図,第4図,第9図等)を用いた場合は、
刃面と銅合金ブロツク軸線の直交線とで構成され
る傾き角α(第9図参照)により、実際の旋削太
さ(A′)はfcosαとなるため、工具の送り量を小
さくすることなく繊維太さを小さくすることがで
き、極細短繊維製造上有利である。
In addition, when using a tool 3 with an inclined blade part 31 (Fig. 3, Fig. 4, Fig. 9, etc.),
The actual turning thickness (A') is fcosα due to the inclination angle α (see Fig. 9), which is formed by the orthogonal line between the cutting surface and the axis of the copper alloy block. The fiber thickness can be reduced, which is advantageous in producing ultra-fine staple fibers.

次に本発明の具体例を示す。 Next, specific examples of the present invention will be shown.

〔実施例 1〕 原料として外径60mm、長さ200mmの快削黄銅
棒(Cu:53.78%、Pb:2.98%、Fe:0.23%、
Fe+Sn:0.3%、残部Zn、引張り強さ38.4Kg/
mm2、伸び23.6%、絞り25.2%)を用い、工具と
して第3図に示す形状のもの(材質:P種超
硬、l:5mm、刃部数:3)を用い、びびりを
生じない突出長さにして刃物台に固定し、平均
切削速度86〜276m/min、工具送り量0.021〜
0.306mm/rev、工具すくい角10〜−40゜の条件
で第1図の方法により極細短繊維を製造した。
[Example 1] A free-cutting brass rod with an outer diameter of 60 mm and a length of 200 mm (Cu: 53.78%, Pb: 2.98%, Fe: 0.23%,
Fe+Sn: 0.3%, balance Zn, tensile strength 38.4Kg/
mm 2 , elongation 23.6%, reduction of area 25.2%), and a tool with the shape shown in Figure 3 (Material: P class carbide, l: 5 mm, number of blades: 3), and a protrusion length that does not cause chatter. Fixed on the tool post, average cutting speed 86~276m/min, tool feed rate 0.021~
Ultrafine short fibers were produced by the method shown in Figure 1 under the conditions of 0.306 mm/rev and tool rake angle of 10 to -40°.

このときの短繊維製造に及ぼす旋削条件の影
響を第12図に示す。第12図において、斜線
で囲まれた領域で所期の極細短繊維が得られ
た。各切削速度表示から右の実線で囲まれた部
分がそれぞれ繊維生成域である。
FIG. 12 shows the influence of turning conditions on short fiber production at this time. In FIG. 12, the desired ultrafine short fibers were obtained in the area surrounded by diagonal lines. The area surrounded by solid lines to the right of each cutting speed display is the fiber generation area.

この第12図の結果から、前述のように、切
削速度約86〜276m/min、工具すくい角約0
〜−40゜、送り量約0.05〜0.3mm/revの条件を満
たし、かつ、切削速度と工具すくい角および送
り量に前記〜の関係を持たせることが必要
であることがわかる。
From the results shown in Fig. 12, as mentioned above, the cutting speed is approximately 86 to 276 m/min, and the tool rake angle is approximately 0.
It can be seen that it is necessary to satisfy the conditions of -40°, feed rate of approximately 0.05 to 0.3 mm/rev, and to have the above-mentioned relationship between cutting speed, tool rake angle, and feed rate.

それ以外の領域つまりすくい角が極度に負に
大きくかつ送り量も大きい領域では鋸歯状チツ
プとなり、また、すくい角が大きいか送り量が
小さすぎても流れ型のチツプとなり、目的の短
繊維を生成することが難しい。
In other areas, that is, in areas where the rake angle is extremely negative and the feed rate is large, the chips will be serrated, and if the rake angle is large or the feed rate is too small, the chips will be flow-type chips, which will remove the target short fiber. Difficult to generate.

第13図は、本発明における極細短繊維の断
面積と製造条件との関係を示すもので、送りを
小さくするほど断面積を小さくすることができ
ること(本実験では断面積0.005mm2のものまで
製造できた)、送りが大きい領域では切削速度
と工具すくい角が断面積に影響を及ぼすことが
わかる。
Figure 13 shows the relationship between the cross-sectional area of ultrafine short fibers and manufacturing conditions in the present invention, and shows that the smaller the feed, the smaller the cross-sectional area (in this experiment, the cross-sectional area was up to 0.005 mm2) . It can be seen that cutting speed and tool rake angle affect the cross-sectional area in the region where the feed rate is large.

第14図は、本発明による短繊維製造の生産
性を検討した結果を示している。この図から本
発明はきわめて生産性が高く、送りを小さくし
切削速度を大きくすると最も生産性の良くなる
ことがわかる。
FIG. 14 shows the results of examining the productivity of short fiber production according to the present invention. From this figure, it can be seen that the present invention has extremely high productivity, and that the productivity is highest when the feed is reduced and the cutting speed is increased.

なお、本発明者等は平フライスやエンドミルな
どによる切削方式で銅合金極細短繊維の製造も実
験してみたが、それら方式では断続加工となるた
め、本発明にくらべて著しく生産性が悪く、また
工具自体の回転による断続的な重切削であるた
め、工具の運動が複雑であると共に、機械や工具
にわずかな狂いがあつても直ちに製造条件が変化
する。そのため極細の短繊維をバラツキなく製造
できなかつた。本発明は、工具を回転させず銅合
金ブロツクの軸線方向またはこれと直角方向の送
りを与える単純な方法であるため、機械や工具の
精度上の問題が少なく、断面積や物性のバラツキ
の少ない良質の極細短繊維を製造できる。
In addition, the present inventors have also experimented with producing copper alloy ultrafine short fibers by cutting methods using flat milling cutters, end mills, etc., but these methods require interrupted processing, so the productivity is significantly lower than that of the present invention. Furthermore, since heavy cutting is performed intermittently due to the rotation of the tool itself, the movement of the tool is complicated, and even if there is a slight deviation in the machine or tool, the manufacturing conditions will immediately change. Therefore, it was not possible to produce ultra-fine staple fibers without any variation. The present invention is a simple method that feeds the copper alloy block in the axial direction or in the direction perpendicular to it without rotating the tool, so there are fewer problems with the accuracy of machines and tools, and there is less variation in cross-sectional area and physical properties. Can produce high quality ultra-fine short fibers.

〔実施例 2〕 原料として実施例1と同じ材質、寸法のもの
を用い、工具として、第4図に示す矩形状のス
ローアウエイチツプ(材質:P種超硬、12.7mm
口×4.8mmt)の逃げ面に第15図のごとく稲
妻状の凹凸面(l1:3mm、l2:3mm、l3:6.9mm)
を形成したものをホルダに取付け、実施例と同
じ切削条件で異形短繊維を製造してみた。
[Example 2] The same materials and dimensions as in Example 1 were used as the raw materials, and the rectangular throw-away chip shown in Fig. 4 (material: P class carbide, 12.7 mm) was used as the tool.
As shown in Figure 15, the flank surface of the mouth (opening x 4.8 mm) has a lightning-shaped uneven surface (l 1 : 3 mm, l 2 : 3 mm, l 3 : 6.9 mm).
The formed fiber was attached to a holder, and irregularly shaped short fibers were manufactured using the same cutting conditions as in the example.

その結果、実施例1と同じく、第12図に示
す領域で所期の異形短繊維が各チツプ毎に生成
された。第16図a,bは得られた短繊維の外
観と断面形状を示している。なお、7―3黄
銅、砲金、鉛青銅鋳物についても前述した製造
条件で好結果を示した。
As a result, as in Example 1, the desired deformed short fibers were produced in each chip in the area shown in FIG. Figures 16a and 16b show the appearance and cross-sectional shape of the short fibers obtained. Note that 7-3 brass, gun metal, and lead bronze castings also showed good results under the above-mentioned manufacturing conditions.

以上説明した本発明の第1発明によるときに
は、高弾性率、高い耐摩耗性、電気及び熱の良導
性および良好なぬれ性と焼結性などの特性を備
え、複合材料や繊維冶金用の基材として用いられ
るのに適した極細の短繊維を、極めて効率良く、
かつ物性や断面積等にバラツキを少なくして工業
的に高能で多量生産することができ、製造工程が
非常に単純で機械や工具の精度上の問題も少ない
ため、加工度の低い原料を用いることができるこ
ととあいまち製造コストを大幅に低減できるとい
うすぐれた効果が得られる。
According to the first aspect of the present invention described above, it has characteristics such as high elastic modulus, high abrasion resistance, good electrical and thermal conductivity, and good wettability and sinterability, and is suitable for composite materials and fiber metallurgy. Ultra-fine short fibers suitable for use as base materials are produced extremely efficiently.
Moreover, it can be industrially produced in large quantities with high efficiency by reducing variations in physical properties and cross-sectional area, etc., and the manufacturing process is very simple and there are fewer problems with the accuracy of machines and tools, so raw materials with a low degree of processing are used. This has the advantage of being able to significantly reduce manufacturing costs.

また、本発明の第2発明によるときには、上記
特徴に加え、引き抜き抵抗や絡み合い性の良好な
短繊維を極めて効率良く多量生産することができ
るというすぐれた効果が得られる。
Further, according to the second aspect of the present invention, in addition to the above-mentioned characteristics, an excellent effect can be obtained in that short fibers having good pull-out resistance and entanglement properties can be produced in large quantities extremely efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を概略的に示す斜視
図、第2図は同じくその要部拡大図、第2a図は
本発明の短繊維生成機構を示す原理説明図、第3
図は本発明に使用する工具の一実施例を示す側面
図、第3a図は同じくその一部拡大図、第4図な
いし第10図a,b,c,dは本発明に用いる工
具の他の実施例を示す側面図、第11図a,bは
本発明の工具における刃部と得られた短繊維を示
す斜視図、第12図は本発明の実施例における短
繊維製造適正条件を示すグラフ、第13図は第1
2図の実施例における送りと断面積の関係を示す
グラフ、第14図は本発明による短繊維生産性を
示すグラフ、第15図は本発明の実施例における
工具を示す平面図、第16図a,bは第15図の
工具により得られた短繊維の斜視図と断面図であ
る。 1…銅合金ブロツク、3…工具、6,6′…銅
合金短繊維、7…すくい面、7′…逃げ面、9…
曲面、9′…凹凸面、31…刃部。
FIG. 1 is a perspective view schematically showing one embodiment of the present invention, FIG. 2 is an enlarged view of the main part thereof, FIG. 2a is a principle explanatory diagram showing the short fiber production mechanism of the present invention, and FIG.
The figure is a side view showing one embodiment of the tool used in the present invention, FIG. 3a is a partially enlarged view thereof, and FIGS. 11a and 11b are perspective views showing the blade part of the tool of the present invention and the obtained short fibers, and FIG. 12 shows appropriate conditions for producing short fibers in the embodiment of the present invention. Graph, Figure 13 is the first
FIG. 2 is a graph showing the relationship between feed and cross-sectional area in the embodiment, FIG. 14 is a graph showing short fiber productivity according to the present invention, FIG. 15 is a plan view showing the tool in the embodiment of the present invention, and FIG. 16 a and b are a perspective view and a cross-sectional view of short fibers obtained by the tool of FIG. 15; DESCRIPTION OF SYMBOLS 1... Copper alloy block, 3... Tool, 6, 6'... Copper alloy short fiber, 7... Rake face, 7'... Flank face, 9...
Curved surface, 9′...uneven surface, 31...blade portion.

Claims (1)

【特許請求の範囲】 1 銅合金短繊維を得るにあたり、原料として黄
銅などの比較的延性の低い銅合金からなる金属ブ
ロツクを用いると共に、工具として、製造すべき
繊維長さに等しい長さの刃部を複数個階段状、凹
凸状もしくは溝を介して並列状に配した工具を用
い、切削速度約86〜276m/min、送り量約0.05〜
0.3mm/rev、工具すくい角約0〜−40゜の各範囲
内でしかも送り量と工具すくい角と切削速度とを
下記の条件に設定して旋削し、各刃部ごとに繊維
軸線が切削方向と直角状をなし1本1本が分離独
立した非円形断面の短繊維を創生することを特徴
とする銅合金短繊維の製造法。 工具すくい角が約0〜−10゜では、全切削速
度範囲において、送り量の下限を約0.07〜0.1
mm/revの範囲でかつ工具すくい角が正に近い
ほど漸増した値にとる。 工具すくい角が約−10゜を超え約−20゜まで
は、切削速度を上限を下回る速度とし、送り量
の下限を、約0.05〜0.07mm/revの範囲でかつ
工具すくい角が正に近いほどまた切削速度が速
いほど漸増した値にとる。 工具すくい角が約−20゜を超え約−30゜まで
は、切削速度を約158m/min以下とし、切削
速度が下限では送り量を約0.05mm/rev以上、
切削速度が約158m/minでは送り量を約0.05〜
0.075mm/revの間、切削速度が下限から約
158m/minの間では、送り量を約0.05mm/rev
以上でかつ送り量の上限を切削速度が速く工具
すくい角が負に大きいほど小さい値にとる。 工具すくい角が約−30゜を超え負に大きい時
は、切削速度を約158m/min以下とし、切削
速度が下限では送り量を約0.05〜0.1mm/revの
間、切削速度が約158m/minでは送り量を約
0.05〜0.075mm/revの間、切削速度が下限から
約158m/minの間では、送り量を約0.05〜0.1
mm/revの間で切削速度が速いほど小さい値に
とる。 2 銅合金短繊維を得るにあたり、原料として黄
銅などの比較的延性の低い銅合金からなる金属ブ
ロツクを用いると共に、工具として、製造すべき
繊維長さに等しい長さの刃部を複数個階段状、凹
凸状もしくは溝を介して並列状に配しかつ各刃部
のすくい面又は/及び逃げ面に曲面又は凹凸を付
した工具を用い、切削速度約86〜276m/min、
送り量約0.05〜0.3mm/rev、工具すくい角約0〜
−40゜の各範囲内でしかも送り量と工具すくい角
と切削速度とを下記の条件に設定して旋削し、各
刃部ごとに繊維軸線が切削方向と直角状をなし1
本1本が分離独立した非円形断面でかつ繊維軸線
方向に曲りのある短繊維を創生することを特徴と
する銅合金短繊維の製造法。 工具すくい角が約0〜−10゜では、全切削速
度範囲において、送り量の下限を約0.07〜0.1
mm/revの範囲でかつ工具すくい角が正に近い
ほど漸増した値にとる。 工具すくい角が約−10゜を超え約−20゜まで
は、切削速度を上限を下回る速度とし、送り量
の下限を、約0.05〜0.07mm/revの範囲でかつ
工具すくい角が正に近いほどまた切削速度が速
いほど漸増した値にとる。 工具すくい角が約−20゜を超え約−30゜まで
は、切削速度を約158m/min以下とし、切削
速度が下限では送り量を約0.05mm/rev以上、
切削速度が約158m/minでは送り量を約0.05〜
0.075mm/revの間、切削速度が下限から約
158m/minの間では、送り量を約0.05mm/rev
以上でかつ送り量の上限を切削速度が速く工具
すくい角が負に大きいほど小さい値にとる。 工具すくい角が約−30゜を超え負に大きい時
は、切削速度を約158m/min以下とし、切削
速度が下限では送り量を約0.05〜0.1mm/revの
間、切削速度が約158m/minでは送り量を約
0.05〜0.075mm/revの間、切削速度が下限から
約158m/minの間では、送り量を約0.05〜0.1
mm/revの間で切削速度が速いほど小さい値に
とる。
[Claims] 1. In order to obtain short copper alloy fibers, a metal block made of a copper alloy with relatively low ductility such as brass is used as a raw material, and a blade with a length equal to the length of the fiber to be produced is used as a tool. Cutting speed is approximately 86 to 276 m/min, feed rate is approximately 0.05 to approximately
Turning was performed within the range of 0.3 mm/rev and tool rake angle of approx. 0 to -40°, and the feed amount, tool rake angle, and cutting speed were set to the following conditions, and the fiber axis was cut for each cutting edge. A method for producing copper alloy short fibers, which is characterized by creating short fibers having a non-circular cross section that is perpendicular to the direction and each fiber is separated and independent. When the tool rake angle is approximately 0 to -10°, the lower limit of the feed rate is approximately 0.07 to 0.1 in the entire cutting speed range.
mm/rev and the value gradually increases as the tool rake angle becomes more positive. When the tool rake angle is more than about -10° and up to about -20°, the cutting speed should be lower than the upper limit, and the lower limit of the feed rate should be within the range of about 0.05 to 0.07 mm/rev and the tool rake angle is close to positive. The value increases gradually as the cutting speed increases. When the tool rake angle exceeds approximately -20° and reaches approximately -30°, the cutting speed should be approximately 158 m/min or less, and when the cutting speed is at the lower limit, the feed rate should be approximately 0.05 mm/rev or more,
When the cutting speed is approximately 158m/min, the feed rate should be approximately 0.05~
During 0.075mm/rev, the cutting speed is from the lower limit to approx.
Between 158m/min, the feed rate is approximately 0.05mm/rev.
In addition, the upper limit of the feed rate is set to a smaller value as the cutting speed is faster and the tool rake angle is more negative. When the tool rake angle is negative and exceeds approximately -30°, the cutting speed is set to approximately 158 m/min or less, and when the cutting speed is at the lower limit, the feed rate is approximately 0.05 to 0.1 mm/rev, and the cutting speed is approximately 158 m/min. min sets the feed amount to approx.
When the cutting speed is between 0.05 and 0.075 mm/rev and the cutting speed is between the lower limit and about 158 m/min, the feed rate should be adjusted to about 0.05 to 0.1.
Between mm/rev, the faster the cutting speed, the smaller the value. 2. To obtain short copper alloy fibers, a metal block made of a copper alloy with relatively low ductility such as brass is used as a raw material, and as a tool, a plurality of blades with a length equal to the length of the fiber to be produced are formed in a stepped shape. , a cutting speed of approximately 86 to 276 m/min, using a tool arranged in parallel with an uneven shape or a groove and having a curved surface or an uneven surface on the rake face and/or flank surface of each blade part,
Feed rate approx. 0.05~0.3mm/rev, tool rake angle approx. 0~
Turning was carried out within the range of −40° and with the feed rate, tool rake angle, and cutting speed set to the following conditions, so that the fiber axis of each cutting edge was perpendicular to the cutting direction.1
A method for producing copper alloy short fibers, which is characterized by creating short fibers in which each fiber has a separate, independent, non-circular cross section and is curved in the fiber axis direction. When the tool rake angle is approximately 0 to -10°, the lower limit of the feed rate is approximately 0.07 to 0.1 in the entire cutting speed range.
mm/rev and the value gradually increases as the tool rake angle becomes more positive. When the tool rake angle is more than about -10° and up to about -20°, the cutting speed should be lower than the upper limit, and the lower limit of the feed rate should be within the range of about 0.05 to 0.07 mm/rev and the tool rake angle is close to positive. The value increases gradually as the cutting speed increases. When the tool rake angle exceeds approximately -20° and reaches approximately -30°, the cutting speed should be approximately 158 m/min or less, and when the cutting speed is at the lower limit, the feed rate should be approximately 0.05 mm/rev or more,
When the cutting speed is approximately 158m/min, the feed rate should be approximately 0.05~
During 0.075mm/rev, the cutting speed is from the lower limit to approx.
Between 158m/min, the feed rate is approximately 0.05mm/rev.
In addition, the upper limit of the feed rate is set to a smaller value as the cutting speed is faster and the tool rake angle is more negative. When the tool rake angle is more than about -30° and has a large negative value, the cutting speed should be set to about 158 m/min or less, and when the cutting speed is at the lower limit, the feed rate should be set between about 0.05 and 0.1 mm/rev, and the cutting speed should be set to about 158 m/min. min sets the feed amount to approx.
When the cutting speed is between 0.05 and 0.075 mm/rev and the cutting speed is between the lower limit and about 158 m/min, the feed rate should be adjusted to about 0.05 to 0.1.
Between mm/rev, the faster the cutting speed, the smaller the value.
JP11734879A 1979-09-14 1979-09-14 Preparation of short metal fibers Granted JPS5645336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11734879A JPS5645336A (en) 1979-09-14 1979-09-14 Preparation of short metal fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11734879A JPS5645336A (en) 1979-09-14 1979-09-14 Preparation of short metal fibers

Publications (2)

Publication Number Publication Date
JPS5645336A JPS5645336A (en) 1981-04-25
JPS6317571B2 true JPS6317571B2 (en) 1988-04-14

Family

ID=14709461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11734879A Granted JPS5645336A (en) 1979-09-14 1979-09-14 Preparation of short metal fibers

Country Status (1)

Country Link
JP (1) JPS5645336A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507658A (en) * 2012-09-27 2016-03-10 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme Metal fiber mass and method for producing such mass

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3069915D1 (en) * 1979-12-13 1985-02-14 Japan Res Dev Corp Production of short metal fibers
JPS604619A (en) * 1983-06-20 1985-01-11 Res Dev Corp Of Japan Sintered-fiber type self-lubricating slidable member
US7628099B2 (en) * 2000-10-28 2009-12-08 Purdue Research Foundation Machining method to controllably produce chips with determinable shapes and sizes
WO2011029079A1 (en) 2009-09-05 2011-03-10 M4 Sciences, Llc Control systems and methods for machining operations
US10245652B2 (en) 2012-11-05 2019-04-02 M4 Sciences Llc Rotating tool holder assembly for modulation assisted machining
US10875138B1 (en) 2016-08-09 2020-12-29 M4 Sciences Llc Tool holder assembly for machining system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507658A (en) * 2012-09-27 2016-03-10 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme Metal fiber mass and method for producing such mass

Also Published As

Publication number Publication date
JPS5645336A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
CN102123810B (en) Saw blade and manufacturing method therefor
WO2013161558A1 (en) Tool made of cubic boron nitride sintered body
RU2044606C1 (en) Method of obtaining surfaces with alternative projections and hollows (variants) and tool for its realization
CN1236891C (en) Welding electrode with structural surface
CA2401347C (en) Cutting matrix and method of applying the same
AU2018437433A1 (en) Micro-textured cutter based on silicon brass structure and processing method and application thereof
US4560622A (en) Steel fiber for reinforcing concrete and production thereof
DE102018104005A1 (en) Saw wire and cutting device
JPS6317571B2 (en)
CN105682835A (en) Cutting insert, cutting tool, and cut workpiece production method using these
CN215090921U (en) Cutter for milling laminated material profile of weak rigid member
TWI594838B (en) Wave-patterned monowire for cutting and a method of manufacturing the same
JP2957571B1 (en) Wire for saw wire
JPH05228729A (en) Shaving die
WO2024069383A1 (en) Knife and method for manufacturing knife
JP2007229760A (en) Method for manufacturing double-threaded screw bolt
DE102006035380B4 (en) Manufacturing method for producing a ceramic honeycomb structural body
CN210160540U (en) Fine-tooth diamond thread milling cutter
JPH0426969B2 (en)
Mohid et al. Chip pattern, burr and surface roughness in laser assisted micro milling of Ti6Al4V using micro ball end mill
RU2327549C1 (en) Cutting polyhedral replaceable plate
KR101736657B1 (en) Corrugated monowire for cutting
RU2810276C2 (en) Wire electrode for electrode erosion cutting and method for producing such wire electrode
CN214556975U (en) Cutting blade
CN112917721A (en) Efficient diamond wire saw for cutting brittle material and application thereof