JPH04267553A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH04267553A
JPH04267553A JP5038691A JP5038691A JPH04267553A JP H04267553 A JPH04267553 A JP H04267553A JP 5038691 A JP5038691 A JP 5038691A JP 5038691 A JP5038691 A JP 5038691A JP H04267553 A JPH04267553 A JP H04267553A
Authority
JP
Japan
Prior art keywords
power supply
integrated circuit
semiconductor integrated
diffusion region
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5038691A
Other languages
Japanese (ja)
Inventor
Seiji Endou
円藤   誠二
Yoshio Kajii
芳雄 梶井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5038691A priority Critical patent/JPH04267553A/en
Publication of JPH04267553A publication Critical patent/JPH04267553A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a power supply device for semiconductor integrated circuit which can efficiently supply electric power by utilizing part of the substrate of a large-scale integrated circuit, especially, the signal line wiring area of the substrate as power supply lines. CONSTITUTION:The power supply device of the cell of a semiconductor integrated circuit is constituted by expanding diffusion areas 14-1 and 15-1 in the direction 17 perpendicular to the conventional wiring direction of power supply lines and using the extended diffusion areas 14-2 and 15-2 as power supply lines for the original diffusion areas 14-1 and 15-2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体セルを構成する基
板の一部を電源線として利用する半導体集積回路の電源
供給装置に関する。従来の半導体集積回路に電源を供給
するときアルミニウムなどの電源供給専用の金属線を使
用していたから、信号配線の量が多大になると共に、集
積度を低下させる原因となった。そのため大規模集積回
路を形成するときも、電源供給に配慮し、効率的にレイ
アウトすることの必要性が生じた。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device for a semiconductor integrated circuit that uses a part of a substrate constituting a semiconductor cell as a power supply line. When supplying power to conventional semiconductor integrated circuits, metal wires made of aluminum or other metal wires dedicated to the power supply have been used, which has resulted in a large amount of signal wiring and a reduction in the degree of integration. Therefore, even when forming large-scale integrated circuits, it has become necessary to take power supply into consideration and efficiently lay out the circuits.

【0002】0002

【従来の技術】図9に論理記号で示すようなインバータ
を2個のFETにより構成すると、図10に示す回路図
となり、C−MOS回路で構成するとき上面図で示すと
図11のように形成される。図11に示す範囲を「セル
」と通称している。図10,図11において、1はPチ
ャネルFET、2はNチャネルFET、3は信号入力端
子、4は信号出力端子、5は電源VDD端子、6は電源
VSS端子、7は両FETの共通ゲート電極、8はそれ
ぞれのドレイン電極、9とそれぞれのソース電極を示す
。 集積回路としての図11においては、端子3に入力され
た信号に対し2個のFET1,2は並列的に接続されて
出力端子4に出力する。直流電流に対しては、2個のF
ETは直列的に接続されていることが判る。更に図11
において信号入力端子3とゲート電極7を結ぶ部分と、
電源VDD,VSSの供給線5,6は通常アルミニウム
の金属線で形成しているから、抵抗値は単位面積当たり
0.05Ω程度の低い値である。なお、電源供給線5,
6とドレイン電極8との接続は、○印で示すコンタクト
ホール(接触孔)を介して行われている。
2. Description of the Related Art When an inverter as shown by the logic symbol in FIG. 9 is constructed using two FETs, the circuit diagram becomes as shown in FIG. It is formed. The range shown in FIG. 11 is commonly referred to as a "cell." 10 and 11, 1 is a P-channel FET, 2 is an N-channel FET, 3 is a signal input terminal, 4 is a signal output terminal, 5 is a power supply VDD terminal, 6 is a power supply VSS terminal, and 7 is a common gate of both FETs. The electrodes 8 are respective drain electrodes, and 9 are respective source electrodes. In FIG. 11 as an integrated circuit, two FETs 1 and 2 are connected in parallel and output to an output terminal 4 in response to a signal input to a terminal 3. For direct current, two F
It can be seen that the ETs are connected in series. Furthermore, Figure 11
A portion connecting the signal input terminal 3 and the gate electrode 7 in the
Since the supply lines 5 and 6 of the power supplies VDD and VSS are usually formed of aluminum metal wires, their resistance value is as low as about 0.05 Ω per unit area. In addition, the power supply line 5,
The connection between the drain electrode 6 and the drain electrode 8 is made through a contact hole indicated by a circle.

【0003】なお、図11に示す集積回路では、ソース
電極9の部分は、所謂拡散工程により作成される。拡散
工程とはマスク露光工程の後シリコン基板の表面から、
第3価または第5価の元素を拡散させることをいう。拡
散された領域は3価の元素例えばボロンを拡散させたと
きP形に、5価の元素例えばリンを拡散させたときN形
になる。
In the integrated circuit shown in FIG. 11, the source electrode 9 is formed by a so-called diffusion process. Diffusion process is the process of spreading from the surface of the silicon substrate after the mask exposure process.
This refers to the diffusion of a tertiary or quintiple valent element. The diffused region becomes P-type when a trivalent element such as boron is diffused, and becomes N-type when a pentavalent element such as phosphorus is diffused.

【0004】大規模集積回路では図12に示す構成とな
っている。図12において、10−1,10−2 〜は
集積回路のセルを各別に示す。11は大規模集積回路に
おいて「段」と称する範囲、12−1,12−2 〜は
「段」と「段」との間隔部をいう。13は信号配線、5
,6は電源配線を示す。図12に示すように大規模集積
回路の各段には多数のセルが接続されていて、電源配線
5,6が共通接続されている。段の間隔部12−1,1
2−2 には信号配線13が配線されているため、当然
FETが存在せず且つ複数の配線が所定の間隔を設けら
れて存在している。
A large-scale integrated circuit has a configuration shown in FIG. 12. In FIG. 12, 10-1, 10-2 and 10-2 respectively indicate cells of the integrated circuit. 11 is a range called a "stage" in a large-scale integrated circuit, and 12-1, 12-2 to 12-2 are intervals between "stages". 13 is signal wiring, 5
, 6 indicate power supply wiring. As shown in FIG. 12, a large number of cells are connected to each stage of the large-scale integrated circuit, and power supply wirings 5 and 6 are commonly connected. Step interval part 12-1, 1
Since the signal wiring 13 is wired to 2-2, naturally there is no FET, and a plurality of wires are present at predetermined intervals.

【0005】[0005]

【発明が解決しようとする課題】図11に示す構成では
電源供給線が通っているセルの部分は、信号線を配線す
ることが出来ず、信号線は電源供給線を避けて通る必要
があった。そのためセルの量が多くなってセル内の電源
供給線のみでは充分でないとき、セル外の配線領域にお
ける信号線の配線領域を削って、補助電源線を引き回す
必要があった。そのため信号配線領域としては、補助電
源線の領域を外れて設けるから、益々集積度が低下する
こととなった。即ち、微細技術が向上して微細なセルを
多数使用して、図12に示すような段を形成しても、電
源供給線ばかりを増大させることが必要であり、微細化
に応じた大規模集積回路の面積縮小が思い通りに出来な
い欠点を生じた。
[Problems to be Solved by the Invention] In the configuration shown in FIG. 11, it is not possible to wire a signal line in the part of the cell through which the power supply line runs, and the signal line must avoid the power supply line. Ta. Therefore, when the number of cells increases and the power supply lines inside the cells alone are not sufficient, it is necessary to cut out the signal line wiring area in the wiring area outside the cells and route the auxiliary power line. Therefore, since the signal wiring area is provided outside the area of the auxiliary power supply line, the degree of integration is further reduced. In other words, even if microtechnology improves and a large number of microcells are used to form stages as shown in FIG. 12, it is necessary to increase the number of power supply lines, and large-scale This resulted in the drawback that it was not possible to reduce the area of the integrated circuit as desired.

【0006】本発明の目的は前述の欠点を改善し、大規
模集積回路における基板の一部、特に信号配線領域の部
分を電源供給線として利用することにより、効率的に電
源を供給する装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks and to provide an apparatus for efficiently supplying power by using a part of a substrate in a large-scale integrated circuit, especially a signal wiring area, as a power supply line. It is about providing.

【0007】[0007]

【課題を解決するための手段】図1は本発明の原理構成
を示す図である。図1において、1はPチャネルFET
、2はNチャネルFET、5は電源VDD端子、6は電
源VSS端子、7は両FETの共通ゲート電極、14−
1,15−1 は両FETの拡散領域により形成される
電極,例えばドレイン、14−2,15−2 は本発明
により拡張された拡散領域、16はセルの全体枠、17
は拡散領域の拡張方向を示す矢印である。基板上に電極
を形成した第1の拡散領域14−1,15−1 と、前
記第1の拡散領域14−1,15−1 とはとは異なる
領域に形成された第2の拡散領域14−2,15−2 
とを有する矩形状のセル16を具備し、前記第2の拡散
領域14−2,15−2 は前記セルの対向する二辺に
設けられ、且つ電源線を形成することで構成する。
[Means for Solving the Problems] FIG. 1 is a diagram showing the basic configuration of the present invention. In Figure 1, 1 is a P-channel FET
, 2 is an N-channel FET, 5 is a power supply VDD terminal, 6 is a power supply VSS terminal, 7 is a common gate electrode of both FETs, 14-
1, 15-1 are electrodes formed by the diffusion regions of both FETs, such as drains, 14-2, 15-2 are diffusion regions expanded according to the present invention, 16 is the entire frame of the cell, 17
is an arrow indicating the direction of expansion of the diffusion region. First diffusion regions 14-1, 15-1 in which electrodes are formed on the substrate, and a second diffusion region 14 formed in a region different from the first diffusion regions 14-1, 15-1. -2,15-2
The second diffusion regions 14-2 and 15-2 are provided on two opposing sides of the cell and form a power supply line.

【0008】[0008]

【作用】図1に示すようにFET1,2の電極のうち拡
散工程により形成された領域が、本発明により矢印17
の方向に拡張され、その部分がセルに対しての電源供給
部となっている。即ち、従来基板に対し拡散工程で拡散
した領域部分は抵抗値が高いため、電流を流す配線とし
て利用することは困難であったが、材質の選択により適
用することが可能となった。本発明では上下に電源用拡
散領域を設けることによりセル自体の面積は増大するが
、今までセル内で電源配線内に使用されていた領域が空
くので、従来のようにセル間に配線領域を設ける必要は
ない、セルを敷き詰めれば良く、集積度自体は向上する
[Operation] As shown in FIG. 1, the region formed by the diffusion process among the electrodes of FETs 1 and 2 is
It is expanded in the direction of , and that part serves as the power supply section for the cell. That is, in the conventional substrate, the region diffused in the diffusion process has a high resistance value, so it was difficult to use it as a wiring for flowing current, but it has become possible to use it by selecting the material. In the present invention, the area of the cell itself increases by providing upper and lower power supply diffusion regions, but this frees up the area that was previously used for power supply wiring within the cell, so the wiring area between cells can be reduced as in the past. There is no need to provide one, just lay out the cells, and the degree of integration itself will improve.

【0009】[0009]

【実施例】図2は本発明による拡散領域の製造法を示す
断面図である。図2において、18は基板拡散層、19
は拡散層以外の基板の部分、20はSi(シリコン)基
板の拡散層上においてシリコンと反応できる金属例えば
タングステンが、反応の結果タングステン・シリサイド
となったものを示す。拡散層は従来、単位面積当たり約
50Ωの抵抗値を有していた。前述のようにシリコンと
反応させて得た物を一般にメタルシリサイドと呼ぶが、
その抵抗値は単位面積当たり2〜5Ωである。従来のア
ルミニウム配線と比較してその抵抗値は極めて大きいた
め、シリサイド部分を厚くするなどの処理を施して低抵
抗化することにより、電源電力の供給に使用する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is a cross-sectional view showing a method of manufacturing a diffusion region according to the present invention. In FIG. 2, 18 is a substrate diffusion layer, 19
Reference numeral 20 indicates a portion of the substrate other than the diffusion layer, and 20 indicates a metal that can react with silicon, such as tungsten, on the diffusion layer of the Si (silicon) substrate, resulting in tungsten silicide as a result of the reaction. Diffusion layers have conventionally had a resistance value of about 50 ohms per unit area. As mentioned above, the product obtained by reacting with silicon is generally called metal silicide.
Its resistance value is 2 to 5 Ω per unit area. Since its resistance value is extremely high compared to conventional aluminum wiring, it is used to supply power by applying treatments such as making the silicide portion thicker to lower its resistance.

【0010】図3は本発明を応用した具体的回路として
インバータの構成を示す上面図、図4は図3についての
1点鎖線IV−IV線に沿った断面図、図5は図3につ
いての1点鎖線V−V線に沿った断面図を示す。図3,
図4,図5において、16はセルの全体枠、14−1,
15−1 は従来構成の拡散領域、14−2,15−2
 は拡張された拡散領域を示し、14−1〜15−2が
総てメタルシリサイド材で形成される。21−1,21
−2,21−3は配線一層目の範囲、22は配線二層目
の範囲を示す。図3において、配線一層目21−3を入
力端子とし、印加されたデータがインバートされて、配
線二層目22より出力される。このとき拡散領域14−
2,15−2 が動作上必要な電力を供給する部分とな
る。なお、図5において,25はコンタクト窓を示し、
配線一層目の21−1,21−3 と、ドレイン電極と
して動作する拡散領域14−1とを接続している。
FIG. 3 is a top view showing the configuration of an inverter as a specific circuit to which the present invention is applied, FIG. 4 is a sectional view taken along the dashed line IV--IV in FIG. 3, and FIG. A sectional view taken along the dashed line V-V is shown. Figure 3,
In FIGS. 4 and 5, 16 is the entire frame of the cell, 14-1,
15-1 is a diffusion region of conventional configuration, 14-2, 15-2
indicates an expanded diffusion region, and all of 14-1 to 15-2 are formed of metal silicide material. 21-1, 21
-2 and 21-3 indicate the range of the first layer of wiring, and 22 indicates the range of the second layer of wiring. In FIG. 3, the first wiring layer 21-3 is used as an input terminal, and the applied data is inverted and output from the second wiring layer 22. At this time, the diffusion region 14-
2 and 15-2 are the parts that supply the power necessary for operation. In addition, in FIG. 5, 25 indicates a contact window,
The first wiring layer 21-1, 21-3 is connected to the diffusion region 14-1 which acts as a drain electrode.

【0011】図3の構成では論理セルを構成する部分が
一点鎖線IV−IVにおいて横方向に結合したことと等
価である。そのため図3に示すインバータの場合を含み
、他の回路について縦続接続する構成を採るとき、電力
供給部としての拡散領域14−2,15−2 が図の横
方向に延長されることは当然である。
The configuration shown in FIG. 3 is equivalent to connecting the parts constituting the logic cell in the horizontal direction along the dashed line IV--IV. Therefore, when adopting a configuration in which other circuits are connected in cascade, including the case of the inverter shown in FIG. 3, it is natural that the diffusion regions 14-2 and 15-2 as power supply sections are extended in the horizontal direction of the figure. be.

【0012】次に図6は本発明の他の応用例の構成を示
す図である。図6において、23−1,23−2 はそ
れぞれ従来のセル1 組を全体的に示す。図6ではセル
23−2においてVSSと示す電力供給用の拡散領域1
5−2が、セル23−1におけるVSS用拡散領域のう
ち領域15−2と共通化され、拡散領域のうち延長され
た領域15−2を共用している。そのため集積回路とし
て図における縦方向の長さが縮小できる。この構成は電
圧源VSSの供給路を共用することについて説明したが
、電圧源VDDを共用する場合も起こり得る。
Next, FIG. 6 is a diagram showing the configuration of another application example of the present invention. In FIG. 6, 23-1 and 23-2 respectively indicate a set of conventional cells as a whole. In FIG. 6, the diffusion region 1 for power supply shown as VSS in the cell 23-2
5-2 is shared with the region 15-2 of the VSS diffusion region in the cell 23-1, and shares the extended region 15-2 of the diffusion region. Therefore, the length of the integrated circuit in the vertical direction in the figure can be reduced. Although this configuration has been described for sharing the supply path of the voltage source VSS, it may also happen that the voltage source VDD is shared.

【0013】図7は図6の構成をリング発振器2組とし
て具体的に示す図で、図8はその等価回路を示す図であ
る。図7,図8において、24−1,24−2は信号入
力端子(発振器のため出力端子に兼用している) 、2
5−1,25−2 は信号出力端子(発振器のため外部
端子としては使用しない) 、26−1,26−2 は
帰還回路を示す。27−1,27−1 は他のセルに対
し必要となる信号線、28はリング発振器または他のセ
ルに対し必要な場合に電力を供給する例えばアルミニウ
ムの補助電源線を示す。29は基板とのコンタクト部で
、補助電源線28下の任意の場所に配置できるものを示
す。30は補助電源線28と必要箇所とのコンタクト部
を示す。電源コンタクト部30は補助電源線28の下全
体にわたり、細長く開けることが出来る。基板とのコン
タクト部30は補助電源線28の下でなくても、拡散領
域15−2の上であれば何処でも配置できる。図7にお
いては、3個のインバータの入・出力端を帰還回路26
により結合して得たリング発振器が2組形成されていて
、動作に必要な電源VSSの供給は拡散層15−2によ
り各発振器に共通して行われている。この場合、従来の
図12に示すような段間の間隔部が無く、集積回路の大
きさが縮小できる。
FIG. 7 is a diagram specifically showing the configuration of FIG. 6 as two sets of ring oscillators, and FIG. 8 is a diagram showing its equivalent circuit. In FIGS. 7 and 8, 24-1 and 24-2 are signal input terminals (also used as output terminals for the oscillator), 2
5-1 and 25-2 are signal output terminals (not used as external terminals because they are oscillators), and 26-1 and 26-2 are feedback circuits. 27-1, 27-1 are signal lines necessary for other cells, and 28 is an auxiliary power line made of aluminum, for example, which supplies power to the ring oscillator or other cells when necessary. Reference numeral 29 denotes a contact portion with the substrate, which can be placed anywhere below the auxiliary power supply line 28. Reference numeral 30 indicates a contact portion between the auxiliary power supply line 28 and a necessary location. The power contact portion 30 can be opened in a long and narrow manner all the way under the auxiliary power line 28 . The contact portion 30 with the substrate does not need to be placed under the auxiliary power supply line 28, but can be placed anywhere above the diffusion region 15-2. In FIG. 7, the input and output terminals of the three inverters are connected to the feedback circuit 26.
Two sets of ring oscillators are formed by combining the ring oscillators, and the power supply VSS necessary for operation is commonly supplied to each oscillator through the diffusion layer 15-2. In this case, there is no space between stages as shown in the conventional example shown in FIG. 12, and the size of the integrated circuit can be reduced.

【0014】なお以上の説明において、「電源」「電源
供給線」の用語は「接地」「接地線」を含んで使用して
いる。また回路の具体的構成は、インバータ・リング発
振器以外に、ナンドゲート・ノアゲートなどに適用でき
ることは勿論である。
In the above description, the terms "power supply" and "power supply line" are used to include "ground" and "ground line." Further, the specific configuration of the circuit can of course be applied to a NAND gate, a NOR gate, etc. in addition to an inverter ring oscillator.

【0015】[0015]

【発明の効果】このようにして本発明によると、、従来
電源供給線として独立的に設けた配線ではなく、拡張し
た拡散領域を電源供給線として利用しているから、電源
供給線を独立的に設けることなく、集積回路の大きさを
縮小することが出来る。従来は電源供給線が配置されて
いたため、集積回路の段間に信号線を配置することが困
難であったが、本発明によると信号線を容易に通すこと
が出来て設計が容易となり、且つ集積回路を更に小型化
できる。
As described above, according to the present invention, the extended diffusion region is used as the power supply line instead of the conventional wiring provided independently as the power supply line. It is possible to reduce the size of the integrated circuit without having to provide an integrated circuit. Conventionally, power supply lines were arranged, making it difficult to arrange signal lines between the stages of an integrated circuit, but according to the present invention, signal lines can be easily passed through, making design easier. Integrated circuits can be further miniaturized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の原理構成を示す図である。FIG. 1 is a diagram showing the principle configuration of the present invention.

【図2】本発明による拡散領域の製造法を示す図である
FIG. 2 shows a method of manufacturing a diffusion region according to the invention.

【図3】本発明を応用した具体的回路を示す上面図であ
る。
FIG. 3 is a top view showing a specific circuit to which the present invention is applied.

【図4】図3についての断面図である。FIG. 4 is a cross-sectional view of FIG. 3;

【図5】図3についての断面図である。FIG. 5 is a cross-sectional view of FIG. 3;

【図6】本発明の他の応用例を示す図である。FIG. 6 is a diagram showing another application example of the present invention.

【図7】図6の構成を具体的に示す構成図である。FIG. 7 is a configuration diagram specifically showing the configuration of FIG. 6;

【図8】図7の等価回路図である。8 is an equivalent circuit diagram of FIG. 7. FIG.

【図9】インバータの論理記号図である。FIG. 9 is a logical symbol diagram of an inverter.

【図10】図9についての回路構成図である。FIG. 10 is a circuit configuration diagram regarding FIG. 9;

【図11】図9についてのC−MOS回路による構成図
である。
FIG. 11 is a configuration diagram of the C-MOS circuit in FIG. 9;

【図12】図11に対応する大規模集積回路における構
成図である。
FIG. 12 is a configuration diagram of a large-scale integrated circuit corresponding to FIG. 11;

【符号の説明】[Explanation of symbols]

1  PチャネルFET 2  NチャネルFET 5  電源VDD端子 6  電源VSS端子 7  両FETの共通ゲート電極 14−1,15−1   両FETの拡散領域により形
成される電極14−2,15−2   本発明により拡
張された拡散領域16  セルの全体枠
1 P-channel FET 2 N-channel FET 5 Power supply VDD terminal 6 Power supply VSS terminal 7 Common gate electrodes of both FETs 14-1, 15-1 Electrodes 14-2, 15-2 formed by diffusion regions of both FETs According to the present invention Expanded diffusion area 16 Entire frame of cell

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  基板上に電極を形成した第1の拡散領
域(14−1)(15−1)と、前記第1の拡散領域(
14−1)(15−1)とは異なる領域に形成された第
2の拡散領域(142)(15−2) とを有する矩形
状のセル(16)を具備し、前記第2の拡散領域(14
−2)(15−2)は前記セル(16)の対向する二辺
に設けられ、且つ電源線を形成することを特徴とする半
導体集積回路。
1. A first diffusion region (14-1) (15-1) in which an electrode is formed on a substrate, and a first diffusion region (14-1) (15-1) having an electrode formed on a substrate;
14-1) a second diffusion region (142) (15-2) formed in a different region from the second diffusion region (15-1); (14
-2) A semiconductor integrated circuit characterized in that (15-2) is provided on two opposing sides of the cell (16) and forms a power supply line.
【請求項2】  請求項1記載の第2の拡散領域は金属
とシリコン基板とを反応させて得たシリサイドにより構
成したことを特徴とする半導体集積回路。
2. A semiconductor integrated circuit according to claim 1, wherein the second diffusion region is made of silicide obtained by reacting a metal with a silicon substrate.
【請求項3】  請求項1記載の電源線は集積回路に対
する高電位側電源、低電位側電源の2種類であって、そ
れらの電源線のうち同種のものを共用して2個のセルを
相接して形成したことを特徴とする半導体集積回路。
3. The power supply line according to claim 1 is of two types, a high potential side power supply and a low potential side power supply for the integrated circuit, and the same type of power supply line is shared to serve two cells. A semiconductor integrated circuit characterized by being formed in contact with each other.
JP5038691A 1991-02-22 1991-02-22 Semiconductor integrated circuit Withdrawn JPH04267553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5038691A JPH04267553A (en) 1991-02-22 1991-02-22 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5038691A JPH04267553A (en) 1991-02-22 1991-02-22 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH04267553A true JPH04267553A (en) 1992-09-24

Family

ID=12857431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5038691A Withdrawn JPH04267553A (en) 1991-02-22 1991-02-22 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH04267553A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355948B2 (en) 1999-06-11 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device
JP2006253375A (en) * 2005-03-10 2006-09-21 Nec Electronics Corp Semiconductor integrated circuit device, and design method, apparatus, and program of
JP2008004790A (en) * 2006-06-23 2008-01-10 Oki Electric Ind Co Ltd Standard cell
JP2009032961A (en) * 2007-07-27 2009-02-12 Renesas Technology Corp Semiconductor device, and manufacturing method thereof
US8168487B2 (en) 2006-09-28 2012-05-01 Hrl Laboratories, Llc Programmable connection and isolation of active regions in an integrated circuit using ambiguous features to confuse a reverse engineer
US8258583B1 (en) 2002-09-27 2012-09-04 Hrl Laboratories, Llc Conductive channel pseudo block process and circuit to inhibit reverse engineering
US8524553B2 (en) 2002-12-13 2013-09-03 Hrl Laboratories, Llc Integrated circuit modification using well implants

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355948B2 (en) 1999-06-11 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device
US8258583B1 (en) 2002-09-27 2012-09-04 Hrl Laboratories, Llc Conductive channel pseudo block process and circuit to inhibit reverse engineering
US8524553B2 (en) 2002-12-13 2013-09-03 Hrl Laboratories, Llc Integrated circuit modification using well implants
JP2006253375A (en) * 2005-03-10 2006-09-21 Nec Electronics Corp Semiconductor integrated circuit device, and design method, apparatus, and program of
JP2008004790A (en) * 2006-06-23 2008-01-10 Oki Electric Ind Co Ltd Standard cell
US8168487B2 (en) 2006-09-28 2012-05-01 Hrl Laboratories, Llc Programmable connection and isolation of active regions in an integrated circuit using ambiguous features to confuse a reverse engineer
US8564073B1 (en) 2006-09-28 2013-10-22 Hrl Laboratories, Llc Programmable connection and isolation of active regions in an integrated circuit using ambiguous features to confuse a reverse engineer
JP2009032961A (en) * 2007-07-27 2009-02-12 Renesas Technology Corp Semiconductor device, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2001352047A (en) Semiconductor integrated circuit
JPH0434309B2 (en)
JP2822781B2 (en) Master slice type semiconductor integrated circuit device
JPH04267553A (en) Semiconductor integrated circuit
JP3057975B2 (en) Integrated circuit wiring
JPH10116916A (en) Cell for forming integrated circuit and method for producing the same
US5081059A (en) Method of forming semiconductor integrated circuit using master slice approach
JPH0258871A (en) Borderless masterslice semiconductor device
JP2000223575A (en) Design of semiconductor device, semiconductor device and its manufacture
JPS60110137A (en) Semiconductor device
JPS60130138A (en) Semiconductor ic device
JPS5861645A (en) Master slice ic device
JP2687490B2 (en) Logic integrated circuit
EP0102795B1 (en) A method of manufacturing a semiconductor device using the master slice technique
JPS62263653A (en) Manufacture of semiconductor integrated circuit device
JPH02280353A (en) Semiconductor integrated circuit
JP3091317B2 (en) Semiconductor device and manufacturing method thereof
JPH05198680A (en) Semiconductor integrated circuit device
JPH0362551A (en) Standard cell and standard cell row
JPH07153926A (en) Semiconductor integrated circuit device
JPS6272143A (en) Pattern formation of semiconductor integrated circuit
JPS6350851Y2 (en)
JP2002026298A (en) Semiconductor device
JPH11330434A (en) Semiconductor device
WO1992002957A1 (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514