JPH0426557A - Production of silicon nitride-based sintered body - Google Patents

Production of silicon nitride-based sintered body

Info

Publication number
JPH0426557A
JPH0426557A JP2131955A JP13195590A JPH0426557A JP H0426557 A JPH0426557 A JP H0426557A JP 2131955 A JP2131955 A JP 2131955A JP 13195590 A JP13195590 A JP 13195590A JP H0426557 A JPH0426557 A JP H0426557A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
raw material
si3n4
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2131955A
Other languages
Japanese (ja)
Inventor
Yoshio Ukiyou
良雄 右京
Shigetaka Wada
重孝 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2131955A priority Critical patent/JPH0426557A/en
Publication of JPH0426557A publication Critical patent/JPH0426557A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce average grain size and to enhance strength by adding yttria and AlN to Si3N4 contg. beta-Si3N4 and sintering them. CONSTITUTION:Si3N4 of <=1.0mum average particle size contg. 5-95wt.% beta-Si3N4 is prepd. and 3-15wt.%, in total, of 1.0-5.0wt.% yttria of <=1.0mum average particle size and 2.0-10wt.% AlN of <=1.0mum average particle size are added to the Si3N4. They are mixed and sintered at 1,650-1,900 deg.C in an inert gaseous atmosphere or in vacuum to obtain an Si3N4-based sintered body of <=2mum average grain size. The alpha'-Si3N4 content of this sintered body is represented by 0.05-0.50 ratio of presence measured by X-ray diffraction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原料としてβ−窒化珪素を含有する窒化珪素
を用いてα −窒化珪素を含有する焼結体を製造する方
法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a sintered body containing α-silicon nitride using silicon nitride containing β-silicon nitride as a raw material. .

〔従来の技術〕[Conventional technology]

窒化珪素(812N4 )の焼結体は、強度か高く、耐
熱衝撃性、耐食性が優れるために、例えばガスタービン
部材、熱交換材料、ベアリング等に用いられつつある。
Sintered bodies of silicon nitride (812N4) have high strength, excellent thermal shock resistance, and corrosion resistance, and are therefore being used for, for example, gas turbine components, heat exchange materials, bearings, and the like.

しかしなから、5jsNiは単独では焼結か困難なため
に、通常MgO,MgAzt O,、A1.03、Y2
O,等の酸化物を焼結助剤として添加し、焼結している
。これらの焼結助剤を用いた焼結は、焼結時に生ずる液
相を媒介としだ液相焼結によるものと考えられている。
However, since it is difficult to sinter 5jsNi alone, it is usually used with MgO, MgAztO,, A1.03, Y2
Oxides such as O, etc. are added as sintering aids for sintering. Sintering using these sintering aids is thought to be based on liquid phase sintering mediated by the liquid phase generated during sintering.

多くの場合、焼結後液相はガラス相として焼結体中に残
存し、高温強度、耐クリープ性なとの高温特性を低下さ
せる。
In many cases, the liquid phase remains in the sintered body as a glass phase after sintering, degrading high-temperature properties such as high-temperature strength and creep resistance.

また、二〇液相の存在により、S L 2 N<結晶粒
の粒成長が起こりやすく強度を低下させる原因となる。
Furthermore, due to the presence of the liquid phase, grain growth of S L 2 N<crystal grains is likely to occur, causing a decrease in strength.

このために、焼結助剤の添加量を少なくし、液相の量を
少なくすると、粒成長は多少は抑えられるが、逆に焼結
性か著しく低下する。
For this reason, if the amount of added sintering aid is reduced and the amount of liquid phase is reduced, grain growth can be suppressed to some extent, but on the other hand, sinterability is significantly reduced.

一方、S i z Naに種々の元素か固溶したもの(
一般にサイアロンと呼ばれるもの)か注目されている。
On the other hand, solid solutions of various elements in S iz Na (
(commonly called Sialon) is attracting attention.

例えば、α−8izNa構造で、Si位置にAA’が、
N位置に0が置換し、更に格子間位置に他の元素(Li
、Mg、Ca、Y等)が侵入型として固溶した、一般弐
Mエ (S i、 Ai) rt(0、N)+s(0<
X≦2、MはLi、Mg、Ca、Y等のうちの少なくと
も1種)で表されるα−3isN4 (一般にα−サイ
アロンと呼ばれる)あるいはβ−3isNa構造で、S
i位置に1が、N位置にOが固溶し、一般式Sls−z
Afm Ox N5−s  (0<z≦4.2)で表さ
れるβ−3tsNs(一般にβ−サイアロンと呼ばれる
)が注目されている。
For example, in the α-8izNa structure, AA' is at the Si position,
0 is substituted at the N position, and another element (Li
, Mg, Ca, Y, etc.) in solid solution as an interstitial type.
X≦2, M is at least one of Li, Mg, Ca, Y, etc.) α-3isN4 (generally called α-sialon) or β-3isNa structure,
1 is in solid solution at the i position, O is in solid solution at the N position, and the general formula Sls-z
β-3tsNs (generally called β-sialon) represented by Afm Ox N5-s (0<z≦4.2) is attracting attention.

上記の中でもα −3j s Naが含まれてなる窒化
珪素質焼結体は、高温特性に優れ、高温構造用材料とし
て注目されている。
Among the above, silicon nitride sintered bodies containing α-3j s Na have excellent high-temperature properties and are attracting attention as materials for high-temperature structures.

α −3tsN4が含まれてなる窒化珪素質焼結体を製
造する方法としては、α−3isN4の含有量の非常に
高い(95%以上)の5iaN4原料を使用し、これを
焼結している。これは、αSi*N4のα −3izN
*およびβ−3is Naあるいはβ  SizNnへ
の変態を利用したものである。
As a method for producing a silicon nitride sintered body containing α-3tsN4, a 5iaN4 raw material with a very high content of α-3isN4 (95% or more) is used and this is sintered. . This is α −3izN of αSi*N4
* and utilizes transformation into β-3is Na or β-SizNn.

二のように原料としてα−3is Naの含有量の高い
窒化珪素原料を用いる方法では、該窒化珪素原料が高価
なためにコストか高くなってしまう。
In the method of 2, which uses a silicon nitride raw material with a high content of α-3is Na as a raw material, the cost increases because the silicon nitride raw material is expensive.

しかも、上記原料により製造した窒化珪素質焼結体は、
生成するα−3i*Naの結晶粒が大きく、強度等が低
下してしまう。
Moreover, the silicon nitride sintered body manufactured from the above raw materials is
The resulting α-3i*Na crystal grains are large, resulting in a decrease in strength and the like.

〔第1発明の説明〕 本第1発明(特許請求の範囲に記載の発明)は、上記従
来技術の欠点に鑑みなされたものであり、原料としてα
−窒化珪素の含有量の高い窒化珪素原料を使用すること
なく、結晶粒の小さなα′窒化珪素を含有する窒化珪素
質焼結体を製造する方法を提供することを目的とする。
[Description of the first invention] The first invention (the invention described in the claims) has been made in view of the drawbacks of the above-mentioned prior art, and uses α as a raw material.
- It is an object of the present invention to provide a method for manufacturing a silicon nitride sintered body containing α' silicon nitride with small crystal grains without using a silicon nitride raw material with a high silicon nitride content.

本第1発明の窒化珪素質焼結体の製造方法は、β−窒化
珪素を含有する窒化珪素にイツトリアおよび憲化アルミ
ニウムを添加するとともにこれらを焼成することにより
α −窒化珪素を含有する焼結体を形成することを特徴
とするものである。
The method for producing a silicon nitride sintered body of the first invention includes adding yttria and aluminum nitride to silicon nitride containing β-silicon nitride and firing them. It is characterized by forming a body.

本第1発明によれば、イツトリアおよび窒化アルミニウ
ムがβ−窒化珪素に作用して、焼成時にβ−窒化珪素が
α −窒化珪素に変態し、α窒化珪素を含有する焼結体
を形成する。しかも、生成するα −窒化珪素の結晶粒
が小さくなる。
According to the first invention, yttria and aluminum nitride act on β-silicon nitride, and during firing, β-silicon nitride transforms into α-silicon nitride, forming a sintered body containing α-silicon nitride. Moreover, the crystal grains of the produced α-silicon nitride become smaller.

このため、原料として高価なα−窒化珪素を多量に含有
する窒化珪素原料を使用することがないため低コストで
1.結晶粒の小さいα′−窒化珪素を含有する焼結体を
形成することができる。
Therefore, since silicon nitride raw materials containing a large amount of expensive α-silicon nitride are not used as raw materials, the cost is low. A sintered body containing α'-silicon nitride with small crystal grains can be formed.

〔第1発明のその他の発明の説明〕 本第1発明をより具体的にしたその他の発明を説明する
[Description of other inventions of the first invention] Other inventions that make the first invention more specific will be described.

本発明は、β−窒化珪素を含有する窒化珪素にイツトリ
アおよび窒化アルミニウムを添加する(第1工程)とと
もに上記原料組成物を焼成する(第2工程)。
In the present invention, itria and aluminum nitride are added to silicon nitride containing β-silicon nitride (first step), and the raw material composition is fired (second step).

本$1工程において、β−窒化珪素を含有する窒化珪素
(M化珪素原料)にイツトリアおよび窒化アルミニウム
を添加して原料組成物を調製する。
In this $1 step, a raw material composition is prepared by adding ytria and aluminum nitride to silicon nitride (M silicon raw material) containing β-silicon nitride.

窒化珪素(SizNn)原料としては、β−3t、Na
を含有するものである。なお、該窒化珪素原料には、β
−3t s N4以外にα−8isNa等が含まれてい
てもよい。β−5i2r’J4の含有量としては、窒化
珪素原料全体に対して5重量%以上が望ましい。5重量
%以上であると、β−3i2N4以外の5i=N、がβ
−8isNaあるいはβ−3isNaに変態し、その際
に伴う粒成長、または窒化珪素原料中に含まれるα−5
i2 Naからβ−3isN4あるいはβ−3isNa
への変態に伴う粒成長を抑制して微細な結晶粒を形成す
ることができる。また、原料中にα−3i*Naが多い
と、焼成の際にこのα−3ixN4が生成した液相中に
溶解し、β−5i=N。
As silicon nitride (SizNn) raw materials, β-3t, Na
It contains. Note that the silicon nitride raw material contains β
-3t s In addition to N4, α-8isNa etc. may be included. The content of β-5i2r'J4 is desirably 5% by weight or more based on the entire silicon nitride raw material. If it is 5% by weight or more, 5i=N other than β-3i2N4 is β
-8isNa or β-3isNa, resulting in grain growth or α-5 contained in the silicon nitride raw material
i2 Na to β-3isN4 or β-3isNa
It is possible to form fine crystal grains by suppressing grain growth accompanying the transformation to . Moreover, if there is a large amount of α-3i*Na in the raw material, this α-3ixN4 will dissolve in the liquid phase produced during firing, and β-5i=N.

あるいはβ’ −S 1 s Naとなって再析出し、
結晶粒の粒成長が進行してしまい、粗い結晶粒で強度の
低い焼結体になる。従って、α−3isN4の含有量は
窒化珪素原料全体に対して95%以下とするのが望まし
い。
Or it re-precipitates as β'-S 1 s Na,
Grain growth of crystal grains progresses, resulting in a sintered body with coarse crystal grains and low strength. Therefore, it is desirable that the content of α-3isN4 is 95% or less based on the entire silicon nitride raw material.

β−3jsNaを含有する窒化珪素原料に添加するイツ
トリアおよび窒化アルミニウムは、焼成時に窒化珪素原
料中のβ−3i * Naをα−3i*Naに変態させ
る作用を行うものである。しかも、α −3izN4の
結晶粒を小さ(し、さらにα −31zN4以外の5i
zN4の結晶粒も小さくする。
Ittria and aluminum nitride added to the silicon nitride raw material containing β-3jsNa have the effect of transforming β-3i*Na in the silicon nitride raw material into α-3i*Na during firing. Moreover, the crystal grains of α-3izN4 are made smaller (and furthermore, the grains of 5i other than α-31zN4 are
The crystal grains of zN4 are also made smaller.

イツトリア(Y、○、)および窒化アルミニウム(Af
N)の添加量としては、窒化珪素原料、Y、0.および
AINを含めた原料組成物全体に対してY、O,か1,
0〜5,0重量%、INが2.0〜IO重量%が望まし
い。また、Y、 0、とAINとの添加量の合計は、上
記原料組成物全体に対して3〜15重量%が望ましい。
Ittria (Y,○,) and aluminum nitride (Af
The amount of N) added is silicon nitride raw material, Y, 0. and Y, O, or 1, for the entire raw material composition including AIN.
Desirably, the IN is 0 to 5.0% by weight, and the IN is 2.0 to IO. Further, the total amount of Y, 0, and AIN added is preferably 3 to 15% by weight based on the entire raw material composition.

この範囲より添加量が少ないと焼結性が著しく低下し、
また、この範囲より添加量が多いと粒成長が著しくなり
、強度が低下してしまう。
If the amount added is less than this range, sinterability will decrease significantly,
Furthermore, if the amount added is greater than this range, grain growth will become significant and the strength will decrease.

原料組成物は、粉末の形状で使用するのがよい。The raw material composition is preferably used in powder form.

この場合、β−8i2 Naを含有する窒化珪素原料粉
末の平均粒径は1.0μm以下の範囲、Y。
In this case, the average particle diameter of the silicon nitride raw material powder containing β-8i2Na is in the range of 1.0 μm or less, Y.

0、粉末の平均粒径も1.0μm以下の範囲、AiN粉
末の平均粒径も1.0μm以下の範囲か望ましい。
0, the average particle size of the powder is preferably in the range of 1.0 μm or less, and the average particle size of the AiN powder is also preferably in the range of 1.0 μm or less.

原料組成物には、β−5izNnを含有する窒化珪素原
料、Y、01 、およびAfN以外にYN、α −3i
s Na等の焼結助剤等が含まれていてもよい。
The raw material composition includes YN, α-3i in addition to the silicon nitride raw material containing β-5izNn, Y, 01, and AfN.
A sintering aid such as Na may be included.

原料組成物は、混合して使用するのがよい。混合方法と
しては、有機溶媒を用いる湿式混合法等がある。
The raw material compositions are preferably used in combination. Examples of the mixing method include a wet mixing method using an organic solvent.

第2工程においては、原料組成物を焼成してα−S i
 t Naを含有する窒化珪素質焼結体を形成する。
In the second step, the raw material composition is fired to obtain α-Si
A silicon nitride sintered body containing tNa is formed.

焼成方法としては、常圧焼結法、ガス圧焼結法、熱間静
水圧焼結(HIP)法等を用いることができる。焼成雰
囲気としては、N、ガス、アルゴンガス等の不活性ガス
雰囲気、あるいは真空中等の非酸化性雰囲気とするのが
望ましい。焼成温度は、1650〜1900℃が望まし
い。焼成温度が1650℃より低いと十分に緻密化が進
行せず、1900℃を越えると粒成長が著しくなり、十
分な強度が得られない。
As the firing method, a normal pressure sintering method, a gas pressure sintering method, a hot isostatic pressure sintering (HIP) method, etc. can be used. The firing atmosphere is preferably an inert gas atmosphere such as N, gas, or argon gas, or a non-oxidizing atmosphere such as vacuum. The firing temperature is preferably 1650 to 1900°C. If the firing temperature is lower than 1650°C, densification will not proceed sufficiently, and if it exceeds 1900°C, grain growth will become significant and sufficient strength will not be obtained.

なお、β−3iiI’L、焼結助剤の添加量、焼成条件
を制御して、焼結体中のα −3ixN4の含有割合、
結晶粒の大きさ、および組成を制御することができる。
In addition, by controlling the amount of β-3iiI'L, the amount of sintering aid added, and the firing conditions, the content ratio of α-3ixN4 in the sintered body,
Grain size and composition can be controlled.

製造する窒化珪素質焼結体は、α −3isN4の含有
量か、そのX線回折による存在比で0゜05〜0.50
、残部β−3iiNaあるいはβ−8isNa等のその
他の物質で、合計が1となるような範囲が望ましい。
The silicon nitride sintered body to be manufactured has an α-3isN4 content or an abundance ratio of 0°05 to 0.50 according to X-ray diffraction.
, and the balance is other substances such as β-3iiNa or β-8isNa, and it is desirable that the total amount is 1.

また、α’−3isN4の結晶粒の大きさについては、
平均粒径が2μm以下の範囲が望ましい。
Also, regarding the grain size of α'-3isN4,
It is desirable that the average particle size is in the range of 2 μm or less.

また、焼結体中にβ−311Naあるいはβ′S j 
s Naか含まれる場合、β−3is Naあるいはβ
−3isNa 方向の平均粒径が5μm以下、短径方向が1μm以下の
範囲が望ましい。
In addition, β-311Na or β′S j
If s Na is included, β-3is Na or β
It is desirable that the average particle size in the −3isNa direction is 5 μm or less and the short axis direction is 1 μm or less.

なお、窒化珪素質焼結体を成形品として製造する場合に
は、原料組成物を成形するのがよい。
Note that when producing the silicon nitride sintered body as a molded article, it is preferable to mold the raw material composition.

この成形法としては、金型ブレス、ラバープレス、押し
出し、スリップキャスト、射出成形等を用いることがで
きる。
As this molding method, mold pressing, rubber pressing, extrusion, slip casting, injection molding, etc. can be used.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

(実施例1) β−3izNaを含有し、平均粒径か約0,5μm以下
の5isNa原料粉末(含有量は、β−3isN4が第
1表に示す値、全金属不純物量0゜1wt%以下、残部
α−31zNaであり、合計100wt%となる)を用
い、この5izN*原料粉末に、平均粒径が約0.5μ
m以下の高純度(99,9%)のY、0.粉末、および
平均粒径が約0.5μm以下の高純度(99,9%)の
AIN粉末をそれぞれ、重量%で94%、2.3%、3
.7%の配合割合で混合した。この混合物を金型ブレス
により成形し、その後ホットプレス法により焼成した。
(Example 1) 5isNa raw material powder containing β-3izNa and having an average particle size of approximately 0.5 μm or less (the content is the value shown in Table 1 for β-3isN4, and the total amount of metal impurities is 0°1 wt% or less) , the remainder is α-31zNa, making a total of 100wt%), and the average particle size is about 0.5μ to this 5izN* raw material powder.
Y of high purity (99.9%) below m, 0. powder, and high-purity (99.9%) AIN powder with an average particle size of about 0.5 μm or less, respectively, by weight 94%, 2.3%, and 3%.
.. They were mixed at a blending ratio of 7%. This mixture was molded using a mold press, and then fired using a hot press method.

なお、ホットプレスは、1800°C12時間の条件で
行った。これにより、第1表に示すような構成相、結晶
粒を有するα’ −3ixNtを含有する窒化珪素質焼
結体(試料磁1〜9)を製造した。なお、上記焼結体に
はβ′=SL2N4も含まれており、その構成相、結晶
粒も第1表に示す。
Note that hot pressing was performed at 1800°C for 12 hours. In this way, silicon nitride sintered bodies (sample magnets 1 to 9) containing α'-3ixNt having constituent phases and crystal grains as shown in Table 1 were manufactured. Note that the above sintered body also contains β'=SL2N4, and its constituent phases and crystal grains are also shown in Table 1.

また、上記S 12 N4原料、Yt 01 、INの
配合割合を重量%で、91%、3.4%、5゜6%とし
た以外は、上記と同様にしてα’ −3i、N、を含有
する窒化珪素質焼結体(試料NCLIO〜17)を製造
した。製造した焼結体の構成相、結晶粒を第1表に示す
In addition, α'-3i, N, was prepared in the same manner as above, except that the blending ratios of the S 12 N4 raw material, Yt 01 and IN were 91%, 3.4%, and 5°6% by weight. A silicon nitride sintered body (sample NCLIO-17) containing the following was manufactured. Table 1 shows the constituent phases and crystal grains of the produced sintered body.

また、比較のため、原料組成物として上記β−8izN
4を含有する5ijN4原料粉末に平均粒径0.5μm
のYを固溶したα’ −S i 2 N4(Y・、* 
 (S i、Af) It (0、N)+−)粉末を2
5wt%添加したもの(配合量は、5isN4原料75
wt%、asi*Na25%wt)を用いた以外は、上
記と同様にして窒化珪素質焼結体−(試料&Cl−C3
)を製造した。その焼結体中の構成相、結晶粒を第1表
に示す。
In addition, for comparison, the above β-8izN was used as a raw material composition.
5ijN4 raw material powder containing 4 has an average particle size of 0.5 μm.
α'-S i 2 N4 (Y・, *
(S i, Af) It (0, N) +-) powder to 2
5wt% added (the blended amount is 5isN4 raw material 75%)
A silicon nitride sintered body (sample & Cl-C3
) was manufactured. Table 1 shows the constituent phases and crystal grains in the sintered body.

また、得られた焼結体中のα −8j3N4、β’ −
3i2 N4の存在比、結晶粒の平均粒径をX線回折に
より求め、またその4点曲げ強度をJISR1601に
準じて測定した。その結果を第1表に示す。なお、α 
−3isN4の存在比の求め方は、焼結体のX線回折チ
ャートにおけるα型の強度の高い上位2個のピークの合
計とβ型の強度の高い上位2個のピークの合計を比較す
ることによって行った。表中のα −3t*Naの存在
比は、α’−3isN4とβ’−3iiNaとの存在比
の合計を1とした場合の値である。
In addition, α -8j3N4, β' - in the obtained sintered body
The abundance ratio of 3i2N4 and the average grain size of the crystal grains were determined by X-ray diffraction, and the four-point bending strength was measured according to JISR1601. The results are shown in Table 1. In addition, α
The abundance ratio of -3isN4 can be determined by comparing the sum of the top two peaks with high intensity of α type and the sum of the top two peaks with high intensity of β type in the X-ray diffraction chart of the sintered body. It was done by The abundance ratio of α-3t*Na in the table is a value when the sum of the abundance ratios of α'-3isN4 and β'-3iiNa is set to 1.

第1表より明らかなように、本実施例により製造した焼
結体は、比較例のものよりも結晶粒の平均粒径か小さく
、また強度も高いことが分かる。
As is clear from Table 1, it can be seen that the sintered bodies manufactured according to this example have smaller average crystal grain diameters and higher strength than those of the comparative examples.

(実施例2) 実施例1と同様な出発原料を用い、実施例1と同様にし
て、これを混合したものを成形し、常圧焼結法によりα
’  5izN4を含有する窒化珪素質焼結体を製造し
た。なお、上記出発原料のβ−3tzNiの含有量は第
2表に示すようなものであり、常圧焼結は、N、中18
50°C14時間の条件で行った。また、第2表の試料
Nll8〜24は第1表の試料it〜9と同様な条件で
あり、第2表の試料魚25〜31は第1表の試料NCL
IO〜17と同様な条件である。また、第2表の試料N
chC4〜C7は第1表の試料NciC1〜C3と同様
な条件で上記と同様にして製造した。
(Example 2) Using the same starting materials as in Example 1, the mixture was molded in the same manner as in Example 1, and α
' A silicon nitride sintered body containing 5izN4 was manufactured. The content of β-3tzNi in the above starting material is as shown in Table 2.
The test was carried out at 50°C for 14 hours. Also, samples Nll8-24 in Table 2 are under the same conditions as samples it-9 in Table 1, and sample fish 25-31 in Table 2 are under the same conditions as samples NCL in Table 1.
The conditions are similar to IO-17. Also, sample N in Table 2
chC4-C7 were produced in the same manner as above under the same conditions as samples NciC1-C3 in Table 1.

得られた焼結体のα’−3i3Naとβ′−8isNa
の存在比、結晶粒の平均粒径、および4点曲げ強度を実
施例1と同様にして測定した。その結果を第2表に示す
α'-3i3Na and β'-8isNa of the obtained sintered body
The abundance ratio, average grain size of crystal grains, and four-point bending strength were measured in the same manner as in Example 1. The results are shown in Table 2.

第2表より明らかなように、本実施例により製造した焼
結体は、比較例のものよりも結晶粒の平均粒径が小さく
、また強度も高いことが分かる。
As is clear from Table 2, it can be seen that the sintered bodies manufactured according to this example have smaller average crystal grain diameters and higher strength than those of the comparative examples.

Claims (1)

【特許請求の範囲】[Claims]  β−窒化珪素を含有する窒化珪素にイットリアおよび
窒化アルミニウムを添加するとともにこれらを焼成する
ことによりα′−窒化珪素を含有する焼結体を形成する
ことを特徴とする窒化珪素質焼結体の製造方法。
A silicon nitride sintered body, characterized in that a sintered body containing α'-silicon nitride is formed by adding yttria and aluminum nitride to silicon nitride containing β-silicon nitride and firing these. Production method.
JP2131955A 1990-05-21 1990-05-21 Production of silicon nitride-based sintered body Pending JPH0426557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2131955A JPH0426557A (en) 1990-05-21 1990-05-21 Production of silicon nitride-based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2131955A JPH0426557A (en) 1990-05-21 1990-05-21 Production of silicon nitride-based sintered body

Publications (1)

Publication Number Publication Date
JPH0426557A true JPH0426557A (en) 1992-01-29

Family

ID=15070118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2131955A Pending JPH0426557A (en) 1990-05-21 1990-05-21 Production of silicon nitride-based sintered body

Country Status (1)

Country Link
JP (1) JPH0426557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144969A (en) * 1990-10-06 1992-05-19 Natl Inst For Res In Inorg Mater Production of alpha-sialon-based sintered compact
JP2004527434A (en) * 2000-11-28 2004-09-09 ケンナメタル インコーポレイテッド SiAlON containing ytterbium and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144969A (en) * 1990-10-06 1992-05-19 Natl Inst For Res In Inorg Mater Production of alpha-sialon-based sintered compact
JP2004527434A (en) * 2000-11-28 2004-09-09 ケンナメタル インコーポレイテッド SiAlON containing ytterbium and method for producing the same

Similar Documents

Publication Publication Date Title
JPH06100370A (en) Silicon nitride sintered compact and its production
JPH0426557A (en) Production of silicon nitride-based sintered body
JP2736386B2 (en) Silicon nitride sintered body
US4810678A (en) Gas pressure sintering of silicon nitride with addition of rare earth oxides
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPH1179848A (en) Silicon carbide sintered compact
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP2534213B2 (en) Method for producing silicon nitride based sintered body
JPH09165264A (en) Silicon nitride sintetred product and its production
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP2949936B2 (en) Method for producing silicon nitride sintered body
KR100435292B1 (en) Process for producing high toughness silicon oxynitride ceramics improving fracture toughness
JP2687634B2 (en) Method for producing silicon nitride sintered body
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JPH03141163A (en) Production of sintered silicon nitride
JP3124864B2 (en) Silicon nitride sintered body and method for producing the same
JP3236733B2 (en) Silicon nitride sintered body
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JPH06305840A (en) Sintered silicon nitride and its production
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JPH04238868A (en) Production of silicon nitride-silicon carbide compounded sintered material