JPH0426541A - Manufacture of magnesia green compact and sintered body - Google Patents

Manufacture of magnesia green compact and sintered body

Info

Publication number
JPH0426541A
JPH0426541A JP2126954A JP12695490A JPH0426541A JP H0426541 A JPH0426541 A JP H0426541A JP 2126954 A JP2126954 A JP 2126954A JP 12695490 A JP12695490 A JP 12695490A JP H0426541 A JPH0426541 A JP H0426541A
Authority
JP
Japan
Prior art keywords
weight
magnesia
parts
molecular weight
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2126954A
Other languages
Japanese (ja)
Inventor
Akio Nishida
明生 西田
Hamazou Nakagawa
浜三 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2126954A priority Critical patent/JPH0426541A/en
Publication of JPH0426541A publication Critical patent/JPH0426541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a green compact capable of manufacturing the product of a sintered body densified by sintering by molding the slurry consisting of a specified liquid dispersant, a solid high polymer series dispersant, an organic solvent and magnesia fine particles to casting. CONSTITUTION:By pts.wt., 0.01 to 4.0 liquid dispersant having ten thousand or below of molecular weight and 0.5 to 4.0 solid high polymer series dispersant soluble in an organic solvent and having ten thousand or above of molecular weight are mixed with 25 to 60wt. parts organic solvent. Next, 100 pts.wt. magnesia fine particles having <=1mu mean particle size is added to the above mixture to prepare the slurry, which is subjected to casting to obtain an objective green compact. When the mean particle size of the magnesia particles to be used exceeds 1mu, its surface energy to form the driving force is made small, so that the dense sintered body can not be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、平均粒径1am以下のマグネシア微粉末を用
いて、鋳込成形によりマグネシア成形体及び焼結体を製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing magnesia molded bodies and sintered bodies by cast molding using fine magnesia powder having an average particle size of 1 am or less.

(従来技術およびその問題点) 高純度マグネシア焼結体は、酸化雰囲気中での耐熱性に
優れると共に、酸化鉛やアルカリに対する耐蝕性に優れ
るため、PZT等の電子セラミンク材料やβ−アルミナ
などの焼成用のセンタールツボ、タンマン管としての用
途がある。
(Prior art and its problems) High-purity magnesia sintered bodies have excellent heat resistance in oxidizing atmospheres and corrosion resistance against lead oxide and alkalis. It is used as a center crucible for firing and a Tammann tube.

このような用途に使われる容器は、プレス成形による製
造は困難であるため、鋳込み成形によって作られている
Containers used for such purposes are manufactured by casting, since it is difficult to manufacture by press molding.

この鋳込み成形では、特開平1−301558号公報に
記載されているように、平均粒径が1μmよりも大きい
マグネシア粉末を原料としていた。しかじな々(ら、前
記原料粉末は焼結性に劣るため、焼結助剤を添加しなけ
ればならず、このため高純度のマグネシア焼結体は得ら
れなかった。
In this cast molding, as described in JP-A-1-301558, magnesia powder having an average particle size of more than 1 μm was used as a raw material. However, since the raw material powder has poor sinterability, a sintering aid must be added, and for this reason, a highly pure magnesia sintered body could not be obtained.

また、鋳込み成形では、成形体にクラックが発生するの
を防ぐため、バインダーを添加しているが、バインダー
が溶媒に溶けて溶媒の粘度を上げるため、鋳込み速度が
遅くなり、成形時間が長くなる問題もあった。
In addition, in casting molding, a binder is added to prevent cracks from forming in the molded product, but the binder dissolves in the solvent and increases the viscosity of the solvent, slowing down the casting speed and lengthening the molding time. There were also problems.

(発明の目的) 本発明の目的は、前記問題点を解決し、平均粒径lum
以下のマグネシア微粉末を原料として鋳込み成形により
成形体を製造する方法、さらには、高純度マグネシアの
特性を損なわず緻密化された焼結体製品を製造する方法
を提供するものである。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned problems and increase the average particle size lum.
The present invention provides a method for manufacturing a molded body by casting using the following fine magnesia powder as a raw material, and a method for manufacturing a densified sintered product without impairing the characteristics of high-purity magnesia.

(問題点を解決するための手段) 本発明は、平均分子量10,000未満の液体状分散剤
0301〜4.0重量部及び平均分子量10,000以
上で有機溶媒に可溶な固体状高分子系分散剤0.5〜4
.0重量部を有機溶媒25〜60重量部と混合した後、
平均粒径1μm以下のマグネシア微粉末100重量部を
加えて泥漿を調製し、これを鋳込み成形することを特徴
とするマグネシア成形体の製造方法、 及び、前記方法で得られたマグネシア成形体を酸化性雰
囲気下で焼結することを特徴とするマグネシア焼結体の
製造方法に関するものである。
(Means for Solving the Problems) The present invention provides 0.301 to 4.0 parts by weight of a liquid dispersant having an average molecular weight of less than 10,000 and a solid polymer having an average molecular weight of 10,000 or more and soluble in an organic solvent. System dispersant 0.5-4
.. After mixing 0 parts by weight with 25 to 60 parts by weight of an organic solvent,
A method for manufacturing a magnesia molded body, which comprises adding 100 parts by weight of fine magnesia powder with an average particle size of 1 μm or less to prepare a slurry, and casting the slurry, and oxidizing the magnesia molded body obtained by the method. The present invention relates to a method for producing a magnesia sintered body, which is characterized by sintering in a neutral atmosphere.

本発明において、平均分子量10,000未満の液体状
分散剤としては、常温で液体状の分散剤であればよく、
例えば、トリエチルアミン、トリブチルアミン、ポリエ
チリンポリアミン等のアミン系分散剤、ポリエチレンオ
キサイド等のポリエチレンオキサイド系分散剤、カルボ
ン酸ナトリウム塩、カルボン酸アンモニウム塩等のカル
ボン酸系分散剤等が用いられる。
In the present invention, the liquid dispersant having an average molecular weight of less than 10,000 may be any dispersant that is liquid at room temperature.
For example, amine-based dispersants such as triethylamine, tributylamine, and polyethyline polyamine, polyethylene oxide-based dispersants such as polyethylene oxide, and carboxylic acid-based dispersants such as carboxylic acid sodium salts and carboxylic acid ammonium salts are used.

また、平均分子量10.000以上で有機溶媒に可溶な
固体状高分子系分散剤としては、常温で固体状の分散剤
であればよく、例えば、スチレン−マレイン酸共重合体
等のポリカルボン酸系分散剤、ポリエチレンオキサイド
等のポリエチレンオキサイド系分散剤、ポリアクリル酸
エステル−アクリル酸共重合体等のポリエステル系分散
剤等が用いられる。
Further, the solid polymeric dispersant having an average molecular weight of 10.000 or more and being soluble in organic solvents may be any dispersant that is solid at room temperature, such as polycarbonate such as styrene-maleic acid copolymer. Acid dispersants, polyethylene oxide dispersants such as polyethylene oxide, polyester dispersants such as polyacrylic ester-acrylic acid copolymers, etc. are used.

有機溶媒としては、メタノール、エタノール等のアルコ
ール系溶媒、トルエン、キシレン等の芳香族系溶媒、メ
チルエチルケトン、シクロヘキサノン等のケトン系溶媒
等が好ましい。
Preferred organic solvents include alcohol solvents such as methanol and ethanol, aromatic solvents such as toluene and xylene, and ketone solvents such as methyl ethyl ketone and cyclohexanone.

また、本発明におけるマグネシア粉末としては、純度9
9.9%以上で平均粒径1μm以下の高純度マグネシア
微粉末が用いられる。このようなマグネシア粉末として
は、マグネシウム蒸気の気相酸化法により得られるマグ
ネシア微粉末が好適である。特に、特開平1−2821
46号公報に記載されているマグネシア微粉末が好まし
い。前記公報によれば、マグネシウム蒸気をノズルから
酸素含有雰囲気中に噴出し、長さloCll以上の層流
拡散火炎を形成させ、該火炎中でマグネシウム蒸気を酸
化させることにより、粒径0.1〜1.0μmの立方体
状の一次粒子を30〜80重量%含み、残部が粒径0.
1μm以下の等軸状の一次粒子からなるマグネシア微粉
末が得られる。前記公報の記載は本発明の一部として参
照される。
In addition, the magnesia powder in the present invention has a purity of 9
High-purity magnesia fine powder having a content of 9.9% or more and an average particle size of 1 μm or less is used. As such magnesia powder, fine magnesia powder obtained by a vapor phase oxidation method of magnesium vapor is suitable. In particular, JP-A-1-2821
Magnesia fine powder described in Japanese Patent No. 46 is preferred. According to the above publication, magnesium vapor is ejected from a nozzle into an oxygen-containing atmosphere to form a laminar diffusion flame with a length of loCll or more, and by oxidizing the magnesium vapor in the flame, particles with a particle size of 0.1 to Contains 30 to 80% by weight of cubic primary particles with a diameter of 1.0 μm, and the remainder has a particle size of 0.5 μm.
Magnesia fine powder consisting of equiaxed primary particles of 1 μm or less is obtained. The descriptions in the above publications are referred to as part of the present invention.

マグネシア粉末の平均粒径が1μmより大きくなると、
焼結の駆動力となる表面エネルギーが小さくなるため、
緻密な焼結体が得られない。また、緻密な焼結体を得よ
うとすれば、焼結助剤を添加しなければならず、高純度
のマグネシア焼結体が得られないので好ましくない。
When the average particle size of magnesia powder is larger than 1 μm,
Because the surface energy that is the driving force for sintering becomes smaller,
A dense sintered body cannot be obtained. Furthermore, in order to obtain a dense sintered body, a sintering aid must be added, which is not preferable because a highly pure magnesia sintered body cannot be obtained.

本発明においては、まず平均分子量10,000未満の
液体状分散剤0.01〜4.0重量部及び平均分子量1
0,000以上で有機溶媒に可溶な固体状高分子系分散
剤0.5〜4.0重量部を有機溶媒25〜60重量部と
混合した後、平均粒径1μm以下のマグネシア微粉末1
00重量部を加えて泥漿を調製する。
In the present invention, first, 0.01 to 4.0 parts by weight of a liquid dispersant having an average molecular weight of less than 10,000 and an average molecular weight of 1
After mixing 0.5 to 4.0 parts by weight of a solid polymeric dispersant soluble in an organic solvent with a molecular weight of 0,000 or more and 25 to 60 parts by weight of an organic solvent, fine magnesia powder 1 with an average particle size of 1 μm or less is mixed.
A slurry is prepared by adding 00 parts by weight.

一般に、粒径の小さい粒子を分散させるには、分子量の
小さい分散剤を用い、粒径の大きい粒子を分散させるに
は、分子量の大きい分散剤を用いる。本発明においては
、分散剤としては、平均分子量10,000未満の液体
状分散剤を用いることにより、平均粒径1μm以下の粒
子からなるマグネシア粉末が良好に分散される。
Generally, a dispersant with a small molecular weight is used to disperse particles with a small particle size, and a dispersant with a large molecular weight is used to disperse particles with a large particle size. In the present invention, by using a liquid dispersant having an average molecular weight of less than 10,000, magnesia powder consisting of particles with an average particle size of 1 μm or less is well dispersed.

また、平均分子量io、ooo以上で有機溶媒に可溶な
固体状高分子系分散剤を用いることにより、バインダー
としての効果が得られる。さらに高分子系分散剤は、マ
グネシア粒子に吸着しているので、有機溶媒の粘度を上
げないため、鋳込み速度を遅くすることがない。そして
、成形体の乾燥中に有機溶媒が除去されると、固体状に
なりマグネシア粒子同士を結合させる効果が発揮される
Further, by using a solid polymeric dispersant having an average molecular weight of io, ooo or more and soluble in an organic solvent, an effect as a binder can be obtained. Furthermore, since the polymeric dispersant is adsorbed on the magnesia particles, it does not increase the viscosity of the organic solvent, so it does not slow down the casting speed. When the organic solvent is removed during drying of the molded product, the molded product becomes solid and exhibits the effect of bonding magnesia particles together.

平均分子量10,000未満の液体状分散剤を単独で用
いた場合は、マグネシア粒子同士を結合できないため、
成形体にクラックが発生する。また平均分子量10.0
00以上で有機溶媒に可溶な固体状高分子系分散剤を単
独で用いた場合は、マグネシア粒子の分散が不十分なた
め、成形体密度が低くなり、成形体にクラックが発生す
るので好ましくない。
If a liquid dispersant with an average molecular weight of less than 10,000 is used alone, magnesia particles cannot be bonded together, so
Cracks occur in the molded body. Also, average molecular weight 10.0
If a solid polymeric dispersant having a molecular weight of 00 or higher and soluble in an organic solvent is used alone, the magnesia particles will not be sufficiently dispersed, resulting in a low density of the molded product and cracks in the molded product, so this is not preferred. do not have.

本発明においては、前記マグネシア粉末及び分散剤から
なる組成物を、例えばボールミルによって混合・解砕す
ることによって鋳込み成形用泥漿を製造することができ
る。
In the present invention, a slurry for casting can be produced by mixing and crushing a composition comprising the magnesia powder and a dispersant using, for example, a ball mill.

次いで、この泥漿を脱泡後、所定の形状の石膏型を用い
、排泥鋳込み成形、固形鋳込み成形、加圧鋳込み成形等
により、任意の形状の成形体とすることができる。
Next, after degassing this slurry, it can be made into a molded body of any shape by using a plaster mold of a predetermined shape and performing slurry casting, solid casting, pressure casting, etc.

このようにして得られた成形体は、平均分子量io、o
oo以上の固体状高分子系分散剤がバインダーとして粒
子同士を結合するため、割れが起こり難く、大型あるい
は複雑形状品が容易に得られる。
The molded product thus obtained has an average molecular weight of io, o
Since the solid polymeric dispersant with a molecular weight of 0 or more acts as a binder and binds the particles together, cracks are less likely to occur, and large-sized or complex-shaped products can be easily obtained.

本発明においては、前記成形体を酸化性雰囲気下に焼結
することにより、高純度のマグネシア焼結体が得られる
。焼結は、空気中で1500〜1800°Cの温度で行
うことにより、緻密な焼結体が得られる。
In the present invention, a highly pure magnesia sintered body can be obtained by sintering the molded body in an oxidizing atmosphere. By performing sintering in air at a temperature of 1500 to 1800°C, a dense sintered body can be obtained.

(実施例) 以下に実施例及び比較例を示し、本発明をさらに具体的
に説明する。
(Example) Examples and comparative examples are shown below to further specifically explain the present invention.

実施例1 エタノール45重量部に、分散剤として平均分子量15
.000のスチレン−マレイン酸共重合体を1重量部及
び平均分子量2.000のポリエチレンポリアミンを1
重量部加えて混合し、さらにマグネシア粉末(宇部興産
■製置純度超微粉単結晶マグネシア2000A)を10
0M量部添加した後、48時間ボールミルして、鋳込み
成形用泥漿を調製した。
Example 1 45 parts by weight of ethanol was added with an average molecular weight of 15 as a dispersant.
.. 000 styrene-maleic acid copolymer and 1 part by weight of polyethylene polyamine having an average molecular weight of 2.000.
Add 10 parts by weight and mix, and then add 10 parts of magnesia powder (Ube Industries ultra-fine powder single crystal magnesia 2000A).
After adding 0M part, ball milling was carried out for 48 hours to prepare a slurry for casting.

この泥漿を脱泡した後、100φX5Qhmの石膏型に
注ぎ込み、5mの肉厚まで着肉させてから、排泥した。
After degassing this slurry, it was poured into a plaster mold of 100 φ x 5 Qhm, and the slurry was molded to a thickness of 5 m, and then the slurry was drained.

24時間放置してから脱型し、着肉体を室温で24時間
乾燥させた後、60°Cで5特間乾燥して成形体を得た
。得られた成形体の密度は55%であった。
After being left for 24 hours, the mold was removed, and the molded body was dried at room temperature for 24 hours, and then dried at 60°C for 5 hours to obtain a molded body. The density of the obtained molded body was 55%.

次に、得られた成形体を常圧大気下において1650°
Cで4時間焼成した。これにより、82φX41 hX
4 L閣で密度99%の焼結体が得られた。
Next, the obtained molded body was heated at 1650° under normal pressure atmosphere.
It was baked at C for 4 hours. As a result, 82φX41hX
A sintered body with a density of 99% was obtained using 4L.

実施例2 分散剤として、平均分子量20.000のポリエチレン
オキサイドを1重量部及び平均分子量1,000のポリ
エチレンオキサイドを0.5重量部用いたほかは実施例
1と同様にして成形体及び焼結体を製造した。
Example 2 A molded body and sintering were carried out in the same manner as in Example 1, except that 1 part by weight of polyethylene oxide with an average molecular weight of 20.000 and 0.5 part by weight of polyethylene oxide with an average molecular weight of 1,000 were used as the dispersant. manufactured the body.

得られた成形体の密度は59%であり、焼結体は、84
φX42 hX4 t■で密度99%であった。
The density of the obtained compact was 59%, and the density of the sintered compact was 84%.
The density was 99% at φX42 hX4 t■.

比較例1 分散剤として、平均分子量1,000のポリエチレンオ
キサイドを0.5重量部用いたほかは実施例1と同様に
して成形体を製造した。
Comparative Example 1 A molded article was produced in the same manner as in Example 1, except that 0.5 parts by weight of polyethylene oxide having an average molecular weight of 1,000 was used as a dispersant.

得られた成形体の密度は65%であったが、成形体にク
ラックが発生した。
Although the density of the obtained compact was 65%, cracks occurred in the compact.

比較例2 分散剤として、平均分子量20.000のスチレンマレ
イン酸共重合体を2重量部用いたほかは実施例1と同様
にして成形体を製造した。
Comparative Example 2 A molded article was produced in the same manner as in Example 1, except that 2 parts by weight of a styrene-maleic acid copolymer having an average molecular weight of 20.000 was used as a dispersant.

得られた成形体の密度は48%であったが、成形体にク
ランクが発生した。
Although the density of the obtained molded product was 48%, cranks occurred in the molded product.

Claims (2)

【特許請求の範囲】[Claims] (1)平均分子量10,000未満の液体状分散剤0.
01〜4.0重量部及び平均分子量10,000以上で
有機溶媒に可溶な固体状高分子系分散剤0.5〜4.0
重量部を有機溶媒25〜60重量部と混合した後、平均
粒径1μm以下のマグネシア微粉末100重量部を加え
て泥漿を調製し、これを鋳込み成形することを特徴とす
るマグネシア成形体の製造方法。
(1) Liquid dispersant with an average molecular weight of less than 10,000 0.
01 to 4.0 parts by weight and a solid polymeric dispersant having an average molecular weight of 10,000 or more and soluble in an organic solvent, 0.5 to 4.0 parts by weight.
After mixing parts by weight with 25 to 60 parts by weight of an organic solvent, 100 parts by weight of fine magnesia powder with an average particle size of 1 μm or less is added to prepare a slurry, and the slurry is cast and molded. Method.
(2)平均分子量10,000未満の液体状分散剤0.
01〜4.0重量部及び平均分子量10,000以上で
有機溶媒に可溶な固体状高分子系分散剤0.5〜4.0
重量部を有機溶媒25〜60重量部に加えて混合した後
、平均粒径1μm以下のマグネシア微粉末100重量部
を加えて泥漿を調製し、これを鋳込み成形し、得られた
成形体を酸化性雰囲気下で焼結することを特徴とするマ
グネシア焼結体の製造方法。
(2) Liquid dispersant with an average molecular weight of less than 10,000 0.
01 to 4.0 parts by weight and a solid polymeric dispersant having an average molecular weight of 10,000 or more and soluble in an organic solvent, 0.5 to 4.0 parts by weight.
After adding and mixing parts by weight with 25 to 60 parts by weight of an organic solvent, 100 parts by weight of fine magnesia powder with an average particle size of 1 μm or less was added to prepare a slurry, which was cast and molded, and the resulting molded body was oxidized. A method for producing a magnesia sintered body, characterized by sintering in a neutral atmosphere.
JP2126954A 1990-05-18 1990-05-18 Manufacture of magnesia green compact and sintered body Pending JPH0426541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2126954A JPH0426541A (en) 1990-05-18 1990-05-18 Manufacture of magnesia green compact and sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2126954A JPH0426541A (en) 1990-05-18 1990-05-18 Manufacture of magnesia green compact and sintered body

Publications (1)

Publication Number Publication Date
JPH0426541A true JPH0426541A (en) 1992-01-29

Family

ID=14948012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2126954A Pending JPH0426541A (en) 1990-05-18 1990-05-18 Manufacture of magnesia green compact and sintered body

Country Status (1)

Country Link
JP (1) JPH0426541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007065245A (en) * 2005-08-31 2007-03-15 Canon Inc Toner
JP2007261911A (en) * 2006-03-29 2007-10-11 Nof Corp Slurry composition for ceramic production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007065245A (en) * 2005-08-31 2007-03-15 Canon Inc Toner
JP4603958B2 (en) * 2005-08-31 2010-12-22 キヤノン株式会社 toner
JP2007261911A (en) * 2006-03-29 2007-10-11 Nof Corp Slurry composition for ceramic production

Similar Documents

Publication Publication Date Title
JP6942929B2 (en) Slurry composition for tape casting for manufacturing silicon nitride sintered body
CN101473054B (en) Process for producing shaped refractory metal bodies
CN111269013B (en) Yttria-based ultrahigh-temperature insulating ceramic special-shaped part and preparation method thereof
JPH0426541A (en) Manufacture of magnesia green compact and sintered body
JP2001089245A (en) Slurry composition for ceramic green sheet and ceramic green sheet
KR101559243B1 (en) Ceramic composition, ceramic sinter and manufacturing method thereof
JP2786719B2 (en) Method for producing rare earth oxide sintered body
JPH06237054A (en) Green sheet for ceramic substrate
WO2019059641A2 (en) Tape casting slurry composition for preparation of silicon nitride sintered body
JP3554523B2 (en) Manufacturing method of ceramic body
JPS62246856A (en) Manufacture of ceramics
JPS6265979A (en) Production of aluminum nitride sintered plate
JPH11114403A (en) Molding method for ceramic powder
JP3460156B2 (en) Manufacturing method of aluminum nitride sintered body
JPS61146753A (en) Manufacture of circuit substrate green sheet
JPH04170357A (en) Dewaxable molded body of magnetic powder and method for dewaxing same
JPH02129055A (en) Production of ceramic green sheet
JPH06305811A (en) Slip casting of titanium diboride-based ceramic
JPH07267742A (en) Production of aluminum nitride green sheet
JPS60260463A (en) Manufacture of high density oxide sintered body
JPS60231458A (en) Manufacture of ceramic dielectic
JPS62216964A (en) Manufacture of light transmitting ceramics
JPS62164801A (en) Production of metallic thin-walled sintered body
JPH0462001A (en) Manufacture of silicon nitride powder molded product
JP2734687B2 (en) Target material for ferroelectric film formation