JPH0462001A - Manufacture of silicon nitride powder molded product - Google Patents

Manufacture of silicon nitride powder molded product

Info

Publication number
JPH0462001A
JPH0462001A JP2165386A JP16538690A JPH0462001A JP H0462001 A JPH0462001 A JP H0462001A JP 2165386 A JP2165386 A JP 2165386A JP 16538690 A JP16538690 A JP 16538690A JP H0462001 A JPH0462001 A JP H0462001A
Authority
JP
Japan
Prior art keywords
organic solvent
temperature
silicon nitride
mold
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2165386A
Other languages
Japanese (ja)
Inventor
Hisao Takeuchi
久雄 竹内
Tadashi Igarashi
五十嵐 廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2165386A priority Critical patent/JPH0462001A/en
Publication of JPH0462001A publication Critical patent/JPH0462001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a silicon nitride sinter having high strength and uniform structure without causing voids or defects by sintering in simple molding by using an organic solvent with a specific melting point as a solvent for wet mixing, and using a metallic compound soluble in the organic solvent as a sintering assistant. CONSTITUTION:Silicon nitride powder, an organic solvent whose melting point is 0-40 deg.C, and a sintering assistant composed of a metallic compound soluble in the organic solvent are mixed with one another at a temperature not lower than the temperature at which the organic solvent is substantially melted, and the mixture thus obtained is introduced into a mold at a temperature not lower than the temperature at which the organic solvent is substantially melted. Then. the mixture is cooled at a temperature not higher than the temperature at which the organic solvent is substantially solidified to be cured in the mold, and the organic solvent is dried and removed to obtain a molded product. The temperature at which the organic solvent is substantially melted and the temperature at which the organic solvent is substantially solidified mean the respective temperatures varied from the melting temperature and solidifying temperature proper to the organic solvent by the melting of the sintering assistant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒化珪素焼結体の製造における中間体である
窒化珪素粉末成形体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a silicon nitride powder molded body, which is an intermediate in the production of a silicon nitride sintered body.

〔従来の技術〕[Conventional technology]

窒化珪素(Si N 、)は常温における強度及び靭性
が高く、1000C以上の高温においてもこれ等の優れ
た特性を維持するため、タービン部品や自動車エンジン
部品への応用が検討されている。
Silicon nitride (SiN) has high strength and toughness at room temperature, and since it maintains these excellent properties even at high temperatures of 1000C or higher, its application to turbine parts and automobile engine parts is being considered.

従来、窒化珪素は共有結合性の強い物質で単独では焼結
が困難であるから、焼結助剤としてA10、MgO,Y
Oのような周期律表のIIA、 IA、 IB族元素の
酸化物を添加した液相焼結により、緻密で高強度の焼結
体を製造していた。
Conventionally, silicon nitride is a substance with strong covalent bonds and is difficult to sinter alone, so A10, MgO, Y is used as a sintering aid.
Dense, high-strength sintered bodies were produced by liquid-phase sintering with the addition of oxides of elements from groups IIA, IA, and IB of the periodic table, such as O.

しかしながら現状では、高い信頼を要求される自動車エ
ンジン部品等に応用するためには窒化珪素焼結体の強度
が不足であり、更に強度並びに信頼性を高めるため、空
孔又は欠陥のない均一な組織を有する焼結体の製造プロ
セスを確立することが不可欠とされている。その製造プ
ロセス中で、焼結助剤粉末とSi N 粉末の混合工程
及び成形工程が研究開発上大きな比重を占めている。
However, at present, silicon nitride sintered bodies do not have enough strength to be applied to automobile engine parts that require high reliability. It is essential to establish a manufacturing process for sintered bodies with In the manufacturing process, the mixing process of the sintering aid powder and the Si N powder and the molding process occupy a large proportion of research and development.

従来の一般的な方法では、ボールミル等を用いて焼結助
剤の粉末とSi N 粉末とをエチルアルコ−ル等の溶
媒と共に湿式混合し、混合物をスプレードライヤー等で
乾燥すると同時に適当な大きさに造粒し、これを成形型
に充填して加圧成形していた。
In the conventional general method, sintering aid powder and Si N powder are wet-mixed with a solvent such as ethyl alcohol using a ball mill, etc., and the mixture is dried using a spray dryer etc. and simultaneously cut into an appropriate size. It was granulated, filled into a mold, and then pressure-molded.

しかし、かかる方法では分散剤を用いても粉末を溶媒中
に完全に分散させることが不可能であるため、焼結時に
焼結助剤の偏析による局部的な粒成長が生じ、強度低下
の原因となっていた。又、湿式混合後に乾燥造粒すると
、造粒されたか粒が硬くなるため成形時に欠陥が生じや
すく、この欠陥が焼結後も残留して強度を低下させると
云う問題があった。
However, in this method, it is impossible to completely disperse the powder in the solvent even if a dispersant is used, so local grain growth occurs due to segregation of the sintering aid during sintering, which causes a decrease in strength. It became. Furthermore, when dry granulation is performed after wet mixing, the granulated particles become hard, which tends to cause defects during molding, and these defects remain even after sintering, resulting in a decrease in strength.

そこで最近では、周期律表のIA、 IA、 IB族元
素のアルフキシト等の溶媒に可溶な焼結助剤を使用し、
この焼結助剤を溶媒に溶解させて粉末と湿式混合した後
、乾燥造粒して成形する方法が試みられている。この方
法によれば、焼結助剤を溶媒中に均一に分散混合させる
ことが可能であるが、混合後の乾燥造粒時に加水分解に
よって焼結助剤である金属アルコキシド等の化合物が重
合したり又は超微粒子として析出する現象がみられ、こ
の為造粒されたか粒の充填性が著しく低下し、成形が極
めて困難になるという欠点があった。
Therefore, in recent years, sintering aids that are soluble in solvents such as alphoxide, which is an element in groups IA, IA, and IB of the periodic table, have been used.
A method has been attempted in which the sintering aid is dissolved in a solvent, mixed wet with powder, and then dried and granulated to form the powder. According to this method, it is possible to uniformly disperse and mix the sintering aid in the solvent, but during drying and granulation after mixing, compounds such as metal alkoxides, which are sintering aids, may polymerize due to hydrolysis. There is a phenomenon in which the particles are precipitated as ultrafine particles or as ultra-fine particles, and this has the disadvantage that the filling properties of the granulated particles are significantly reduced and molding becomes extremely difficult.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はかかる従来の事情に鑑み、焼結助剤の均一な分
散混合が可能であり、成形型による成形が簡単であって
、後の焼結により空孔又は欠陥のない均一な組織を有す
る高強度な窒化珪素焼結体を得ることが出来る、窒化珪
素粉末成形体の製造方法を提供することを目的とする。
In view of such conventional circumstances, the present invention enables uniform dispersion and mixing of sintering aids, is easy to mold with a mold, and has a uniform structure free of holes or defects by subsequent sintering. It is an object of the present invention to provide a method for manufacturing a silicon nitride powder molded body, which allows a high-strength silicon nitride sintered body to be obtained.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明による窒化珪素粉末成
形体の製造方法においては、窒化珪素粉末、融点がoC
〜40 Cの有機溶媒、及び該有機溶媒に可溶な金属化
合物からなる焼結助剤を実質的に有機溶媒が融解する温
度以上で混合し、得られた混合物を実質的に有機溶媒が
融解する温度以上で成形型に導入し、次に実質的に有機
溶媒が凝固する温度以下に冷却して成形型内で混合物を
固化させ、有機溶媒を乾燥除去して成形体を得ることを
特徴とする。
In order to achieve the above object, in the method for manufacturing a silicon nitride powder compact according to the present invention, silicon nitride powder has a melting point of oC.
An organic solvent of ~40 C and a sintering aid consisting of a metal compound soluble in the organic solvent are mixed at a temperature higher than the temperature at which the organic solvent substantially melts, and the resulting mixture is heated until substantially the organic solvent melts. The mixture is introduced into a mold at a temperature higher than that at which the organic solvent substantially solidifies, and then the mixture is solidified in the mold by cooling to a temperature lower than that at which the organic solvent substantially solidifies, and the organic solvent is removed by drying to obtain a molded body. do.

尚、実質的に有機溶媒が融解する温度及び実質的に有機
溶媒が凝固する温度とは、焼結助剤が溶解することによ
り有機溶媒固有の融解温度及び凝固温度から変化した夫
々の温度を意味する。
In addition, the temperature at which the organic solvent substantially melts and the temperature at which the organic solvent substantially solidifies mean the respective temperatures that change from the melting temperature and solidification temperature inherent to the organic solvent due to dissolution of the sintering aid. do.

又、窒化珪素粉末成形体の焼結については、従来公知の
焼結方法を使用して良い。
Further, for sintering the silicon nitride powder compact, a conventionally known sintering method may be used.

〔作用〕[Effect]

本発明においては、湿式混合の溶媒として融点が0℃〜
40Cの有機溶媒を使用し、焼結助剤として有機溶媒に
可溶な金属化合物を使用する。
In the present invention, the solvent for wet mixing has a melting point of 0°C to
A 40C organic solvent is used, and a metal compound soluble in the organic solvent is used as a sintering aid.

かかる有機溶媒としては、第3級ブチルアルコール(融
点約25C)  n−ドデシルアルコール(融点約24
0)、アセトフェノン(融点約201?)、シクロヘキ
サン(融点約6.5C)等がある。水は融点がOCであ
るが、溶媒としてはSi N  粉末を酸化させる恐れ
があるほか、焼結助剤や分散剤等の選定に制約があるの
で好ましくない。
Such organic solvents include tertiary butyl alcohol (melting point: about 25C), n-dodecyl alcohol (melting point: about 24C),
0), acetophenone (melting point: about 201?), cyclohexane (melting point: about 6.5C), etc. Although water has a melting point of OC, it is not preferable as a solvent because it may oxidize the Si N powder and there are restrictions on the selection of sintering aids, dispersants, and the like.

又、上記焼結助剤としては、Mg、 (!a、 Be等
のIA族元素、Sc、 Y、 La、 Oe等のIA族
元素、A!等のIB族元素のアルフキシト、キレート剤
との錯体、カルボン酸塩のような有機酸塩、硝酸塩のよ
うな無機酸塩等の金属化合物を一種又は二種以上組合せ
て使用できる。
In addition, the above-mentioned sintering aids include Mg, (!A, group IA elements such as Be, etc., group IA elements such as Sc, Y, La, Oe, etc., alphoxides of group IB elements such as A!, etc.), and chelating agents. Metal compounds such as complexes, organic acid salts such as carboxylates, and inorganic acid salts such as nitrates can be used singly or in combination of two or more.

本方法では、前記有機溶媒と焼結助剤をSi N粉末と
共に湿式混合し、融解状態の有機溶媒に焼結助剤を溶解
させると同時に31.N、粉末を分散混合させる。混合
手段は公知のもの、例えばボールミル、加圧式ニーダ−
ロールミル等でよく、混合物の粘度や処理量に応じて選
択する。この混合時に、Si N 粉末の分散を促進さ
せ且つ粘度を低下させるための通常の分散剤、成形性を
向上させるための通常のバインダー、並びに混合物の固
化温度を調整するために用いる融点OC未満の有機溶媒
等を必要に応じて添加してもよい。
In this method, the organic solvent and the sintering aid are wet mixed together with the SiN powder, and the sintering aid is dissolved in the molten organic solvent at the same time as 31. N. Disperse and mix the powder. The mixing means is a known one, such as a ball mill or a pressure kneader.
A roll mill or the like may be used, and the selection is made depending on the viscosity of the mixture and the amount to be processed. During this mixing, a conventional dispersant to promote the dispersion and reduce the viscosity of the SiN powder, a conventional binder to improve the moldability, and a compound with a melting point below OC used to adjust the solidification temperature of the mixture are added. An organic solvent or the like may be added as necessary.

前記の混合工程で得られた混合物はスラリー状を呈する
が、有機溶媒の乾燥ないし造粒工程を経ることなく、そ
のまま成形型に導入する。成形型としては、鋳込成形に
おける石膏型のように溶媒のみを吸収又は透過する溶媒
透過性のものでも、性の成形型では、粉末濃度が低く通
常の鋳込成形と同様の比較的低粘度の混合物から、粉末
濃度が高く通常の射出成形と同様な高粘度の混合物まで
使用可能であり、粉末の充填が密になるため焼結性の向
上が期待出来る。しかし、溶媒の透過に時間を要するた
め成形時間が長くなるほか、溶媒に溶解した焼結助剤の
透過による組成変動を防止するため高度な品質管理を要
求される等の問題がある。一方、溶媒不透過性の成形型
では、粉末密度が混合物と同じであるから、混合物の粉
末濃度を通常の射出成形や低圧モールディングと同しベ
ル迄高める必要がある。
Although the mixture obtained in the above mixing step takes the form of a slurry, it is introduced into a mold as it is without undergoing a drying or granulation step using an organic solvent. Even if the mold is a solvent-permeable one that absorbs or permeates only the solvent, such as a plaster mold for cast molding, a transparent mold has a low powder concentration and a relatively low viscosity similar to normal cast molding. It is possible to use mixtures ranging from mixtures with a high powder concentration and high viscosity similar to those used in ordinary injection molding, and can be expected to improve sinterability because the powder is densely packed. However, since it takes time for the solvent to permeate, the molding time becomes longer, and there are other problems such as the need for sophisticated quality control to prevent compositional fluctuations due to the permeation of the sintering aid dissolved in the solvent. On the other hand, in a solvent-impermeable mold, since the powder density is the same as that of the mixture, it is necessary to increase the powder concentration of the mixture to the same level as in ordinary injection molding or low-pressure molding.

前記の成形型への導入後、成形型を直接冷却するか又は
成形型内を減圧して有機溶媒の蒸発により、実質的に有
機溶媒が凝固する温度以下まで冷却し、有機溶媒を凝固
させることによって混合物を成形型内で固化させる。
After introduction into the mold, the mold is directly cooled or the pressure inside the mold is reduced to evaporate the organic solvent to a temperature below which the organic solvent substantially solidifies, thereby solidifying the organic solvent. The mixture is allowed to solidify in the mold.

最後に、固化した混合物から有機溶媒を乾燥除去して成
形体を得る。有機溶媒は一般に水に比べて蒸発速度が大
きいので、真空度が低くても蒸発熱を多く奪うため乾燥
除去が容易である。粉末濃度が高い場合や焼結助剤が固
化する場合のように流動性が乏しく、成形体強度が高い
時には、有機溶媒の実質的な融点以上の温度に保持して
有機溶媒を乾燥除去することも可能であるが、多くの場
合には減圧下で凍結乾燥することが好ましい。凍結乾燥
によれば、成形体が凍結凝固されているので粉末濃度等
に関係なく成形体の形状維持が容易であり、又有機溶媒
の蒸発場所が成形体表面から順次内部へ移動するので成
形体の肉厚や形状に制限がない。
Finally, the organic solvent is removed by drying from the solidified mixture to obtain a molded body. Since organic solvents generally have a higher evaporation rate than water, they absorb a large amount of heat of evaporation even at a low degree of vacuum, so they can be easily removed by drying. When the fluidity is poor and the strength of the compact is high, such as when the powder concentration is high or the sintering aid solidifies, the organic solvent should be kept at a temperature above the substantial melting point of the organic solvent to dry and remove it. Although freeze-drying under reduced pressure is preferred in many cases. According to freeze-drying, the shape of the compact is easily maintained regardless of the powder concentration because the compact is frozen and solidified, and the evaporation site of the organic solvent moves from the surface of the compact to the inside of the compact, so the compact There are no restrictions on the wall thickness or shape.

得られた成形体は焼結工程に移されるが、分散剤やバイ
ンダー等を予備的に添加しである場合には通常の如く不
活性ガス雰囲気中又は酸素含有雰囲気中で加熱して分解
除去し、これ等を添加していない場合でも同様の加熱処
理により焼結助剤の金属化合物を分解することが好まし
い。
The obtained compact is transferred to the sintering process, but if a dispersant or binder is added in advance, it is decomposed and removed by heating in an inert gas atmosphere or an oxygen-containing atmosphere as usual. Even when these are not added, it is preferable to decompose the metal compound of the sintering aid by the same heat treatment.

〔実施例〕〔Example〕

実施例1 イミド分解法により製造した平均1次粒子径0.2μm
のSi N  粉末と、焼結助剤としてYO換算で7重
量%のイツトリウムイソプロポキシド及びAlO換算で
3重量%のアルミニウムイソプロポキシドと、バインダ
ーである2重量%のポリビニルブチラールとを、溶媒と
して第3級ブチルアルコールを用いてボールミルで12
時時間分した。S1N粉末の初期濃度は38体積%であ
り、室温は約25Cで溶媒は融解していた。得られたス
ラリー状の混合物を30Cに保持したバックアップ付き
10100X100X8の石膏型に圧力10気圧で導入
し、15分間保持して溶媒を透過させた。次に石膏型を
5Cに冷却すると共に型内を真空引きして混合物を固化
させ、引き続き圧力1 torrで3時間凍結乾燥させ
た。
Example 1 Average primary particle diameter 0.2 μm produced by imide decomposition method
Si N powder, 7% by weight of yttrium isopropoxide in terms of YO as a sintering aid, 3% by weight of aluminum isopropoxide in terms of AlO, and 2% by weight of polyvinyl butyral as a binder were mixed in a solvent. 12 in a ball mill using tertiary butyl alcohol as
It took an hour and a minute. The initial concentration of S1N powder was 38% by volume, the room temperature was about 25C, and the solvent was molten. The resulting slurry-like mixture was introduced into a 10100 x 100 x 8 plaster mold with backup, maintained at 30C, at a pressure of 10 atm, and maintained for 15 minutes to allow the solvent to permeate. Next, the plaster mold was cooled to 5C and the inside of the mold was evacuated to solidify the mixture, followed by freeze-drying at a pressure of 1 torr for 3 hours.

得られた成形体を更に大気中にて600 ’C’に加熱
して焼結助剤やバインダーを分解ないし除去した後、1
気圧の窒素雰囲気中にて1750 tel’で5時間焼
結し、更に1000気圧の窒素雰囲気中にて1750C
で1時間H工P処理して本発明例のSi N 焼結体を
得た。
The obtained compact was further heated to 600 'C' in the atmosphere to decompose or remove the sintering aid and binder, and then
Sintered at 1750 tel' in a nitrogen atmosphere at atmospheric pressure for 5 hours, and then sintered at 1750 C in a nitrogen atmosphere at 1000 atmospheric pressure.
A Si N sintered body of an example of the present invention was obtained by performing H-P treatment for 1 hour.

比較のために、焼結助剤のYO粉末5重ffi%とAt
 O粉末2重量%とを添加した以外は上記実施例と同様
に作製した焼結体(比較例A)、並びにスラリー状の混
合物を凍結乾燥した粉末を圧力1000気圧でC工P成
形した以外は上記実施例と同様に作製した焼結体(比較
例B)を用意した。
For comparison, 5% ffi% of YO powder and At
A sintered body (comparative example A) prepared in the same manner as in the above example except that 2% by weight of O powder was added, and a powder obtained by freeze-drying the slurry mixture was molded into C-P at a pressure of 1000 atmospheres. A sintered body (Comparative Example B) produced in the same manner as in the above example was prepared.

得られた各Si N 焼結体から曲げ試験片を切り出し
、JISに基づいて四点曲げ強度を測定した。
A bending test piece was cut out from each of the obtained Si N sintered bodies, and the four-point bending strength was measured based on JIS.

第1表に各焼結体の曲げ強度(25試料の平均値)と同
ワイブル係数を、成形体及び焼結体の相対密度と共に示
した。
Table 1 shows the bending strength (average value of 25 samples) and Weibull coefficient of each sintered body, together with the relative density of the compact and sintered body.

第   1   表 又、各焼結体をラッピングした後、走査型電子顕微鏡に
より組織を観察したところ、本発明例の焼結体は長軸の
長さが10 Am以上の粗大粒は全く見られず、空孔は
直径3μm以下のものが僅かに認められるにすぎなかっ
た。これに対し、比較例Aでは長軸の長さが10μm以
上の粗大粒が数多く見られ、空孔数も本発明例より多か
った。又、比較例Bでは直径約10μmの大きな空孔が
認められると共に、直径3μm程度の空孔も本発明例よ
り多かった。
Table 1 Also, after lapping each sintered body, the structure was observed using a scanning electron microscope, and the sintered bodies of the examples of the present invention did not have any coarse grains with a major axis length of 10 Am or more. Only a few pores with a diameter of 3 μm or less were observed. On the other hand, in Comparative Example A, many coarse grains with a major axis length of 10 μm or more were observed, and the number of pores was also greater than that of the inventive example. Further, in Comparative Example B, large pores with a diameter of about 10 μm were observed, and there were also more pores with a diameter of about 3 μm than in the present invention example.

実施例2 イミド分解法により製造した平均1次粒子径O02μm
のSi N 粉末と、焼結助剤としてYO換算で5重量
%のイツトリウムイソプロポキシド及びA10 換算で
2重量%のアルミニウムイソプロポキシドと、バインダ
ーである2重量%のボリビニルフチラールトヲ、溶媒と
して第3級ブチルアルコールを用いて3本ロールミルで
20分間混合した。
Example 2 Average primary particle diameter 002 μm produced by imide decomposition method
of SiN powder, 5% by weight of yttrium isopropoxide in terms of YO as a sintering aid, 2% by weight of aluminum isopropoxide in terms of A10, and 2% by weight of borivinyl phthalate as a binder. Tertiary butyl alcohol was used as a solvent and mixed for 20 minutes using a three-roll mill.

Si N 粉末の初期濃度は45体積%であり、ロール
温度は約3Orに調整され、溶媒は融解していた。
The initial concentration of Si N powder was 45% by volume, the roll temperature was adjusted to about 3 Or, and the solvent was melted.

得られたスラリー状の混合物を5Cに保持した8時間凍
結乾燥させた。得られた成形体を、以下実施例1と同様
にして、焼結助剤やバインダーを分解ないし除去した後
、焼結及びHIF処理して本発明例のSi N 焼結体
を得た。
The resulting slurry mixture was freeze-dried for 8 hours at 5C. The obtained molded body was subjected to decomposition or removal of the sintering aid and binder in the same manner as in Example 1, and then sintered and HIF-treated to obtain a Si N sintered body of an example of the present invention.

得られた本発明例の焼結体及び実施例1で述べた比較例
ムと同様に作製した焼結体について、実施例1と同様に
四点曲げ強度を測定し、第2表に各焼結体の曲げ強度(
25試料の平均値)と同ワイプル係数を、成形体及び焼
結体の相対密度と共に示した。
The four-point bending strength was measured in the same manner as in Example 1 for the obtained sintered bodies of the present invention example and the sintered bodies produced in the same manner as the comparative example described in Example 1, and the results are shown in Table 2. Bending strength of the body (
The average value of 25 samples) and the same Wipul coefficient are shown together with the relative density of the compact and sintered compact.

第  2  表 又、各焼結体をラッピングした後、走査型電子顕微鏡に
より組織を観察したところ、本発明例の焼結体は長軸の
長さが10μm以上の粗大粒は全く見られず、空孔は直
径3 /jm以下のものが僅かに認められるにすぎなか
ったが、比較例Aでは長軸の長さが10μm以上の粗大
粒が数多く見られ、空孔も本発明例より多かった。
Table 2 Also, after lapping each sintered body, the structure was observed using a scanning electron microscope, and the sintered bodies of the examples of the present invention had no coarse grains with a major axis length of 10 μm or more. Only a few pores with a diameter of 3/jm or less were observed, but in Comparative Example A, many coarse particles with a major axis length of 10 μm or more were observed, and the number of pores was also larger than in the inventive example. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、焼結助剤が均一に分散混合された窒化
珪素粉末成形体を、成形型により簡単にしかも欠陥等を
生じることなく成形出来る。
According to the present invention, a silicon nitride powder molded body in which a sintering aid is uniformly dispersed and mixed can be molded easily using a mold without causing any defects.

本発明の窒化珪素粉末成形体を用いることにより、空孔
や欠陥がなく均一な組織を有する高強度な焼結体を得る
ことが可能であり、従って高い信頼性を要求される自動
車エンジン部品等に使用される窒化珪素焼結体の製造に
特に有効である。
By using the silicon nitride powder compact of the present invention, it is possible to obtain a high-strength sintered body that is free from pores and defects and has a uniform structure. It is particularly effective for manufacturing silicon nitride sintered bodies used in

出願人  住友電気工業株式会社Applicant: Sumitomo Electric Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)窒化珪素粉末、融点が0℃〜40℃の有機溶媒、
及び該有機溶媒に可溶な金属化合物からなる焼結助剤を
実質的に有機溶媒が融解する温度以上で混合し、得られ
た混合物を実質的に有機溶媒が融解する温度以上で成形
型に導入し、次に実質的に有機溶媒が凝固する温度以下
に冷却して成形型内で混合物を固化させ、有機溶媒を乾
燥除去して成形体を得ることを特徴とする窒化珪素粉末
成形体の製造方法。
(1) silicon nitride powder, an organic solvent with a melting point of 0°C to 40°C,
and a sintering aid consisting of a metal compound soluble in the organic solvent at a temperature substantially equal to or higher than the temperature at which the organic solvent melts, and the resulting mixture is molded into a mold at a temperature equal to or higher than the temperature at which the organic solvent substantially melts. A silicon nitride powder molded body is obtained by solidifying the mixture in a mold by cooling the mixture to a temperature substantially below the solidification temperature of the organic solvent, and drying and removing the organic solvent. Production method.
(2)前記有機溶媒の乾燥除去が減圧下での凍結乾燥で
あることを特徴とする、請求項(1)記載の窒化珪素粉
末成形体の製造方法。
(2) The method for producing a silicon nitride powder compact according to claim (1), wherein the dry removal of the organic solvent is freeze-drying under reduced pressure.
JP2165386A 1990-06-22 1990-06-22 Manufacture of silicon nitride powder molded product Pending JPH0462001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165386A JPH0462001A (en) 1990-06-22 1990-06-22 Manufacture of silicon nitride powder molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165386A JPH0462001A (en) 1990-06-22 1990-06-22 Manufacture of silicon nitride powder molded product

Publications (1)

Publication Number Publication Date
JPH0462001A true JPH0462001A (en) 1992-02-27

Family

ID=15811406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165386A Pending JPH0462001A (en) 1990-06-22 1990-06-22 Manufacture of silicon nitride powder molded product

Country Status (1)

Country Link
JP (1) JPH0462001A (en)

Similar Documents

Publication Publication Date Title
JP2686248B2 (en) Si3N4 ceramics, Si-based composition for producing the same, and method for producing the same
JPH0139989B2 (en)
JPH0251863B2 (en)
KR960016070B1 (en) Sintered aluminium nitride and its production
JPS62158166A (en) Manufacture of silicon nitride mixed powder
JPH0462001A (en) Manufacture of silicon nitride powder molded product
US5080844A (en) SI3N4 process using polysilane or polysilazane as a binder
US5167887A (en) SI3 N4 process using polysilane as a binder
KR100434830B1 (en) Method for Manufacturing Homogeneous Green Bodies from the Powders of Multimodal Particle Size Distribution Using Centrifugal Casting
JP2786719B2 (en) Method for producing rare earth oxide sintered body
JPH05503683A (en) Method for producing large cross-section injection molded or slip cast ceramic bodies
EP0405352B1 (en) Process for producing a ceramic superconducting shaped article
JPH06279124A (en) Production of silicon nitride sintered compact
JP3035163B2 (en) Silicon nitride sintered body and method for producing the same
JPS58125667A (en) Composite carborundum sintered shape and its manufacture
JPH0483759A (en) Production of sintered composite boron nitride
JPS5915112B2 (en) Method for manufacturing high-density silicon carbide sintered body
JP3486642B2 (en) High Purification Processing Method of Silicon Nitride Raw Material Powder
JPH03177372A (en) Sic-based vesicular sintered compact and its production
JPH0345034B2 (en)
JP2506519B2 (en) Low-temperature low-pressure sintered silicon nitride sintered body manufacturing method
JPH02307871A (en) Production of ceramic sintered compact
JPS6163571A (en) Manufacture of aluminum nitride sintered body
JPS60260463A (en) Manufacture of high density oxide sintered body
JPS61256977A (en) Manufacture of high strength silicon carbide sintered body