JPH04170357A - Dewaxable molded body of magnetic powder and method for dewaxing same - Google Patents

Dewaxable molded body of magnetic powder and method for dewaxing same

Info

Publication number
JPH04170357A
JPH04170357A JP2297210A JP29721090A JPH04170357A JP H04170357 A JPH04170357 A JP H04170357A JP 2297210 A JP2297210 A JP 2297210A JP 29721090 A JP29721090 A JP 29721090A JP H04170357 A JPH04170357 A JP H04170357A
Authority
JP
Japan
Prior art keywords
binder
molded body
magnetic powder
degreasing
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2297210A
Other languages
Japanese (ja)
Inventor
Tadao Katahira
片平 忠夫
Hideki Matsuzawa
秀樹 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2297210A priority Critical patent/JPH04170357A/en
Publication of JPH04170357A publication Critical patent/JPH04170357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a dewaxed molded body having superior dimensional accu racy by using magnetic powder and a binder composed of org. high molecular compds. soluble and insoluble in various solvents. CONSTITUTION:A mixture of magnetic powder with solvents such as toluene and CO2 and a binder composed of org. high molecular compds. soluble and insoluble in the solvents is injection- or extrusion-molded. The binder in the resulting molded body is dissolved and extracted with an org. solvent or a solvent having a supercritical phase and the molded body is dewaxed and sintered to obtain a powder metallurgical product.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は脱脂性に優れた磁性材料の焼結体及びその脱
脂方法に関するものであり、更に詳しくは、磁性材料の
焼結体を製造する工程において。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sintered body of a magnetic material with excellent degreasing properties and a method for degreasing the same. In the process.

焼結に供する成形体を磁性粉末と有機高分子化合物を主
成分とするバインダーと混合、混線、ベレット化した混
和物を射出成形または押出成形した後、脱脂することの
できる磁性粉末成形体とその脱脂方法に関するものであ
る。
A magnetic powder compact that can be degreased after injection molding or extrusion molding of a mixture of a compact to be subjected to sintering with a binder mainly composed of magnetic powder and an organic polymer compound, cross-wire, and pelletizing. The present invention relates to a degreasing method.

[従来の技術およびその問題点] 一般に磁性材料の製品を粉末冶金法によって製造する工
程において、焼結によって製造する工程において、11
結に供する成形体は原料粉末を圧縮成形することにより
圧粉体として得られている。
[Prior art and its problems] In general, in the process of manufacturing magnetic material products by powder metallurgy, 11
The compact to be subjected to compaction is obtained as a green compact by compression molding raw material powder.

これは通常金型に充填した原料粉末を上下方向からパン
チで加圧するという方法であることから。
This is because the method usually involves punching the raw material powder filled into the mold from above and below.

得られる成形体の形状としては2円柱1円筒のような比
較的単純なものに限られ、より複雑な形状の製品を得る
には、焼結上がりの製品に切削、研削などの後工程を施
す必要がある。
The shapes of the resulting molded bodies are limited to relatively simple shapes such as two cylinders and one cylinder; to obtain products with more complex shapes, post-processes such as cutting and grinding are performed on the sintered products. There is a need.

このような問題点を解決すべく、従来の方法で得られな
い複雑形状の成形体を得るための技術が種々検討されて
いるが、いわゆるエンジニアリングセラミックスなどを
中心とした窯業製品の分野では原料粉末に10〜20重
量%の有機高分子化合物を主成分としたバインダーを加
え、混合、混練し、射出成形もしくは押し出し成形した
成形体を脱脂、焼結しても製品を得るという方法が行な
われ始めている。射出成形は有機高分子化合物。
In order to solve these problems, various techniques are being studied to obtain molded bodies with complex shapes that cannot be obtained using conventional methods.However, in the field of ceramic products, mainly engineering ceramics, raw material powder A method of obtaining a product by adding a binder mainly composed of 10 to 20% by weight of an organic polymer compound, mixing, kneading, injection molding or extrusion molding, and degreasing and sintering the molded product has begun to be used. There is. Injection molding is an organic polymer compound.

即ちプラスチックの成形方法として発展を遂げてきたも
のであるが、製品を後加工なしで、しかも高い寸法精度
で大量に生産するのに適しでいるため、前述のような問
題点の解決策として注目すべきものがある。そして、近
年のアトマイズ法に代表される金属粉末の製造技術やバ
インダー配合技術の発展に支えられて、この製法が金属
の焼結製品にも適用が認められてきている。
In other words, it has been developed as a plastic molding method, and it is suitable for mass production of products with high dimensional accuracy without post-processing, so it is attracting attention as a solution to the problems mentioned above. There is something to do. Supported by the recent development of metal powder manufacturing technology and binder compounding technology, typified by the atomization method, this manufacturing method is now being accepted for application to metal sintered products.

この射出成形、押し出し成形による成形体を焼結に使用
する方法と従来の圧縮成形体を焼結する方法の相違点は
成形方法が異なることは勿論であるが、前者では成形体
が多量のバインダーを含有するため、焼結する前に脱バ
インダー、即ち脱脂を施す必要がある。因みに後者の例
では、成形体が全熱バインダーを含まないか、含む場合
でも極く少量なので直接焼結することができる。そして
The difference between this method of using injection molded or extrusion molded bodies for sintering and the conventional method of sintering compression molded bodies is that the molding method is different, but in the former, the molded body contains a large amount of binder. , it is necessary to remove the binder, that is, degrease before sintering. Incidentally, in the latter example, the molded body does not contain a total heat binder, or even if it does contain it, it is only in a very small amount, so that it can be directly sintered. and.

この脱脂方法は成形体を徐々に加熱してバインダーを熱
分解ガスとして揮散させるというのが従来の一般的な方
法であるが、このときの昇温速度はあまりに大であると
熱分解ガスの発生が急激過ぎて成形体に「ふくれ」や「
割れ」などの変形を起こすため5〜b したがって、室温から600℃まで昇温する場合を想定
すると、脱脂工程に要する時間は約40〜1.20Hr
、という長時間となってしまう。また。
The conventional and common degreasing method is to gradually heat the molded body and volatilize the binder as pyrolysis gas, but if the rate of temperature increase at this time is too high, pyrolysis gas will be generated. If the temperature is too rapid, the molded product may become blistered or
Therefore, assuming that the temperature is raised from room temperature to 600℃, the time required for the degreasing process is approximately 40 to 1.20 hours.
, which ends up being a long time. Also.

殊に原料粉末が金属である場合は脱脂工程の雰囲気が酸
化性であると、金属が酸化されてしまい。
Particularly when the raw material powder is metal, if the atmosphere during the degreasing process is oxidizing, the metal will be oxidized.

製品が本来具備すべき特性を発揮することができなくな
ってしまう。このようなことから、脱脂工程の雰囲気は
不活性もしくは還元性とする必要があり、所用時間とと
もに、製造コスト低下を阻害する大きな要因となってい
る。
The product will no longer be able to exhibit its original characteristics. For this reason, the atmosphere in the degreasing process needs to be inert or reducing, which is a major factor that hinders the reduction in manufacturing costs as well as the required time.

更に、もう一つの重要な技術的な問題として。Furthermore, there is another important technical issue.

脱脂工程における成形体の変形の原因にバインダーの主
成分である有機高分子化合物が熱可塑性である場合に、
その特性に起因する熱変形という現象が生じる、この問
題は成形体が水平方向に中空部や突起部を有するような
形状のもとでは顕著にあられれるものである。
When the organic polymer compound that is the main component of the binder is thermoplastic, the cause of the deformation of the molded product during the degreasing process is
A phenomenon of thermal deformation occurs due to its characteristics, and this problem becomes more pronounced when the molded product has a shape that has hollow portions or protrusions in the horizontal direction.

[問題点を解決するための手段] 本発明は有機高分子化合物の熱可塑性という特性に起因
する脱脂工程における変形の問題に対処すべくなされた
もので1寸法精度に優れた脱脂成形体および脱脂方法を
提供することを目的とする。
[Means for Solving the Problems] The present invention was made in order to deal with the problem of deformation in the degreasing process caused by the thermoplastic property of organic polymer compounds, and it provides a degreased molded article and a degreased product with excellent one-dimensional accuracy. The purpose is to provide a method.

斯る目的を達成するため1本件発明は、 、(1)磁性
粉末と有機高分子化合物を主成分とするバインダーから
なる混和物を射出成形または押し出し成形した成形体を
脱脂、焼結することにょって粉末冶金製品を得る工程に
おいて。
In order to achieve such an object, the present invention (1) involves degreasing and sintering a molded body obtained by injection molding or extrusion molding of a mixture of magnetic powder and a binder whose main component is an organic polymer compound. in the process of obtaining powder metallurgy products.

(2)脱脂工程はバインダーを液相または超臨相の溶媒
により溶解、抽出し。
(2) In the degreasing step, the binder is dissolved and extracted using a liquid phase or supercritical phase solvent.

(3)この後、該成形体を磁気的に支持台に吸看された
状態で脱脂工程に供されるようにしてやるものである。
(3) Thereafter, the molded body is subjected to a degreasing process while being magnetically absorbed by the support.

従来、前述の脱脂工程での熱変形の問題に対処する方法
としては、成形体を粉末に埋め込む方法などがとられて
きた。しかし、この方法は成形体の重量を粉末で支えよ
うというものであるが1本件発明者は使用する粉末が磁
性材である場合に限定すると、成形体を磁気的に吸着す
ることにより自重による変形を防止することに着目した
。しかし、磁性材料には周知のように温度に関わる特性
の一つとして、キュリー温度というそれ以上の温度では
磁気的な性質を全く消失してしまう温度が存在する。つ
まり、脱脂温度以下のキュリー温度を有する磁性材では
支持台に吸看することができない巳とになる。因みに、
ここで汎珀の磁性材料のキュリー温度についてみてみる
と、ハード材の例として、Sm−Co系では約850℃
、Sr−フェライトでは約450℃、ソフト材の例とし
てパーマロイでは約230℃、Mn−Znフェライトで
は約120℃である。したがって、脱脂を120℃で行
なえるバインダー組成および脱脂方法を採用すれば1本
発明は殆どの磁性材に適用し得ることになる。
Conventionally, a method of embedding a molded body in powder has been used as a method to deal with the problem of thermal deformation in the above-mentioned degreasing process. However, although this method aims to support the weight of the molded body with powder, the inventor of the present invention is limited to cases where the powder used is a magnetic material, and by magnetically adsorbing the molded body, deformation due to its own weight is prevented. We focused on preventing However, as is well known, magnetic materials have one of their temperature-related properties, the Curie temperature, above which magnetic properties are completely lost. In other words, a magnetic material having a Curie temperature lower than the degreasing temperature cannot be absorbed by the support base. By the way,
Looking at the Curie temperature of Panki's magnetic materials, as an example of hard materials, the Sm-Co type is approximately 850 degrees Celsius.
, about 450°C for Sr-ferrite, about 230°C for permalloy as an example of a soft material, and about 120°C for Mn-Zn ferrite. Therefore, if a binder composition and a degreasing method that can be degreased at 120° C. are adopted, the present invention can be applied to most magnetic materials.

本発明者は、かかる観点から120℃以下の低温で脱脂
を行う方法を検討した結果。
From this point of view, the present inventor investigated a method of degreasing at a low temperature of 120° C. or lower.

(I)バインダーとして液相または超臨界相の溶媒に可
溶な成分を用い、脱脂を抽出によって行なえば、これを
可能とし得ること。
(I) This may be possible if a component soluble in a liquid phase or supercritical phase solvent is used as a binder and degreasing is performed by extraction.

(n)かならずしも脱脂率は100%にならなくても焼
結工程には支障がなく、むしろ保形性の向上のためにあ
る程度以上の量のバインダーを成形体に残存させた方が
良い結果が得られるので。
(n) Even if the degreasing rate is not 100%, there is no problem with the sintering process; in fact, it is better to leave a certain amount of binder in the molded product to improve shape retention. Because you can get it.

前記以外の有機高分子化合物をもバインダー成分として
加えること。
Organic polymer compounds other than those mentioned above may also be added as binder components.

<m>温度が高い方が抽出速度も大きくなり。<m> The higher the temperature, the higher the extraction speed.

また抽出時にはバインダーが溶媒で膨潤して成形体が柔
らかくなることから、変形を防止するために成形体と磁
気的に閉回路を構成する支持台を用いること、の3項に
よって前述の目的が達成できるのである。
In addition, during extraction, the binder swells with the solvent and the molded body becomes soft, so the above purpose was achieved by using a support that forms a magnetic closed circuit with the molded body to prevent deformation. It can be done.

したがって9本発明の方法に用いられる磁性粉末成形体
のバインダーの成分として使用し得る物質は、各種の溶
媒に可溶および不溶なものの組み合せてあり、具体的に
は、ベンゼンに対しアクリル系ポリマー、スチレン系ポ
リマーは可溶であり。
Therefore, the substances that can be used as the binder component of the magnetic powder compact used in the method of the present invention include a combination of substances soluble and insoluble in various solvents, and specifically, acrylic polymers, benzene, Styrenic polymers are soluble.

ポリエチレンのようなポリオレフィンなどは不溶である
ことから、このような組み合せが例として挙げられる。
Since polyolefins such as polyethylene are insoluble, such a combination is given as an example.

もっとも、これに限定されるものではないことはいうま
でもない。また、使用し得る溶媒の例としては、特に限
定されるものではないが、液相のものとしては各種の有
機溶媒が挙げられ、超臨界相のものとしては取り扱いの
容易さを考慮して二酸化炭素や、二酸化炭素とトルエン
などの有機溶媒との混合物などが挙げられる。
However, it goes without saying that it is not limited to this. Examples of usable solvents include, but are not limited to, various organic solvents in the liquid phase, and carbon dioxide in the supercritical phase for ease of handling. Examples include carbon and a mixture of carbon dioxide and an organic solvent such as toluene.

(第1実施例) 平均粒径が0.5μlのNi−Znフェライトの仮焼粉
90重量%に対し融点60℃のパラフィンワックスを4
重量%、平均分子量が約120.000のポリメタクリ
ル酸ブチルを4.5重量%、酢酸ビニル含量が11%で
あって平均分子量が約120.000のエチレン−酢酸
ビニル共重合体1.5重量%を夫々秤量し、加圧ニーダ
で20分間混練した。この混和物を回転刃を装着した押
出機により径を約410.長さを5■■のペレットとし
た。
(First Example) Paraffin wax with a melting point of 60° C. was added to 90% by weight of Ni-Zn ferrite calcined powder with an average particle size of 0.5 μl.
4.5% by weight of polybutyl methacrylate with an average molecular weight of about 120.000, 1.5% by weight of ethylene-vinyl acetate copolymer with a vinyl acetate content of 11% and an average molecular weight of about 120.000. % was weighed and kneaded for 20 minutes using a pressure kneader. This mixture was processed into a diameter of approximately 410 mm using an extruder equipped with a rotating blade. The length of the pellet was 5■■.

この原料を押出成形機を用いて第1図に示すような断面
形状に押出し、切断工程を経て長さ30■1の成形体と
した。
This raw material was extruded using an extrusion molding machine into a cross-sectional shape as shown in FIG. 1, and a molded product having a length of 30 cm was obtained through a cutting process.

次に、この成形体の上側をSrフェライト磁石に吸着さ
せた状態で、ベンゼンに浸漬し、70℃で8時間保持す
るという条件で脱脂を行った。このときの脱脂の前後の
成形体の重量の変化を測定したところ、8,1%の重量
減がみられ、バインダーの81%が抽出された。残りの
19%はベンゼンに不要なエチレン−酢酸ビニル共重合
体と考えられる。なお、このとき、Srフェライト磁石
は後で外す便宜を考慮して、多孔質のアルミナ板を解し
て吸着させた。
Next, with the upper side of this molded body adsorbed to an Sr ferrite magnet, it was immersed in benzene and degreased under the conditions of holding at 70° C. for 8 hours. When the weight change of the molded body before and after degreasing at this time was measured, a weight loss of 8.1% was observed, and 81% of the binder was extracted. The remaining 19% is considered to be ethylene-vinyl acetate copolymer, which is unnecessary for benzene. At this time, the Sr ferrite magnet was adsorbed through a porous alumina plate in consideration of the convenience of removing it later.

この脱脂体を1,150℃の温度で2時間焼結し、焼結
体を得た。この焼結体の寸法を第1表に示す。
This degreased body was sintered at a temperature of 1,150° C. for 2 hours to obtain a sintered body. The dimensions of this sintered body are shown in Table 1.

なお、比較例1は第1実施例と同様に作製した成形体に
吸着用の磁石を用いなかったほかは、第1実施例と同様
にして脱脂、焼結を施し、焼結体を得たものである。
In addition, in Comparative Example 1, a sintered body was obtained by degreasing and sintering in the same manner as in Example 1, except that the adsorption magnet was not used for the molded body produced in the same manner as in Example 1. It is something.

以下弦β (第2実施例) 見ずアトマイズ方で作成した平均粒径11μ■のFe−
50Co粉末を上記第1実施例と同様にしてバインダー
と混練し、ベレット状の原料を得た。この原料を射出成
形機を用いて第2図に示すような形状に成形した。この
成形体を第3図に示すような支持台(斜線部分は吸着用
の磁石)に設置し、第1実施例と同様の条件で脱脂し、
引き続き1,200℃で3時間焼結を施した。この焼結
体の寸法を第2表に示す。
Below is the chord β (Second Example) Fe-
50Co powder was kneaded with a binder in the same manner as in the first example to obtain a pellet-shaped raw material. This raw material was molded into the shape shown in FIG. 2 using an injection molding machine. This molded body was placed on a support stand as shown in Fig. 3 (the shaded area is a magnet for attraction), and degreased under the same conditions as in the first example.
Subsequently, sintering was performed at 1,200°C for 3 hours. The dimensions of this sintered body are shown in Table 2.

なお、比較例2は第2実施例と同様に作製した成形体に
支持台を用いなかったほかは、第2実施例と同様にして
脱脂、焼結を施し、焼結体を得たものである。
In Comparative Example 2, a sintered body was obtained by degreasing and sintering in the same manner as in Example 2, except that no support was used for the molded body produced in the same manner as in Example 2. be.

以下依日 (第3実施例) 平均粒径が0,5μmのNi−Znフェライトの仮焼粉
を90重量%に対し、フタル酸ジブチルを1.5 Ni
量%、融点60℃のパラフィンワックスを2.5重量%
、平均分子量が約120; oooのポリメタクリル酸
ブチルを4.5重量%、平均分子量が約180,000
の高密度ポリエチレンを1.0重量%、酢酸ビニル含量
が11%であって平均分子量が約120,000のエチ
レン−酢酸ビニル共重合体を0.5重量%を夫々秤量し
、加圧ニーダで20分間混練した。この混和物を回転場
を装着した押出様により、径約4 as、長さ5■1の
ベレットとした。この原料を第1実施例と同様にして押
出成形体とした。
Hereinafter (Third Example): 90% by weight of Ni-Zn ferrite calcined powder with an average particle size of 0.5 μm and 1.5% Ni of dibutyl phthalate.
2.5% by weight of paraffin wax with a melting point of 60°C
, average molecular weight of about 120; ooo polybutyl methacrylate 4.5% by weight, average molecular weight of about 180,000
1.0% by weight of high-density polyethylene and 0.5% by weight of ethylene-vinyl acetate copolymer with a vinyl acetate content of 11% and an average molecular weight of about 120,000 were weighed, and they were mixed in a pressure kneader. The mixture was kneaded for 20 minutes. This mixture was made into pellets with a diameter of about 4 as and a length of 5 cm by extrusion equipped with a rotating field. This raw material was made into an extrusion molded product in the same manner as in the first example.

この成形体を第1実施例と同様にSrフェライト磁石に
吸着させた状態で、第4図に示すような抽出装置の抽出
槽(内容積:800cc)9に装入した。この抽出槽9
を60℃に昇温し、抽出槽9内にポンプ7により二酸化
炭素を充填した。そして抽出槽9内の圧力を200kg
/c−に保持するようにしながら出口側のバルブを開き
二酸化炭素を2001/Hr、流すように調整した。そ
の後ただちにポンプ3を作動させ、トルエンを槽9内に
300 cc/ Hr、の流速で流すようにした。2時
間経過後にポンプを停止し、二酸化炭素だけを更に2時
間流し1槽9内のトルエンを二酸化炭素で置換した。そ
して、槽9内を大気圧まで減圧し、成形体を取出した。
This compact was adsorbed to an Sr ferrite magnet in the same manner as in the first example, and was charged into an extraction tank (inner volume: 800 cc) 9 of an extraction device as shown in FIG. This extraction tank 9
The temperature was raised to 60° C., and the extraction tank 9 was filled with carbon dioxide using the pump 7. Then, the pressure inside the extraction tank 9 is set to 200 kg.
The valve on the outlet side was opened and carbon dioxide was adjusted to flow at 2001/hr while maintaining the temperature at /c-. Immediately thereafter, the pump 3 was activated to flow toluene into the tank 9 at a flow rate of 300 cc/Hr. After 2 hours, the pump was stopped, and only carbon dioxide was allowed to flow for another 2 hours to replace toluene in tank 9 with carbon dioxide. Then, the pressure inside the tank 9 was reduced to atmospheric pressure, and the molded body was taken out.

前後の成形体の重量変化を測定した結果1重量滅は8゜
3%でありバインダーの83%が抽出除去された。
As a result of measuring the weight change of the molded body before and after, the weight loss was 8.3%, and 83% of the binder was extracted and removed.

この脱脂成形体を第1実施例と同様に焼結し。This degreased molded body was sintered in the same manner as in the first example.

焼結体を得た。この焼結体の寸法を第3表に示す。A sintered body was obtained. The dimensions of this sintered body are shown in Table 3.

なお、比較例3は第1実施例と同様に作製した成形体に
吸着用の磁石を用いなかったほかは第3実施例と同様に
して脱脂、焼結を施し、焼結体を得たものである。
In Comparative Example 3, a sintered body was obtained by degreasing and sintering the molded body produced in the same manner as in Example 1, but not using an adsorption magnet, in the same manner as in Example 3. It is.

(発明の効果) 上記した様に1本発明によれば粉末冶金法による磁性材
の製品を複雑形状で変形無く得ることが可能になり、磁
性材料の用途拡大に寄与するところは極めて大きく工業
状極めて有益である。
(Effects of the Invention) As described above, according to the present invention, it is possible to obtain magnetic material products with complex shapes without deformation by powder metallurgy, and this invention greatly contributes to expanding the use of magnetic materials in industrial applications. Extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:第1実施例における押出成形体の断面形状を示
す説明図。 第2図二第2実施例における射出成形体の形状を示す説
明図。 第3図:第2実施例における支持台の形状を示す説明図
。 第4図:第3実施例における抽出装置の概略を示す説明
図。 1・・・二酸化炭素ボンベ、2・・・溶媒タンク、3・
・・溶媒ポンプ、4,5・・・保圧弁、6・・・熱交換
器、7・・・二酸化炭素ポンプ、8・・・熱交換器、9
・・・抽出槽。 10・・・抽出分離槽、11・・・溶媒回収槽、12・
・・圧力計、13・・・積算流量計。 手続補正書(自発) 平成3年1月7日
FIG. 1: An explanatory diagram showing the cross-sectional shape of the extrusion molded body in the first example. FIG. 2 is an explanatory diagram showing the shape of the injection molded article in the second embodiment. FIG. 3: An explanatory diagram showing the shape of the support base in the second embodiment. FIG. 4: An explanatory diagram showing an outline of the extraction device in the third embodiment. 1... Carbon dioxide cylinder, 2... Solvent tank, 3...
...Solvent pump, 4,5...Pressure valve, 6...Heat exchanger, 7...Carbon dioxide pump, 8...Heat exchanger, 9
...Extraction tank. 10... Extraction separation tank, 11... Solvent recovery tank, 12.
...Pressure gauge, 13... Integral flow meter. Procedural amendment (voluntary) January 7, 1991

Claims (2)

【特許請求の範囲】[Claims] (1)磁性粉末と有機高分子化合物を主成分とするバイ
ンダーからなり, 該バインダーが液相または超臨界相の溶媒に溶解しない
成分を含んでなる ことを特徴とする脱脂性磁性粉末成形体。
(1) A degreasable magnetic powder compact comprising a binder whose main components are magnetic powder and an organic polymer compound, the binder containing a component that is insoluble in a liquid phase or supercritical phase solvent.
(2)磁性粉末と有機高分子化合物を主成分とするバイ
ンダーからなる混和物を射出成形または押出成形した成
形体を脱脂,焼結することによって粉末冶金製品を得る
工程において, 脱脂工程がバインダーを液相または超臨界相の溶媒によ
り溶解,抽出することによってなされ,かつ, 成形体を磁気的に支持台に吸着された状態で脱脂工程に
供されるようにする ことを特徴とする磁性粉末成形体の脱脂方法。
(2) In the process of obtaining a powder metallurgy product by degreasing and sintering a compact formed by injection molding or extrusion molding of a mixture consisting of magnetic powder and a binder whose main components are an organic polymer compound, the degreasing process removes the binder. Magnetic powder molding is performed by dissolving and extracting with a liquid phase or supercritical phase solvent, and is characterized in that the molded product is subjected to a degreasing process while being magnetically adsorbed to a support. How to degrease your body.
JP2297210A 1990-11-05 1990-11-05 Dewaxable molded body of magnetic powder and method for dewaxing same Pending JPH04170357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2297210A JPH04170357A (en) 1990-11-05 1990-11-05 Dewaxable molded body of magnetic powder and method for dewaxing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2297210A JPH04170357A (en) 1990-11-05 1990-11-05 Dewaxable molded body of magnetic powder and method for dewaxing same

Publications (1)

Publication Number Publication Date
JPH04170357A true JPH04170357A (en) 1992-06-18

Family

ID=17843608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2297210A Pending JPH04170357A (en) 1990-11-05 1990-11-05 Dewaxable molded body of magnetic powder and method for dewaxing same

Country Status (1)

Country Link
JP (1) JPH04170357A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102601371A (en) * 2012-03-06 2012-07-25 宝得粉末注射成形(常熟)有限公司 Defatting mechanism
JPWO2014156768A1 (en) * 2013-03-26 2017-02-16 日本碍子株式会社 Drying method of molded body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102601371A (en) * 2012-03-06 2012-07-25 宝得粉末注射成形(常熟)有限公司 Defatting mechanism
JPWO2014156768A1 (en) * 2013-03-26 2017-02-16 日本碍子株式会社 Drying method of molded body

Similar Documents

Publication Publication Date Title
EP0311407B1 (en) Process for fabricating parts for particulate material
JPH0686608B2 (en) Method for producing iron sintered body by metal powder injection molding
WO1998033614A1 (en) Gel strength enhancing additives for agaroid-based injection molding compositions
JP2016523799A (en) Binder for injection molding composition
JPH0647684B2 (en) Degreasing method for injection molded products
Liu et al. Influence of debinding rate, solid loading and binder formulation on the green microstructure and sintering behaviour of ceramic injection mouldings
JPH04329801A (en) Production of sintered parts
JPH04170357A (en) Dewaxable molded body of magnetic powder and method for dewaxing same
US20010049412A1 (en) Raw material for injection molding
JPH0313503A (en) Method for degreasing molding for powder metallurgy, binder and supercritical fluid
KR20210049700A (en) Binder composition for manufacturing sintered body and debinding method for the same
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
JPH02153857A (en) Production of sintered material
KR970010296B1 (en) Polyethylene glycol binders and production thereof
JPS60230957A (en) Manufacture of permanent magnet
JP2949130B2 (en) Method for producing porous metal filter
JPH06287055A (en) Production of sintered article of ceramic
JPH04186803A (en) Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body
JPH0345566A (en) Production of sintered granular material
KR0166436B1 (en) Binder for powder injection molding and method of the production of powder injection molded products using the same
JPH0461826B2 (en)
JPH03257101A (en) Method for degreasing powder green compact
JPS6335459A (en) Method of dewaxing formed body of sinterable substance-containing mixture
JPH06346105A (en) Titanium material compact, apparatus for producing the same and method therefor
JPS63166768A (en) Method of sintering formed body of sinterable substance-containing mixture